waves ™

ENTERPRISE

Technical description of the Waves
Enterprise platform

Release master

https: //wavesenterprise.com

Oct 21, 2020






BLOCKCHAIN-PLATFORM WAVES ENTERPRISE







CHAPTER
ONE

FEATURES OVERVIEW

Waves Enterprise Blockchain Platform — is a universal solution for scalable digital infrastructures that com-
bines features of public and private blockchain for corporate and government use. The enterprise blockchain
platform solves the problem of trust between the parties not at the level of business logic, but at the level of
the platform operation protocol. Supported PoS and PoA consensuses guarantee correctness of data added
to the blockchain, while decentralization provides counterparty independence in terms of data access.

1.1 Blockchain Waves Enterprise

* Built on Scala programming language.
¢ Includes technologies and best use practices of use proven on the Waves public blockchain platform.
« Adapted for corporate and government use.

* Supports algorithms of PoS and PoA consensus - you can choose the most fitting one during the
network deployment.

¢ Ensures high throughput rate.

¢ Supports two types of smart contracts: Turing-incomplete RIDE contracts and Turing-complete Docker
contracts.

 Delivered as a set of microservices.
¢ Uses cryptographic algorithms certified by state regulators.

¢ Supports confidential and direct data exchange via private groups without loading data into external
networks.

* Permission management system implemented at the consensus level.

¢ Waves Enterprise web client features transactions explorer, wallet, creation of transactions, smart
contract development, blockchain status monitoring, permission management.




Technical description of the Waves Enterprise platform, Release master

1.1.1 Waves Enterprise network deployment options

1. Operating in the main public network.
2. Operating in a private network anchored to the main network.

3. Operating in an independent private network.

1.2 Main network

Main network is supported by consortia of companies from various economy sectors including banking,
industrial, real estate, logistics, etc. Companies which run main network may be using public blockchain for
their projects or for supplying blockchain processes, e.g. banking enterprises delivering fiat gateways and
state registrars granting access to cloud GOST-cryptography.

1.3 Independent private network

There are cases when company is not ready to share its processes publicly. Waves Enterprise box version
allows such companies to deploy a stand-alone private network and configure it in accordance to business
needs.

Following features are configurable:
» Consensus type.
e Cryptography provider.
e Number of nodes.

¢ Blockchain operating parameters.

1.4 Private network with block hashes broadcasted to main network

This solution combines advantages of the preceding concepts and can be relevant for small companies and/or
partners of companies supporting main network. Private networking allows concealing private information
from public network. Broadcasting of private block hashes into the main network ensures reliability of the
broadcasted information due to scalability effect of main network.

2 Chapter 1. Features overview



CHAPTER
TWO

OFFICIAL RESOURCES

e Official site of the blockchain-platform Waves Enterprise
e Github project
¢ Official site of the blockchain-platform Waves



https://wavesenterprise.com/
https://github.com/waves-enterprise/WE-releases
https://wavesplatform.com

Technical description of the Waves Enterprise platform, Release master

4 Chapter 2. Official resources



CHAPTER
THREE

ARCHITECTURE

The Waves Enterprise platform is based on distributed ledger technology and represents a fractal network
consisting of a master blockchain ( Waves Enterprise Mainnet), which secures the operation of the network
as a whole, serving as a global arbiter and a reference chain, and a number of custom, separated sidechains
that can be easily tuned according to a specific business task. The implementation of such construction
principle allows to achieve optimization for higher speeds or large volumes of calculations, consistency and
availability of data, as well as resistance to malicious changes in information.

Anchoring mechanism uses strengths of both consensus algorithms for creating a net configuration. The
main blockchain Waves Enterprise is based on the Proof-of-Stake consensus algorithm, since it is supported
by independent participants. At the same time, enterprise sidechains do not need to stimulate miners by
means of transaction fees and can use the Proof-of-Authority algorithm. Sidechains are embedded in the
main blockchain using the anchoring mechanism (by placing cryptographic proof of transactions in the main
blockchain network).

WAVES ENTERPRISE MAIN-NET : i PRIVATE ENTERPRISE SIDECHAIN r
: H | ORGANIZATION 1
. LPOS H i ' CORPORATE
» Permissioned H | ! NODE APPLICATION
« Waves cryptography H H
NODE = 1000 tps

Turing-complete smart-contracts | H |
! \®, «—Txs, data, state———»

NODE

ORGANIZATION N

| —Data anchoring—>| | Deployment options:

K miner
¢ NODE matcher :
; decentralised storage | |
data service
corporate client

Q e \®/ VVVVVVVVVV a g
various integrations | |

NODE y i i CORPORATE NODE ; NODE

T i I CLIENT !
| I Accessible LT T
: b i blockchain data Raw ;
; . . plogkenain datz | CONFIGURATION OPTIONS
; i [ ! + Consensus algorithm (LPoS, PoA)
. . I « Cryptography (GOST, Waves)

- H : Optional node modes

. i IO O PRIVATE | + Authorization modes (basic, oAuth)
A H SERVICE \ STORAGE ! = Permission / Role system

s « Peer-to-peer private data transfers
« Smart-contracts (Turing complete or not)
- 8001200 tps

‘ Txs, data, state

Accessible
blockchain data Private data

WE CLIENT GATEWAYS LOGISTIC MOTARY DOCUMENT FLOW P CORFORATE CORPORATE |
SYSTEMS SYSTEMS SYSTEMS i BIAPP CRM/ERP |

Fig. 1: Network topology including Waves Enterprise and sidechains




Technical description of the Waves Enterprise platform, Release master

3.1 Node architecture and additional services

Only the node component is mandatory, since it ensures the functioning and interaction within the blockchain
network. Other components serve auxiliary purposes, but significantly simplify user interaction with the
blockchain platform. The Waves Enterprise platform instance consists of five basic modules and several
additional microservices. The main modules include:

Node - the main software which is installed on the computer and is set for work with the blockchain
according with any scenario.

Waves Enterprise corporate client — web-application that provides contemporary and multifunctional
user interface for blockchain platform.

Smart-contracts module — an environment for deployment and execution of Turing-complete Docker
smart-contracts. Docker containers with smart-contracts are deployed on remote virtual machine for
additional security.

Data service — the service aggregates data from the blockchain in RDBMS (PostrgreSQL) storage and
provides full-text search on any information containing in blockchian via RESTfull webservice.

Private store - DB PostgreSQL provides private information processing and storing mechanisms, along
with encrypted p2p communication service.

Additional services include:

Authorization service — a single authorization service for system components.
Data crawler - the service extracts data from blockchain node and loads it into Data-service component.
Generator - the service generates key pairs for new accounts and creates api-key-hash.

Custom microservice plugins - a set of plugins for processing and customization of the data transferred
and accepted from external systems.

Monitoring Service — an external monitoring service that uses a database (InfluxDB) for storing time
rows with application data and metrics. The InfluxDB database is an open source software and is
installed by the client separately.

Node components

The node includes the following internal components:

Node API — interface of the REST API node which allows receiving the data from the blockchain, sign
and send transactions, sending private data, creating and calling smart contracts, and so on.

Node storage — a system component that provides key-value storage (based on LevelDB) for a full set
of validated and confirmed transactions and blocks, same as the current state of objects.

Unconfirmed transaction pool — a component that provides temporary storage and queue service for
validated transactions until they are included into a block.

Consensus and cryptolibraries — configurable and customizable logical components responsible for
achieving the agreement between nodes and cryptographic algorithms.

Key store - a component used to store key pairs for node itself and node users (optional), all keys are
secured by passwords.

Miner — a component responsible for the creating of transaction blocks for the recording in the
blockchain. Also miner component is in charge for interaction with docker-smart contracts.

Network layer — a logic layer that provides interaction between nodes on the application level via
network protocol over the TCP.

Chapter 3. Architecture



Technical description of the Waves Enterprise platform, Release master

Waves Enterprise Waves Enterprise Node

corporate client

Waves Enterprise smart contracts

N Refresh/
: Access
© tokens B TP
B Authorization Service H ryptographic method .
: Qi Cryptographic methods
N ) Consensus CryptoProvider
Refresh/ '
Q"W‘ Access | Call&Execute
New txs _tokens Consensus contract
Blockchain data
Validated
: : unconfirmed Key store
. . txs
. : Data service Validated Miner
. n ction UL ‘b d unconfirmed
: ransaction repare: Transforms raw txs i
: blockchain data | blockchain data Data Unconfirmed 5
2 t 5
N P IAPI| into prepared  pata Q’wv g pool Validated H
: marts in crawler < unconfirmed txs =
Qo PostgreSQL K] ode storage | LevelDB) H
RDBMS S H
z + Blocks k]
« Transactions z
« State (indexes,
bal )
Confirmed txs
blocks, balances
scripts, data
Prepared . Scripts :
blockchain data Validated txs Blocks Gata Validated blocks
New block:
Custom Validation logic: ?‘\gw &CS g
microservice _ New txs - consensus rules
lugins Private data - smart-account scripts
............................... ° T - privacy rules
: T
Pn'vatle data Private data hash
txs
settngs Privacy engine 1 P2P encrypted data exchange
api-key
H C
Private storage | PostgreSQL onsensus, Network
cryptography i
« Private data settings setinas
%wT
Node and network confi | | | 4 Config ]
~Monitoring events and setting: ={ Monitoring service (influxDB, graphana) ]
Q“wr
ntearation with external systems

Fig. 2: A detailed diagram of the node architecture and additional microservices

3.1. Node architecture and additional services 7



Technical description of the Waves Enterprise platform, Release master

* Validation logic — a logic layer containing such transaction verification rules as basic sign verification
and advanced scripted verification.

¢ Config — node configuration parameters specified in the node-name. conf file.

* Monitoring Service — an external monitoring service that uses a database (InfluxDB) for storing time
rows with application data and metrics. The InfluxDB database is an open source software and is
installed by the client separately.

8 Chapter 3. Architecture



CHAPTER
FOUR

WAVES-NG PROTOCOL

Description of Waves Enterprise Operation Protocol which provides performance advantage relative to other
blockchains.

4.1 Terms

¢ Block — a set of transactions registered in the blockchain signed by the miner and containing a link to
the proof of the previous block. Limited to 1MB or 6000 transactions.

* Round — a period of time between issuance of key blocks. A floating value is controlled by the consesus
algorithm depending on the load on the network, averaging 40 seconds.

¢ Proof of ownership — acquisition of mining right in the PoS consensus.
¢ Node — network host with the Waves Enterprise blockchain application running.
e Miner — a node whose address has sufficient balance and a “mining” permission.
¢ Key block — contains no transactions, only service information such as:

— Miner public key — to verify proof of microblocks.

— Amount of miner’s fee for the previous block.

— Miner’s proof.

Link to previous key block.

¢ Liquid Block — a service term to describe the state of a block before issuing the next key block, i.e.
completing its mining.

* Microblocks — a service term, sets of transactions applied to the state of blockchain every 5 seconds.
Limited to 500 transactions. Each microblock is signed by the miner’s private key.

4.2 Protocol description

Waves-NG - developed by Waves Platform based on Bitcoin-NG to increase the throughput of the Waves
blockchain based on whose architecture Waves Enterprise is implemented. The idea of the protocol is to
create not 1 large block in each round of mining but continuously create microblocks. Small blocks are faster
to forward and check.

Mining rounds begin with generation of the key block. The moment of occurrence of each key block and
the address of the miner identified in it are determined by consensus, for more details see Consensus. A
key block containing no transactions, but only proof, is generated quickly. Further, before the next block
is generated, once in 5 seconds microblocks with transactions are generated without proof of a stake which



https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

Technical description of the Waves Enterprise platform, Release master

also increases the speed of processing. Each block of the microblock is linked to the previous one. The key
block is added to the blockchain as soon as the next miner generates its key block with a link to it.

This approach reduces the time to confirm a transaction compared to other blockchains.

4.2.1 1. Creating a Liquid Block

1. The mining address is determined by consensus.
2. A miner creates and distributes a key block on the network.

3. Every 5 seconds, the miner creates and sends out to the network a microblock which contains transac-
tions. It must be linked to the previous microblock or key block.

4. The process continues until a new valid key block appears on the network.

4.2.2 2. Miner reward mechanism in Waves-NG

The protocol has a provision for financial incentive for participants’ compliance with the rules. The fee from
transactions in the block is distributed in the proportion of 40% for miner who created the block and 60%
for the miner of the following block. The fee credit transaction is performed after 100 blocks to ensure a
trust interval of checks.

Fee distribution diagram

40 % ) 60 %
- microblock fees

| /J_\ |
- = —— PubKey A SIG, SIG, ffff @7 PubKey B SIGg - -

2 seconds

)

(

~
b4

1 minute

4.2.3 3. Conflict resolution

If the miner continues the chain creating two microblocks with the same parent, it is punished by cancellation
of income from fees; the one who discovers the fraud receives the miner’s award for the block. Blockchain is a
distributed system and each node stores a copy of the state of the entire network. When the next microblock
appears, the node applies the received changes to its copy of the state of the network and checks against
other nodes of the network. At this point, the transaction inconsistency can be detected.

10 Chapter 4. Waves-NG Protocol



CHAPTER
FIVE

CONSENSUS ALGORITHMS

Blockchain is a decentralized system with no central authority. This makes the system non-corrupt, but
creates difficulties with the final decision making and organization of work. These problems could be solved
by a consensus mechanism, which is a way to reach agreement in a group of participants. Voting takes
in account the majority opinion without interests of the minority, but on the other hand, it guarantees an
agreement that benefits the entire network.

You can choose the consensus mechanism during the initial configuration of the network. The description of
available mechanisms, as well as their pros and cons, are described in the relevant sections.

5.1 LPoS consensus algorithm

Proof of ownership with the right to lease. In PoS systems, the creation of a block does not require energy-
intensive calculations, the miner’s task is to create a digital block proof.

5.1.1 Proof of Stake

The mechanism for allocating block creation rights is based on the number of tokens in the user’s account.
The more tokens a user has, the more likely he or she can create a block.

In Proof of Stake consensus the right to generate a block is determined by pseudo-random way, because by
knowing the previous miner and balances of all users in the system the following miner can be identified. To
do this, calculate the generating signature of the next block as sha256 hash from the generating signature
of this block and the public account key. The first 8 bytes of the resulting hash will be a pointer to the
following miner. The time of block generation for account i is calculated as:
log

b A, )

T; = Tinin + C11log(1 — Co

where:
* b; - is a stake (stake of participant’s balance of overall balance of the system);
e A, - baseTarget, the adaptive ratio, regulating the average time of issue of the block;
* X, - generating signature;
e Thin - 5 seconds, it is a constant defining the minimum time interval between blocks;
e C; - a constant, which is equal 70 and adjusting the form of allocation of the interval between blocks;

* C5 - a constant which is equal 5E17 and adjusting the baseTarget value (complexity).

11



Technical description of the Waves Enterprise platform, Release master

Based on the given formula it is easy to see that the probability of selecting the participant depends on the
participant’s stake of assets in the system: the bigger the stake the higher the chance. The minimum number
of tokens on the balance for mining is 10000 WEST. BaseTarget is a computational complexity, a parameter
that maintains the block generation time within a given range. BaseTarget in its turn is calculated as:

T T,
(S > Rpaz — Tty = T, + max(1, ﬁ)) A (S < Rppin NN > 1 — Ty, =T, — max(l, W”O))

where

* R hax = 90 - is a maximum reduction of complexity when the block generation time in the network
exceeds 40 seconds;

* Ruin = 30 - minimal increase of complexity when the block generation time in the network is less than
40 seconds;

* S - average generation time, at least for the last three blocks;
* T}, - previous baseTarget value;
¢ T}, - computed baseTarget value.

For advanced description of technical features and enhancements of the classic PoS algorithm see article.

Advantages Over Proof of Work

The absence of complex calculations allows PoS networks to lower the hardware requirements for participants
of the system, which reduces the cost of deploying private networks. Also, no additional emission is required,
which in PoW systems is used for rewarding miners for finding a new block. In PoS-Systems a miner receives
a reward in the form of fees for transactions which appeared in its block.

5.1.2 Leased Proof of Stake

For a user who has a stake insufficient for effective mining, it is possible to transfer his or her balance for
lease to other participants, and receive a portion of the income from mining. Thus you can increase the
likelihood of choosing a miner, for which you can receive a portion of the fees for transactions which this
miner has placed in its blocks. Leasing is a completely safe operation. Tokens do not leave your wallet, you
delegate the right to consider your balance when you draw the right of mining to another member of the
network.

5.2 Proof of Authority Consensus Algorithm

In a private blockchain tokens are not always needed - for example, a blockchain can be used to store hashes
of documents exchanged by organizations. In this case, in the absence of tokens and fees from transactions,
a solution based on the PoS consensus algorithm is redundant. The Waves Enterprise platform gives a
possibility to choose the Proof of Authority consensus algorithm. The mining permission is issued centrally
in the PoA algorithm. Compared to the PoS algorithm this simplifies the decision-making. The Proof of
Authority model is based on a limited number of block validators, which is making it a scalable system.
Blocks and transactions are verified by pre-approved participants who act as moderators of the system.

12 Chapter 5. Consensus algorithms


https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/

Technical description of the Waves Enterprise platform, Release master

5.2.1 Algorithm description
An algorithm determining the miner of the current block is formed based on the described below parameters.
The parameters of the consensus are specified in the consensus block of the node configuration file.

* t - duration of a round in seconds (the parameter of the node configuration file: round-duration).

* ts - duration of a synchronization period, calculated as t*0.1, but not more than 30 seconds (the
parameter of the node configuration file: sync-duration).

* Npan - @ number of missed consecutive rounds for issuing the ban for the miner (the parameter of the
node configuration file: warnings-for-ban);

* Ppan - a share of the maximum number of banned miners, in percentage from 0 to 100 (the parameter
of the node configuration file: max-bans-percentage);

* tpan - duration of miner ban in blocks (the parameter of the node configuration file: ban-duration-
blocks).

e Ty - unix time for generation of Genesis block.

e Ty - unix time for generation of H Block - a key block for NG.

¢ 1r - round number, calculated as (Tcyrrent -To ) div (t+ t5 ).

e A, - leader of round r, which has the right to create key blocks and microblocks for NG in round r.

¢ H - height of the chain in which the key block and microblocks for NG are created. The leader of round
A, has the right to generate a block at height H.

e My - miner issuing block at height H.
* Qu - queue of miners active at height H.

The Qu queue is generated using addresses which are given the mining permission by a permission transaction
which was not revoked until height H, and did not expire until the time Ty .

The queue is sorted by the time stamp of the mining rights transaction - the node which was granted the
rights earlier will be higher in the queue. For a consistent network, this queue will be the same on each node.

A new block is created at each round r. A round lasts t seconds. After each round, ts seconds count down
to complete data synchronization in the network. During the synchronization period, microblocks and key
blocks are not generated. For each round there is a single leader A, , which has the right to create a block
in this round. A leader can be defined on each node of the network with the same result. The leader of the
round is defined as follows:

1. Miner My_; is defined, which created the previous key block at height H-1.

2. The Qg queue of active miners is calculated.

3. Inactive miners are excluded from the queue (see more in Ezclusion of inactive miners).

4. If the H-1 block miner (Mg.; ) is in the Qg queue, the following miner becomes the leader A | .

5. If the H-1 block miner (M 1.1 ) is not in the Q g queue the miner following the H-2 block miner (M
H.2 ) becomes the leader A , and so on.

6. If no miners of blocks (H-1..1) are in the queue, the first miner in the queue becomes the leader.

This algorithm allows to identify and check deterministically the miner, which had to create each block of
the chain by means of the ability to calculate the list of authorized miners for each moment of time. If the
block was not created by the designated leader within the allotted time, no blocks are generated within the
current round, and the round is skipped. Leaders who skip block generation are temporarily excluded from
the queue by the algorithm described in paragraph Ezclusion of inactive miners.

5.2. Proof of Authority Consensus Algorithm 13



Technical description of the Waves Enterprise platform, Release master

Valid is the block generated by the leader A, with the time of block Ty from the half-interval (T¢ +(r-
1)*(t+ts ); To +(r-1)*(t+ts )+t]. The block created by the miner out of its turn or not in time, is not
considered valid. After a round of t duration, the network synchronizes the data for t; . The leader A, has
time tg to propagate the validation block over the network. If any node of the network during ts has not
received a block from the leader A, , this node recognizes the round as “skipped” and expects a new H block
in the next round r+1, from the following leader A, .

Consensus parameters: type (PoS or PoA), t, t sare specified in the configuration file of the host network.
The parameter T should be the same for all network participants, otherwise the network will fork.

5.2.2 Synchronization of time between network hosts

Each host should synchronize the application time with a trusted NTP server at the beginning of each round.
The server address and port are specified in the node configuration file. The server must be available to each
network node.

5.2.3 Exclusion of inactive miners

If any miner has missed the block creation Ny,, times in a row, this miner is excluded from the queue at
than Subsequent blocks (ban-duration-blocks parameter in the configuration file). The exception is made
by each node on its own based on the calculated queue Qg and information about block H and miner My
. The Pp., parameter specifies the maximum allowable share of excluded miners in the network relative to
all active miners at any given time. If at achievement of N, round passes it is known that the maximum
share of the excluded miners Py, is reached, the exception of the next miner is not made.

5.2.4 Monitoring

The PoA consensus monitoring helps to identify the facts of creation and distribution of non-valid blocks, as
well as skipping queue by the miners. Further troubleshooting and blocking of malicious nodes are performed
by network administrators.

In order to monitor the process of generation of blocks for the PoA algorithm the following details are entered
in InfluxDB:

* Active list of miners sorted in order of granting mining rights.
¢ Scheduled round timestamp.
e Actual round timestamp.

¢ Current miner.

5.2.5 Changing consensus settings

Changing consensus parameters (time of round and synchronization period) is performed on the basis of the
node configuration file (see the insert) at the height “from-height”. If one of the nodes fails to specify new
parameters, the transaction will fork.

Sample configuration:

// specifying inside of the blockchain parameter
consensus {

type = poa

sync-duration = 10s

(continues on next page)

14 Chapter 5. Consensus algorithms



Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

round-duration = 60s
ban-duration-blocks = 100
changes = [
{
from-height = 18345
sync-duration = 5s
round-duration = 60s
},
{
from-height = 25000
sync-duration = 10s
round-duration = 30s

H

5.2. Proof of Authority Consensus Algorithm 15



Technical description of the Waves Enterprise platform, Release master

16 Chapter 5. Consensus algorithms



CHAPTER
SIX

CRYPTOGRAPHY

To ensure security, the Waves Enterprise platform uses cryptographically resistant algorithms complying
with GOST requirements, as well as qualified electronic signatures.

The platform provides a choice of cryptography to be used based on one of the standards:
¢ GOST-cryptography - for implementation of projects in government structures and departments;

« Elliptical curve Curve25519 - for projects which do not require strict compliance with GOST (com-
mercial companies, organizations outside the Russian Federation).

6.1 Data Pre-processing

All byte sequences before hashing or signing operations are converted using Base58 or Base64 algorithm.

Hint: Base64 is a binary data encoding standard using 64 ASCII characters. The encoding alphabet
contains Latin symbols and numbers A-Z, a-z and 0-9 (62 characters) and 2 service symbols. Every 3 source
bytes are encoded with 4 characters (! /3 magnification).

Hint: BASESS is a variant of encoding binary data in the form of alphanumeric text based on the Latin
alphabet. It contains 58 characters, the characters used in Base64, such as 0, O, I, L, +,/ are excluded. It
is used for data transmission in heterogeneous networks (transport coding).

6.2 GOST-Cryptography

Hashing algorithm is implemented according to GOST R 34.11 2012 ‘Information Technology. Cryptographic
Protection of Information. Hashing Function’. The Stribog function is used with 256 bits output blocks.

The encryption algorithm is implemented according to GOST ‘Information processing systems. Crypto-
graphic protection. Algorithm of cryptographic transformation’.

EDS generation and verification algorithms are implemented according to GOST R 34.10-2012 ‘Informa-
tion Technology. Cryptographic Protection of Information. Electronic Digital Signature Generation and
Verification Processes’. The key length is 256 bits.

17



Technical description of the Waves Enterprise platform, Release master

6.3 Using an elliptical curve Curve25519 (Waves cryptography)

The hashing algorithm is implemented by successive hashing functions Blake2b256 and Keccak256. The size
of output blocks is 256 bits.

EDS generation and verification algorithms are implemented on the basis of elliptical curve Curve25519
(ED25519 with X25519 keys). The key length is 256 bits.

6.4 Encrypting text data in transactions

The Waves Enterprise platform allows to encrypt/decrypt the text data using the session keys. The option
is used to encrypt any kind of text information, for example, Docker contract parameters or data from Data
Transactions.Encryption of text data can be performed both individually for each recipient, with forming of
a unique instance of the encrypted text, or with forming of a single encrypted text for a group of recipients.
Limit size to encrypt data is 165 Kbytes. Hashing algorithms correspond to the chosen cryptography scheme
(GOST or Waves).

6.4.1 Encryption algorithm

Symmetric CEK and KEK keys are used to encrypt/decrypt data. CEK (Content Encryption Key) is the
key for the encrypting text data, KEK (Key Encryption Key) is the key for encrypting the CEK. The CEK
key is generated by a node randomly using the appropriate hashing algorithms. The KEK key is generated
by a node based on Diffie-Hellman algorithm, using public and private keys of sender and recipients, and is
used to encrypt the CEK key.

The symmetric CEK key is unreachable and does not appear in the encryption process. It is transmitted
from the sender to the recipient in the encrypted form (wrappedKey) via open communication channels along
with the encrypted message. One of such channels can be a record to the blockchain — a DataTransaction
or a smart contract state. The KEK key does not transmit from the sender to recipients, it is restored by
the recipient based on its private key and the known public key of the sender (Diffie-Hellman key exchange
algorithm).

Text data encryption/decryption is performed using the crypto method. This method allows to encrypt the
text individually for each recipient or for all recipients together.

Encryption/decryption process includes the following actions:

1. Use the POST /crypto/encryptSeparate method to encrypt data for each recipient separately. Specify
the following parameters inside the JSON request:

¢ sender - the sender address.

» password - a key pair password of the sender, which is generated at the same time as the account
itself.

e encryptionText - the text for the encryption.
e recipientsPublicKeys - an array with recipients public keys list inside.

2. Use the POST /crypto/encryptCommon method to encrypt data for all recipients with a single CEK
key. Specify the same parameters as inside the POST /crypto/encryptSeparate method into the JSON
request.

3. Use the POST /crypto/decrypt method for the decryption. Specify the following parameters inside the
JSON request:

18 Chapter 6. Cryptography



Technical description of the Waves Enterprise platform, Release master

e ; BLOCKCHAIN ; PP
SENDER "S' OVER PUBLIC NETWORK RECIPIENTS "A" /"B"/"C

=y R P P > | cALCULATE B = * B
ENCRYPT :\,f' ¥ B : P {1 IKEK

MESSAGE cEx ENCRYPTED . ENCRYPTED 3 e [EIER  [EEE
CALCULATE N > P : M
o BB B wem B-B-D

5 mmEE =
ENCRYPT B + B - B P { ' | DECRYPT B + ==

- wzg'f“ 3 wﬁ‘é\'f".f” 3 CEK ENCDR:TTED MESSAGE

REPEAT FORB AND C . B [ REPEATFORB AND C

WRAPPED
KEY A

Fig. 1: Encryption procedure of the text data based on the Diffie-Hellman algorithm

e recipient - the recipient address.

» password - a key pair password of the recipient, which is generated at the same time as the account
itself.

* encryptedText - the encrypted text data.
* wrappedKey - the wrapped key obtained by encoding the data.
* senderPublicKey - the sender public key.

6.4. Encrypting text data in transactions 19



Technical description of the Waves Enterprise platform, Release master

20 Chapter 6. Cryptography



CHAPTER
SEVEN

ROLE MODEL

The blockchain platform implements a mechanism limiting actions of participants based on the role model
which allows the platform owner to protect participants from threats, such as:

* attacks of unscrupulous miners on blockchain network;

¢ unauthorized issue of tokens;
e unauthorized access to confidential information;

* other illegal actions of intruders.

The procedure for issuing and revoking permissions is given in module Role management.

7.1 Roles list

The following table provides a list of possible platform roles:

Role name Authority

permissioner Add transactions to modify the permission list

blacklister Add transactions to modify the black list

miner Create new blocks

issuer Add transactions for issuing, reissuing, and burning
tokens

dex Add the exchange transaction (deprecated)

contract _developer

Add the transaction to create a docker contract

connection-manager

Add the transaction for registering/deleting node in
the blockchain network

banned

It is forbidden to send any transactions to the
blockchain.

A group of all participants with this role forms a
blacklist

21



Technical description of the Waves Enterprise platform, Release master

7.2 Permission model

Permission model describes a mechanism for applying different types of permissions when validating opera-

tions in a blockchain.

Hint:

The node with the permissioner role can assign to itself any existing role in the system.

Action

Action permission condition

Assign or remove a role

Available permissioner role

Add or Remove from blacklist

Available blacklister role

Registration of the new node to the net

Available contract__developer role

Generation and issue of blocks

Available miner role

Token operations (issue, reissue, burn)

Available issuer role

Token transfer (transfer, mass transfer)

User not in the blacklist

Token leasing (lease, lease cancel)

User not in the blacklist

Creating an alias (alias)

User not in the blacklist

Create a docker contract

Available contract__developer role

Execution of docker contract

User not in the blacklist

7.3 Update the permission list

A permission transaction is used to modify the permission list.

JSON description:

Transaction Type

Version

Sender PublicKey
Target Address or Alias

Timestamp

Operation Byte

Role Byte

Timestamp

Due Timestamp Defined Byte (0 - None, 1 - Defined)

Due Timestamp Bytes

The following diagram shows the sequence of actions when updating a permission list.

22

Chapter 7.

Role model



Technical description of the Waves Enterprise platform, Release master

Interaction Add new permission to ACL J

Admin_pk0

Node_1

:1: tx1 (type 0xOc, permission list, add, pk1, "minee")J'_

Node_1 permission list

Blockchain

!
seq tx validation ]

2: get permissions (pk0)

I

I

I

1

|
el

3: permission list

( {if "permission admin" is in permiss

4: ok response

—
6: add tx1 to uncog&med tx pool

7: broadcast unconfirmed tx1

I
8: new block (with tx1)

9: check block for type 0xOc txs
o

10: change permission list for pk1

J

When modifying the permission list, the platform performs the following checks:

1

2
3
4

. Sender is not in the blacklist.

. Sender has the role of permissioner.

. DueTimestamp (role duration) > Timestamp (current time).

. This role is not active (if added) or active (if removed).

7.3. Update the permission list

23



Technical description of the Waves Enterprise platform, Release master

24 Chapter 7. Role model



CHAPTER
EIGHT

ACCESS MANAGING

The Waves Enterprise platform implements the closed model of blockchain where the new participants
adding is under control of an individual user with the authority. This model of blockchain is also supports
the restriction for the data access for all participants. The advantage of this model is its increased security
compared to open blockchains, as well as the ability to flexibly configure access levels and distribution of
rights.

Only a user with the “Connection Manager” role can add new participants to the Waves Enterprise blockchain.
The 111 RegisterNode transaction is used to connect a new node to the network. This transaction contains
the credentials of the connected node. As a result of all such transactions each node is creating and updating
the table which includes all approved network participants.

Each attempt of the participant connection is accompanied by handshake-message, which in addition to
service information specifies the data area with proof of belonging to the connected network - in a simplified
way it is a set of public key with the electronic signature of the participant. Since the public key of
the connected participant is already stored in the storage of other peers, the participant who received
the handshake request verifies the signature and the public key provided earlier in the blockchain. If the
check is successful, the participant generates a response handshake request, the success of which establishes a
connection between the parties. After successful connection participants perform the network synchronization
as well as synchronization of the table of corresponding of blockchain and network addresses of nodes, which
is necessary in the future in the process of sending private data.

25



Technical description of the Waves Enterprise platform, Release master

CONNECTION
MANAGER

O ---------- 2 peer—nude-dec\ared-address—----..
@ [P 1. new-node-owner public key.

3. broadcast RegisterNodeTx
new-node-owner public-key

v

PEER NEW
4. add RegisterNodeT: NODE NODE
node-config
known-peers: [ peer-node-declared-address |
resolve ip_.-~~
i ‘/j
5. initial sync-
node state ( LevelDB ) | N
RegisterNodeTx 7*5 peer node public key—————

"opType": "add"

"sender”: "peer-node-address” [e 7. handshake

‘nodeName”: "new node name" -1 ( signature ) i

“targetPubKey": "new-node-owner public-key” o

validal
handshake
add new
declared-address

e ) ‘___.-"’) 8 handshake response____ [ validate
peers.dat e Ll ( signature ) signature
| new-node ip-address B
"""""""""""""""""""""""""""""""""" le—

4——9 data sync request————— |

The process of disconnecting a participant from the network is similar to the process of connection, except
that the “Connection Manager” user sends the 111 RegisterNode transaction with the "opType": "remove"
parameter. Since the handshake request is executed at a frequency of 1 time every 30 seconds, the next
request after the participant is removed from the network will be denied, due to the lack of credentials of
the connected participant in the blockchain node table.

26 Chapter 8. Access managing



CHAPTER
NINE

DATA PRIVACY

Blockchain platform Waves Enterprise provides the confidential data transfer and storage between the par-
ticipants of network interaction. Protection of confidential data during its transfer and storage is provided
by a set of groups, which contain a list of participants for the interaction with private data.

| NODE PRIVATE STORAGE

: {GROUP A, DOC_ID_1
{GROUP A, DOC_ID_2
{GROUP B, DOC_ID_3
{GROUP B, DOC_ID_4
{GROUP B, DOC_ID_5

GROUFP A GROUP C ' | BLOCKCHAIN STATE
"

e et e

GROUP A {NODE 0
NODE 1}

NODE 0

GROUP B { NODE 1

NODE 2}

| NODE PRIVATE STORAGE
{GROUPA, DOC ID 1}
{GROUPA, DOC_ID_2}

GROUP C { NODE 2,
NODE 3}

9.1 Access groups

Usually the access group is created by the net participants who need to arrange the private data exchange.
Any participant can create an access group and add into it any number of other participants. Only nodes
can exchange information within a group.

The group contains the following parameters:
* name (policyName);
* description (policyDescription);
¢ duaration (policyDueDate);
* the list of confidential data recipients (policyRecipients);
¢ the list of the policy owners with editing rights (policyOwners).

The access group is created by sending transaction CreatePolicy (type = 112, group creation) into the
blockchain.

Owners can change the access group. To make this it is necessary to send the UpdatePolicy (type — 113,
group editing) transaction into the blockchain.

For external access and getting the information about groups there are using specified API Node requests: GET
/privacy/{policy}/recipients, GET /privacy/{policy}/getHashes, GET /privacy/getInfo/{hash}.

27



Technical description of the Waves Enterprise platform, Release master

9.2 Sending and receiving the data

The data is sending via POST /privacy/sendData request through its own node of the organization, which
checks the sender’s belonging to the specified group. If the check is successful, the data is written to the
node store, and the PolicyDataHash (type = 114, sending the data hash) transaction is initiated with the
calculated hash sum of the data. The size of the transferred data to the network is up to 20 MB.

When receiving a transaction with the hash sum from the transmitted data, the receiving party checks
whether the blockchain node is involved in the group specified in the transaction. If the participant is belong
to the group, the getPrivateData request for confidential data is executed. The request is executed at the
network address of the group participant via P2P connection. To ensure the security of data transmission
over an unprotected communication channel, a set of encryption algorithms on a symmetric key and the
creation of session keys, as well as the Diffey-Hellman protocol are used.

28 Chapter 9. Data Privacy



CHAPTER
TEN

CLIENT

10.1 General Description of the Client

Waves Enterprise client is a convenient way to manage your blockchain. https://client.wavesenterprise.com
is intended for operations in the Waves Enterprise public network.

Outside .
information » Preparr’eBd data Client
systems
1\ Data
Y y
g Data Data
reDcc’;(S::(t?)r Node AUtSh:r':iz::'on preparation [€— preparation [
P Y —> ! agent service Tokens
~n A
Settings
Write data
User
+ | Monitoring | Monitori Monitoring
> agent onitoring >
# ¢ Contracts
Monitoring DB

The client includes sections for use of all blockchain features:

* “Data” — allows to find information about transactions or users through flexible search and advanced
filter system.

e “Tokens” — allows to transfer, issue, lease tokens.

¢ “Contracts” — provides tools for publishing and calling docker contracts. Contracts are available for
publishing from the repository, the address of which was specified when the client was built.

* “Enter Data” — allows sending data transactions and files from the interface.

¢ “Settings” — allows managing permissions for user actions in the blockchain.
The client supports the following browsers:

* Google Chrome.

¢ Mozilla Firefox.

29


https://client.wavesenterprise.com

Technical description of the Waves Enterprise platform, Release master

¢ Opera.
e Apple Safari.
* Microsoft Edge.

If the client web interface does not work properly, or if you see any errors during loading pages, please,
update your browser to the latest version.

Data

This section contains information about blockchain transactions. For information, use the filter and the
search string to specify the transaction fields to search for.

Available transaction filters:
e All transactions - displays of all transactions.
e Data transactions - displays of the data transactions.

e Tokens - a selection of transactions with tokens. When this value is selected, an additional option
of contextual filtering by types of token operations (for example, transfer, lease or issue of tokens)
appears.

e Permissions - a transactions selection by operations with aliases and by user permissions. When
selected, context filters are available by permission type (for example, mining, contract publishing, or
access control).

¢ Groups - a selection of privacy data access groups transactions. When this value is selected, an
additional option of contextual filtering by operation types (for example, a creation or an update of
the access group) appears.

» Contracts - a selection of the contracts transactions. When this value is selected, an additional option
of contextual filtering by contracts types (for example, Docker or RIDE) appears.

¢ Unconfirmed transactions - a selection of the unconfirmed transactions.

 Users - users info. When this value is selected, an additional option of contextual filtering by permissions
types (for example, mining, publish smart-contract or access control) appears.

Tokens

This section shows the balance of authorized account. Allows transferring tokens to other network partici-
pants, transfer tokens for lease and manage tokens. Token management requires the “Token Management”
permission.

Contracts

The section displays information on existing contracts in the network and allows you to run the selected
contracts. You can use the search string with transaction parameters for the filtration. Contract publishing
requires the “contract-developer” role.

Data transactions
The section allows to create data transactions and view information about existing data transactions.
Settings

The section contains basic information about the user’s account (public and private keys, secret phrase),
also the current version of the client and allows you to change the language of the interface. Also you can
add permissions to another users. This option requires the “permissioner” role.

30 Chapter 10. Client



Technical description of the Waves Enterprise platform, Release master

10.2 Data Preparation Service

This service aggregates data from a blockchain into a relational database and provides an API to access that
data. Service features are designed to meet the needs of the Waves Enterprise client. Specifying parameters
are available for requests.

Deploy your client and node using the delivery set for service usage. Currently, access to the Data Preparation
Service API is limited in the public network. The data service REST API is represented in the Data service

REST API service.

10.2. Data Preparation Service 31



Technical description of the Waves Enterprise platform, Release master

32 Chapter 10. Client



CHAPTER
ELEVEN

BLOCKS, TRANSACTIONS, MESSAGES

11.1 Blocks

This module contains the structure of block storage in the Waves Enterprise blockchain.

Field Field Type Field
order size in
number bytes
1 Version (0x02 for Genesis block, 0x03 for common block) Byte 1
2 Timestamp Long 8
3 Parent block signature Bytes 64
4 Consensus block length (always 40 bytes) Int 4
5 Base target Long 8
6 Generation signature* Bytes 32
7 Transactions block length (N) Int 4
8 Transaction #1 bytes Bytes M1
8 + (K - | Transaction #K bytes Bytes MK
1)
9+ (K- | Generator’s public key Bytes 32
1)
10 + (K | Block’s signature Bytes 64
- 1)
Generation signature is calculated based on the hash (Blake2b256) of the following fields:
Field Field Type Field
order size in
num- bytes
ber
1 Previous block’s generation signature Bytes 32
2 Generator’s public key Bytes 32

The block signature is calculated based on the following data:

33



Technical description of the Waves Enterprise platform, Release master

Field Field Type Field
order size in
num- bytes
ber

1 Version (0x02 for Genesis block,, 0x03 for common block) Byte 1

2 Timestamp Long

3 Parent block signature Bytes 64

4 Consensus block length (always 40 bytes) Int 4

5 Base target Long 8

6 Generation signature* Bytes 32

7 Transactions block length (IN) Int 4

8 Transaction #1 bytes Bytes M1
8 + | Transaction #K bytes Bytes MK
(K -

1)

9 + | Generator’s public key Bytes 32
(K -

1)

11.2 Transactions

In this section we can see the structure of transaction storage in the blockchain platform of Waves Enterprise.
For some types of transactions, versioning is introduced.

Important: All transactions use the timestamp field containing a time stamp in the Unix Timestamp
format in milliseconds.

34 Chapter 11. Blocks, transactions, messages



Technica

| description of the Waves Enterprise platform, Release master

Table 1: Transaction types

Ne Transaction type Fee Description
1 Genesis transaction no fee Initial binding of the balance to the addresses of nodes created
at the start of the blockchain
3 Issue Transaction 1WEST | Tokens issue
4 Transfer Transaction 0.01WESTTokens transfer
) Reissue Transaction 1WEST | Tokens reissue
6 Burn Transaction 0.05WES§TTokens burn
8 Lease Transaction 0.01WESTTokens lease
9 Lease Cancel Transac- | 0.01WESTCancel of the tokens lease
tion
10 Create Alias Transac- | IWEST | Alias creation
tion
11 MassTransfer Trans- | 0.05WESTMass tokens transfer. Minimum commission is specified
action
12 | Data Transaction 0.05WES§TTIransaction with the data in the key-value pairs format. Mini-
mum commission is specified
13 SetScript Transaction | 0.5WEST Transaction which is binding a script with a RIDE contract to
an account
15 SetAssetScript 1WEST | Transaction which is binding a script with a RIDE contract to
an asset
101 | Genesis  Permission | no fee Assignment of the first network administrator for further dis-
Transaction tribution of rights
102 | Permission  Transac- | 0.01WES$Tssuance/withdrawal of rights from the account
tion
103 | CreateContract Trans- | 1WEST | Docker-contract creation
action
104 | CallContract Transac- | 0.1WEST Docker-contract call
tion
105 | EzecutedContract no fee Docker-contract execution
Transaction
106 | DisableContract 0.1WEST Docker-contract disable
Transaction
107 | UpdateContract 1WEST | Docker-contract update
Transaction
110 | GenesisRegisterNode no fee Node registration in the genesis block with the blockchain start
Transaction
111 | RegisterNode Transac- | 0.01WESTA new node registration
tion
112 | CreatePolicy Transac- | IWEST | Access group creation
tion
113 | UpdatePolicy Transac- | 0.5WEST Update the access group
tion
114 | PolicyDataHash 0.05WESTA data hash sending to the net
Transaction

11.2. Transactions

35



Technical description of the Waves Enterprise platform, Release master

11.2.1 1. Genesis transaction

Field Broadcasted JSON Blockchain state Type

type . . Byte

id . Byte

fee . Long

timestamp . . Long

signature . ByteStr
recipient . . ByteStr
amount . N Long

height .

36 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

11.2.2 3. Issue Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
version . . . Byte

assetId . ByteStr

name . . . Array[Byte]
quantity . R . Long

reissuable . . . Boolean

decimals . . . Byte

description . . . Array[Byte]
chainld . . Byte

script . (opt) . . Bytes

password « (opt) String

height .

JSON to sign

{

"type": 3,

(continues on next page)

11.2. Transactions

37




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version":2,

"name'": "Test Asset 1",

"quantity": 100000000000,

"description": "Some description",

"sender": "3FSCKyfFo3566zwilJjSFLBwKvd826KXUagR",
"password": "",

"decimals": 8,

"reissuable'": true,

"fee": 100000000

Broadcasted JSON

{
"type" . 3’
"id": "DnKb5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",
"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFtheU]",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,
"timestamp'": 1549378509516,
"proofs": [
—"NqZGcbcQ82FZrPh6aCE juoInNnkPTvyhrNg329YWydaYcZTywXUwDxFAknTMEGuFrEndCjXBtrueLWaqbJhpeiG" 1,
"version": 2,
"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"name": "Token Name",
"quantity": 10000,
"reissuable": true,
"decimals": 2,
"description": "SmarToken",
"chainId": 84,
"script": "base64:AQa3b8tH",
"height": 60719

38 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

11.2.3 4. Transfer Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . . Byte
id . Byte
sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long
timestamp . . Long

* (opt)
proofs . . List[ByteStr]
version . . . Byte
recipient . . . ByteStr
assetld . . ByteStr

* (opt)
fee assetld . . Bytes

* (opt)
amount . R . Long
attachment . . Bytes

* (opt)
password String

* (opt)
helght .

JSON to sign

{

"type": 4,
"version": 2,

"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimzZX",

"password": "",

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1laimZX",
"amount": 40000000000,

"fee": 100000

Broadcasted JSON

11.2. Transactions

39




Technical description of the Waves Enterprise platform, Release master

"senderPublicKey": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"amount": 200000000,

"fee": 100000,

"type": 4,

""version": 2,

"attachment": "3uaRTtZ3taQtRSmquqeC1DniK3Dv",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"feeAssetId": null,

"proofs": [
"2hRxJ2876CdJ498UCPErNfDSYdt2mTK4XUnmZNgZiq63RupJs5WTrAqR46c4rLQdq4toBZk2tSYCeAQWEQyi72U6"
1,

"assetId": null,

"recipient": "3GPtjb5osoYqHpyfmsFv7BMiyKsVzbGlykfL",

"id": "757aQzJiQZRfVRuJNnP3L1d369H20T jUEazwtYxGngCd",

"timestamp'": 1558952680800

40 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

11.2.4 5. Reissue Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
version . . . Byte

chainld . . Byte

assetld . . . ByteStr

quantity . R . Long

reissuable . . . Boolean

password . (opt) String

height

JSON to sign

{

"type": 5,
"version'":2,

"quantity": 10000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

n. nn
"password": "",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"reissuable": true,

"fee": 100000001

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",

(continues on next page)

11.2. Transactions

41




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"quantity": 10000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,
"proofs": [

—"3gmgGM6rYpxuuR5QvIkugPsERG7yWYF7 JN6QzpUGJwT8Lw6SUHkzzk8R22A7cGQz7TQQ5NifKxvAQzwPyDQbwmBg" 1,
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee": 100000001,

"id": "GsNvk15VudkqtRmMSpYW21WzgJpZrLBwjCREHWuwnvhb5",

"type": 5,

"version": 2,

"reissuable": true,
"timestamp": 1551447859299,

"height": 1190

11.2.5 6. Burn Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . . Byte
id . Byte
sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long
timestamp . (opt) . . Long
proofs . . List[ByteStr]
version . . . Byte
chainld . . Byte
assetld . . . ByteStr
quantity . . Long
amount . Long
password . (opt) String
height
42 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

JSON to sign

{
"type" : 6,
"version": 2,
"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
Ilpasswordll : nn .
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"quantity": 1000,
"fee": 100000,
"attachment": "string"
}

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",

"amount": 1000,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [
—"kzTwsNXjJkzk6dpFFZZXyeimYo6iLTVbCnCXBD4xBtyrNjysPqZfGKkONdJUTP3xeAPhtEgU9hsdwzRVo1hKMgS" 1],

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee": 100000,
"id": "3yd2HZq7sgun7GakisLH88UeKcpYMUEL4sy57aprANSE",
"type": 6,

"version": 2,
"timestamp'": 1551448489758,
"height": 1190

11.2. Transactions 43




Technical description of the Waves Enterprise platform, Release master

11.2.6 8. Lease Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
version . . . Byte

amount . . . Long

recipient . . . ByteStr

status .

password . (opt) String

height .

JSON to sign

{
"type": 8,
"version": 2,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"recipient": "3N1lksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",
"amount": 1000,
"fee": 100000

Broadcasted JSON

{
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUopabH3",
"amount'": 1000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

(continues on next page)

44 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"proofs": [

—"5jvmWKmU89HnxXFXNAd9X41zmiB5fSGoXMirsaJ9tNeyiCAImjm7MR48g789VucckQw2UExaVXfhsdEBuUrchvrq" 1,

"fee": 100000,

"recipient": "3N1lksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",
"id": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"type": 8,
"version": 2,

"timestamp'": 1551449299545,

"height": 1190

11.2.7 9. Lease Cancel Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id R Byte

sender . R PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long

timestamp « (opt) . . Long

proofs . . List[ByteStr]
version . . . Byte

chainld . . Byte

leaseld . (txId) . . Byte

leaseld .

password « (opt) String

height .

JSON to sign

{
"type": 9,

(continues on next page)

11.2. Transactions 45




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 2,

"fee": 100000,

"sender": "3N9vL3apA4j2L5Po jHWSTYmfHx9Lo2ZaKPB",
"password": "",

"txId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp"

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",
"leaselId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",
"sender": "3N9vL3apA4j2L5Po jHWSTYmfHx9Lo2ZaKPB",

"chainId": 84,
"proofs": [
—"2Gns72hraHbyay3eilleyHQEA1wTqiiAztaL jHinEYX91FEv62HFW38Hq89GnsEJFHUvo9KHY tBBrb8hg TAQwN7DM" 1],
"fee'": 100000,
"id": "9vhxB2ZDQcqiumhQbCPnAoPBLuir727qgJhFeBNmPwmu",
"type": 9,
"version": 2,
"timestamp'": 1551449835205,
"height": 1190
}

46 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

11.2.8 10. Create Alias Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . . Byte
id . Byte
sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long
timestamp . . Long
* (opt)
proofs . . List[ByteStr]
version . . . Byte
alias . . . Bytes
password (opt) String
L] Op
height .
JSON to sign
{
"type": 10,
"version": 2,
"fee": 100000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"alias": "hodler"
}
Broadcasted JSON
{
"type": 10,
"id": "DJTailMpb7eLuPW5GcE4ndeE8jWsWP jx8gPYmbZPJjpag",
"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFthelUJ",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": O,
"timestamp": 1549290335781,
"signature":
—"2qYepod9DhpxVadlyQDbv1QzU4KLKcbjjdtGY7De2272K76nbQfaXsRnyd31hUE8bhvL j jpHRdtoLVzbBDzRZYEY",
"proofs": [

11.2. Transactions




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1,

"alias": "testperson4",

"height": 59245

11.2.9 11. MassTransfer Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . . Byte
id . Byte
sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long
timestamp . . Long
* (opt)
proofs . . List[ByteStr]
version . . . Byte
assetId . . ByteStr
* (opt)
attachment . .
* (opt)
number of trans- . . . List[Transfer|
fers
transferCount R .
totalAmount .
password String
* (opt)
helght .

JSON to sign

{

"type": 11,

(continues on next page)

48

Chapter 11.

Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

Hpasswordﬂ: HH’

"fee": 2000000,

"version": 1,

"transfers":

[
{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000 1},
{ "recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc", '"amount": 100000 }

1,

"height": 1190

Broadcasted JSON

{
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",
"fee": 2000000,
"type": 11,
"transferCount": 2,
"version": 1,
"totalAmount": 200000,

"attachment": "",
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"proofs": [

—"2gWpMWdgZCjbygCX5US3aAFftKtGPRSK3aWGJ6RDNWIf9hend5sBFAgY6u3Mp4 jN8cqwal508qrkKNedGNSCPN1GZ" 1,
"assetId": null,
"transfers":

[

"recipient": "3MtHszoTn399NfsH3vbfoeEXRRrchEVtTRB",
"amount": 100000

},

{
"recipient": "3N7BA6J9VUBfBRutulMyjF4yKTUEtrRFfHMc",
"amount": 100000

}

]’
"id": "D9jUSHHcJqVAvkFMiRfDBhQbUzoSf(Qqd9cjaunMmt jdu",
"timestamp'": 1551450279637

11.2.10 12. Data Transaction

Warning: The transaction has limits:

1. "key":"value" pairs count no more than 100,

"data": [
{
"key": "objectId",
thpeﬂ: "String",
"value": "obj:123:1234"
o4
]

11.2. Transactions 49




Technical description of the Waves Enterprise platform, Release master

2. The byte composition of the signed transaction should not exceed more than 150 KB.

Field JSON to sign Broadcasted Blockchain Type Size (Bytes)
JSON state
type R R R Byte 1
id . Byte 1
sender . . PublicKeyAccoun$264
sender’s public . . . PublicKeyAccount3264
key
fee . . . Long 8
timestamp R . Long 8
* (opt)
proofs . . List[ByteStr] 32767
version R R Byte 1
authorPublicKey . . PublicKeyAccounf3264
author . . 3264
data . . . 3264
password String 32767
* (opt)
height . 8

JSON to sign

{
"type": 12,
"version": 1,
"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"password": "",
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",
"author": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"data": [
{
"key": "objectId",
"type": "string",
"value": "obj:123:1234"
}
(continues on next page)
50 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

]’
"fee": 100000

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUopabH3",
"authorPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",
"data":

[

"type": "string",
"value": "obj:123:1234",
"key": "objectId"

1,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"proofs": [

—"2T7WQmSXW8cFHf iFkdDEic9oNiT7aFiH3TyKkARERopr1VJvzRKqHAVNQ3eiYZ3uYN8uQnPopQEH4XV8z5SgSust" 1,
"author": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"fee": 100000,

"id": "7dMMCQNTusahZ7DWtNGjCwAhRYpjaHlhsepRMbpn2BkD",
"type": 12,

"version": 1,

"timestamp": 1551680510183

}

11.2. Transactions 51




Technical description of the Waves Enterprise platform, Release master

11.2.11 13. SetScript Transaction

Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . . Byte
id . Byte
sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long
timestamp . . Long
* (opt)
proofs . . List[ByteStr]
chainld . . Byte
version . . . Byte
script R . Bytes
* (opt)
name . . . Array[Byte]
description . . Array[Byte]
* (opt)
password String
* (opt)
height .

JSON to sign

{

"type": 13,

"version": 1,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 1000000,

"name": "faucet",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="
}

Broadcasted JSON

52 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

"type": 13,

"id": "HPDypnQJHJskN8kwszF8rck3E5tQiuiM1fEN42w6PLmt",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8vOoB7bsy2AY56CUopabH3" ,
"fee": 1000000,

"timestamp'": 1545986757233,

"proofs": [

—"2QiGYS2dqh8QyN7Vu2tAYaioX5WMErTSDPGbt4zrWS7QKTzo jmR2k jppvGN j4tDPsYPbcDungBaghaudLyMeGFgG" 1,

"chainId": 84,
"version": 1,
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"name": "faucet",

"description": "",

"height": 3805

11.2.12 15. SetAssetScriptTransaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
version . . . Byte

chainld . . Byte

assetld . . . ByteStr

script « (opt) . . Bytes

password . (opt) String

height .

11.2. Transactions

53




Technical description of the Waves Enterprise platform, Release master

JSON to sign

{
"type": 15,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
llpasswordll : nn .
"fee": 100000000,
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg"
}

Broadcasted JSON

{
"type": 15,
"id": "CQpEMOAEDvgxKfgWLH2HxE82iAzpXrtqsDDcgZGPAF9J",
"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFthelJ",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,
"timestamp": 1549448710502,
"proofs": [
—"64eodpuXQjakQQ4GIBaBrqiBtmk jSxseKCI7gn6EWB5kZtMr 18mAUHPRkZaHJe JxaDyLzGEZKghYoUknWfNhXnkf" ],
"version": 1,
"chainId": 84,
"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",
"height": 61895

11.2.13 101. GenesisPermitTransaction

Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . Byte

id . Byte

fee . Long

timestamp . . Long

signature . ByteStr

target . . ByteStr

role . . String

height

54 Chapter 11. Blocks, transactions, messages



Technical description of the Waves Enterprise platform, Release master

11.2.14 102. PermissionTransaction
Field JSON to sign Broadcasted JSON | Blockchain state Type
type . . . Byte
id . Byte
sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . Long
timestamp . (opt) . . Long
proofs . . List[ByteStr]
version . Byte
target . . . ByteStr
PermissionOp . PermissionOp
opType . . String
role . . String
dueTimestamp . Option[Long]

* (opt)

password « (opt) String
height .

JSON to sign

{

"type":102,

"sender" :"3GLWx8yUFcNSL3DERSkZyE4TpyAyNiEYsKG",

"password": "",

"senderPublicKey":"4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"fee":0,
”pI‘OOfS"Z [nu] s

"target":"3GPtjbosoYqHpyfmsFv7BMiyKsVzbG1lykfL",

"OPTYPQ" Madd" s

"role":"contract_developer",

(continues on next page)

11.2. Transactions

55




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"dueTimestamp" :null

}

Broadcasted JSON

{
"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"role": "contract_developer",
"sender": "3GLWx8yUFcNSL3DERS8kZyE4TpyAyNiEYsKG",
"proofs": [
"5ABJCRTKG06 jmDZCRWcLQc257CCeczme jmt £ JMbBE7TP3KsVkwvisHOKEkf YPckVCzZEMKZTCA3LKAPcN804Git3j"
1,
"fee": 0,
IlopTypeH B Iladdll .
"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7Q23FW1KWepBOEZCFG6",
"type": 102,
"dueTimestamp": null,
"timestamp": 1559048837487,
"target": "3GPtjb5osoYqHpyfmsFv7BMiyKsVzbGlykfL"

11.2.15 103. CreateContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

56 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

Field JSON to sign Broadcasted Blockchain Type Size(Bytes)
JSON state

type . . . Byte 1

id . Byte 1
sender . . PublicKeyAccoun264
sender’s public R . PublicKeyAccoun$264
key

password String 32767

* (opt)

fee . . . Long 8

timestamp R . Long 8
* (opt)

proofs . . List[ByteStr] 32767
version . . Byte 1
image . . . Array[Bytes] 32767
imageHash . . . Array[Bytes] 32767
contractName . . . Array[Bytes] 32767
params . . . List[DataEntry[ | B2767
height . 8

JSON to sign
{

"fee": 100000000,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",

"contractName'": "stateful-increment-contract",

"sender": "3PudkbvjVinPj1TkuuRahh4sGdgfr4YAUV2",

|lpassw0rd|l: HH’

"params": [],

"type": 103,

"version": 1
}

Broadcasted JSON

11.2. Transactions 57




Technical description of the Waves Enterprise platform, Release master

"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619

11.2.16 104. CallContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

58 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

Field JSON to sign Broadcasted Blockchain Type Size(Bytes)
JSON state
type . . . Byte 1
id . Byte 1
sender . . PublicKeyAccoun264
sender’s public R . PublicKeyAccoun$264
key
fee . . . Long 8
timestamp R . Long 8
* (opt)
proofs . . List[ByteStr| 32767
version . . Byte 1
contractld . . . ByteStr 32767
params . . . List[DataEntry[ | B2767
height . 8
password String 32767
* (opt)

JSON to sign

{

"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7ngh5wTXvJeYGo2",

"fee": 10,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"params":

[

{

"type": "integer",
"key": "a",
"value": 1

1,

{
"type": "integer",
eryﬂ: |lb|l’
"value": 100

}

(continues on next page)

11.2. Transactions

59




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1

Broadcasted JSON

{
"type": 104,
"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,
"timestamp": 1549365736923,
"proofs": [
«—+"2q4cTBhDKEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWIxVpdv" 1,
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwl1VtDTCbDSa7ngh5wTXvJeYGo2",
""params":
[
{
eryll B Ha
"type": "integer",
"value": 1

n
3

1,

{

"key": "b",
"type": "integer",
"value": 100

}

11.2.17 105. ExecutedContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

60 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

Field Broadcasted JSON Blockchain state Type

type . . Byte

id . Byte

sender . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . Long

timestamp . . Long

proofs . . List[ByteStr]
version . . Byte

tx . . ExecutableTransaction
results . . List[DataEntry| |]
height .

password . (opt) String

Broadcasted JSON

{
"type": 105,
"id": "38GmSVC5s8Sjeybzfe9R(6p1Mb6ajb8LYIDcep8G8Um]",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",

"password": "",

"fee': 500000,

"timestamp": 1550591780234,
"proofs": [

—"5whBipAWQgFvm3myNZe6GDd9Ky8199C9gNxLBHqDNmVAUJWIgLf7t9LBQDi68CKT57dzmnP JpJkrwKh2HBSwlUer6" 1,
"version": 1,
"tx":
{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],

(continues on next page)

11.2. Transactions 61




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1,

"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619
},
"results": [],

"height": 1619

11.2.18 106. DisableContractTransaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
version . . Byte

contractld . . . ByteStr

height .

password « (opt) String

JSON to sign

{
"sender":"3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"password": "",
"contractId":"Fz3wqAWWcPMT4M1q6H7 crLKtToFJvbeLSvqjaU4Zwlipg",
"fee":500000,
"timestamp":1549474811381,
"type":106
}
62 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

Broadcasted JSON

{

"type": 106,

"id": "8Nw34YbosEVhCx18pd81HqYac4C2pGjyLKck8NhSoGYH",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38DwsbskqDsjMVT2M",
"fee": 500000,

"timestamp": 1549474811381,

"proofs": [

—"5GqPQkuRvG6LPXgPoCr9FogAdmhAaMbyFb5Uf jQPUKASc6BLuQSz75LAWix10k2Z6PC5ezPp jqzqnr15i3RQmaEc" 1,
"version": 1,

"contractId": "Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4ZwMpg",

"height": 1632

}

11.2.19 107. UpdateContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

11.2. Transactions 63




Technical description of the Waves Enterprise platform, Release master

Field JSON to sign Broadcasted Blockchain Type Size(Bytes)
JSON state
type . . . Byte 1
id . Byte 1
sender . . PublicKeyAccoun264
sender’s public . . PublicKeyAccoun8264
key
image . . . Array[Bytes] 32767
imageHash . . . Array[Bytes] 32767
fee . . . Long 8
timestamp . . Long 8
* (opt)
proofs . . List[ByteStr] 32767
version . . Byte 1
contractld . . . ByteStr 32767
height . 8
password String 32767
* (opt)

JSON to sign

{
"senderPublicKey" :

—"5qBRDmM74WKR5xK7LPs8vCy9Q jzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEy JulW",
"image" : "localhost:32977/stateful-increment-contract-updated-1laf6b28c",
"sender" : "3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG",
"password": "",
"proofs" : [

—"3tNsTyteeZrxEbVSv5zPT6dr247nXsVWREv7Khx8spypgZQUdorCQZV2guTomutUTcyxhJUjNkQW4VmSgbCtgmlZ" 1,
"fee" : 0,

"contractId" : "4Zx8KLLSKKhXBHRCgoaulnUAU2q3bfzH54BWAs254tmB",

"id" : "HdZdhXVveMT1vYzGTviCoGQU3aH6ZS3YtFpYujWeGCHE",

"imageHash" : "17d72ca20bf9393eb4f4496fa2b8aa002e851908b77af1d5db6abcOb8eac0217",
"type" : 107,

"version" : 1,

"timestamp" : 1572355661572,

"height" : 10

}

64 Chapter 11. Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

Broadcasted JSON

{
"senderPublicKey":
—"5qBRDm74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fmb5S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEy JuW",
Iltxll:
{
"senderPublicKey":
—"5qBRDmM74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fmb5S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEy JuW",
"image":"localhost:32977/stateful-increment-contract-updated-1af6éb28c",
"sender" : "3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG" ,
"proofs'": [
—"3tNsTyteeZrxEbVSv5zPT6dr247nXsVWR5v7Khx8spypgZQUdorCQZV2guTomutUTcyxhJUjNkQW4VmSgbCtgmlZ"] ,
"fee":0,
"contractId":"4Zx8KLLSKKhXBHRCgoaulnUAU2q3bfzH54BWAs254tmB",
"id":"HdZdhXVveMT1vYzGTviCoGQU3aH6ZS3YtFpYujWeGCHE" ,
"imageHash":"17d72ca20bf9393eb4f4496fa2b8aa002e851908b77af1d5db6abcOb8eac0217",
"type":107,"version":1,"timestamp":1572355661572},
"sender" :"3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG",
"proofs": [
—"28ADV8miUVNSEF jhqeF j6MADSXY jbxA3TsxSwFVs18 jXAsHVaBczvnyoUSaYJs jRNmaWgXbpbduccRxpKGTs6tro"],
"fee":0,"id" :"7TniVY8mjzeKqLBePvhTxFRfLu7BmcwVfqaqtbWANSAA2",
"type":105,
"version'":1,
"results":[],
"timestamp":1572355666866
X
}

11.2.20 110. GenesisRegisterNodeTransaction

Field Broadcasted JSON Blockchain state Type
type . . Byte
id . Byte
fee . Long
timestamp . . Long
signature . Bytes
version . Byte
targetPubKey . .

height .

11.2. Transactions 65




Technical description of the Waves Enterprise platform, Release master

11.2.21 111. RegisterNodeTransaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
fee . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
version . Byte
targetPubKey . . . PublicKeyAccount
nodeName . . . String

opType . . .

height .

password . (opt) String

JSON to sign

{
"type": 111,
|lopType|l . |laddH’

"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,

"password": "",

"targetPubKey": "apgJP9atQccdBPAgJPwH3NBVqYXrapgJP9atQccdBPAgJPwHapgJP9at(ccdBPAgJPwHDKkh6AS",
"nodeName": "Node #1",

"fee": 500000,

"timestamp": 1111111111

}

66

Chapter 11.

Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

11.2.22 112. CreatePolicyTransaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . . Byte

sender . . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
policyName . . . String

recipients . . . Array[Byte]
owners . . . Array[Byte]

fee . . . Long

timestamp . (opt) . . Long

proofs . . List[ByteStr]
height . Long

description . . . String

password . (opt) String

JSON to sign

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3S5qJycqv8d",

"policyName": "Policy# 7777",
"password": "sfgKYBFCF@#$Efsdf () *%",
"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"
1,
"fee": 15000000,
"description": "Buy bitcoin by 1c",
"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

(continues on next page)

11.2. Transactions

67




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

]’
"type": 112
}

11.2.23 113. UpdatePolicyTransaction

Field JSON to sign Broadcasted JSON | Blockchain state Type

type . . . Byte

id . . Byte

sender . . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
policyName . . . String

recipients . . . Array[Byte]
owners . . . Array[Byte]

fee . . . Long

timestamp « (opt) . . Long

proofs . . List[ByteStr]
height . Long

opType . . .

description . . . String

password . (opt) String

JSON to sign

{

"policyId": "7wphGbhgbmUgzuN5wzgqwqtViTiMdFezSallfxRV58Lm",
"password": "sfgKYBFCF@#$Efsdf () *%",

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3S5qJycqv8d",

"proofs": [],

(continues on next page)

68

Chapter 11.

Blocks, transactions, messages




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ughA7Ve7T",
"3NtNJV44wyxRXv2]jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"3NwJf jG5RpaDfxEhkwXgwD70oX21NMFCx JHL"

1,

"fee": 15000000,

"OpType" B |laddll .

"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7VeT7T"

1,

"type": 113,

11.2.24 114. PolicyDataHashTransaction

When the user sends confidential data to the network using POST /privacy/sendData, the node automati-

cally will create the 114 transaction.

Field Broadcasted JSON Blockchain state Type

type . . Byte

id . . Byte

sender . . PublicKeyAccount
sender’s public key . . PublicKeyAccount
policyld . . String

dataHash . . String

fee . . Long

timestamp . . Long

proofs . . List[ByteStr|
height . Long

11.2. Transactions

69




Technical description of the Waves Enterprise platform, Release master

11.3 Network messages

This section describes the structure of network messages in the Waves Enterprise blockchain platform.

11.3.1 Network message

All network messages, except Handshake, are based on the following structure:

Field Field Type Field
order size in
number bytes

1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID Byte 1

4 Payload length Int 4

) Payload checksum Bytes 4

6 Payload Bytes N

Magic Bytes are 0x12, 0x34, 0x56, 0x78. Payload checksum is first 4 bytes of FastHash of Payload bytes.
FastHash is hash function Blake2b256(data).

11.3.2 Handshake message

Handshake message is intended for primary data exchange between two nodes. An authorized handshake
contains the node owner’s blockchain address and signature. Unsigned handshakes are not accepted.

Authorized Handshake

Field Field Type Field

order size in

number bytes

1 HandshakeType byte 1

2 Application name length (N) Byte 1

3 Application name (UTF-8 encoded bytes) Bytes N

4 Application version major Int 4

5 Application version minor Int 4

6 Application version patch Int 4

7 Consensus name lenght (P) Byte 1

8 Consensus name lenght (UTF-8 encoded bytes) Bytes P

9 Node name length (M) Byte 1

10 Node name (UTF-8 encoded bytes) Bytes M

12 Node nonce Long 8

13 Declared address length (K) or 0 if no declared address was | Int 4
set

14 Declared address bytes (if length is not 0) Bytes K

15 Peer port Int 4

16 Node owner address Bytes 26

17 Signature Bytes 64

70 Chapter 11. Blocks, transactions, messages



Technical description of the Waves Enterprise platform, Release master

11.3.3 GetPeers message

GetPeers message is sent to request network addresses of network participants.

Field Field Type Field
order size in
number bytes
1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x01) Byte 1
4 Payload length Int 4
) Payload checksum Bytes 4
11.3.4 Peers message
Peers message is a response to a GetPeers request.
Field Field Type Field
order size in
number bytes
1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x02) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Peers count (N) Int 4
7 Peer #1 IP address Bytes 4
8 Peer #1 port Int 4
6 + 2 * | Peer #N IP address Bytes 4
N-1
6 + 2 * | Peer #N port Int 4
N
11.3.5 GetSignatures message
Field Field Type Field
order size in
number bytes
1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x14) Byte 1
4 Payload length Int 4
) Payload checksum Bytes 4
6 Block IDs count (N) Int 4
7 Block #1 ID Bytes 64
6 +N Block #N ID Bytes 64

11.3. Network messages

71




Technical description of the Waves Enterprise platform, Release master

11.3.6 Signatures message

Field Field Type Field
order size in
number bytes
1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID (0x15) Byte 1

4 Payload length Int 4

) Payload checksum Bytes 4

6 Block signatures count (N) Int 4

7 Block #1 signature Bytes 64
6+ N Block #N signature Bytes 64

11.3.7 GetBlock message

Field Field Type Field
order size in
number bytes

1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID (0x16) Byte 1

4 Payload length Int 4

) Payload checksum Bytes 4

6 Block ID Bytes 64

11.3.8 Block message

Field Field Type Field
order size in
number bytes

1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID (0x17) Byte 1

4 Payload length Int 4

5 Payload checksum Bytes 4

6 Block bytes (N) Bytes N

72 Chapter 11. Blocks, transactions, messages



Technical description of the Waves Enterprise platform, Release master

11.3.9 Score message

Field Field Type Field

order size in

number bytes

1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID (0x18) Byte 1

4 Payload length Int 4

) Payload checksum Bytes 4

6 Score (N bytes) BigInt N
11.3.10 Transaction message

Field Field Type Field

order size in

number bytes

1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID (0x19) Byte 1

4 Payload length Int 4

5 Payload checksum Bytes 4

6 Transaction (N bytes) Bytes N
11.3.11 Checkpoint message

Field Field Type Field

order size in

number bytes

1 Packet length (BigEndian) Int 4

2 Magic Bytes Bytes 4

3 Content ID (0x64) Byte 1

4 Payload length Int 4

5 Payload checksum Bytes 4

6 Checkpoint items count (N) Int 4

7 Checkpoint #1 height Long 8

8 Checkpoint #1 signature Bytes 64

6 + 2 * | Checkpoint #N height Long 8

N-1

6 + 2 * | Checkpoint #N signature Bytes 64

N

11.3. Network messages

73



Technical description of the Waves Enterprise platform, Release master

74 Chapter 11. Blocks, transactions, messages



CHAPTER
TWELVE

SMART CONTRACTS

12.1 RIDE Smart Contracts

Smart Contract is a script that checks transactions for compliance with conditions. Scripts extend the logic
of blockchain to meet your business tasks. The fee for smart contract is fixed. The script can be published
for both an account and token assets issued by you.

For an account, all transactions originating from this address will be checked. An account with a published
script is called a Smart Account. For token assets, all transactions with these token assets will be checked.
A token asset with a published script is called a Smart Asset. Only 1 script can be assigned to one account.
Accordingly, any installed script replaces the previous one, including the “default script”.

12.1.1 RIDE

The RIDE language is used for creating a script in the Waves Enterprise blockchain (about RIDE language
you can read on the WAVES portal https://docs.wavesplatform.com). Scripts written in RIDE use the
following data when checking conditions:

* Outgoing transaction details.

¢ Details of account on behalf of which transactions are made.
¢ Details of third accounts balance.

¢ Details of blockchain height.

The principle of the script operation is pattern matching. The script specifies transaction types and checks
them for compliance with conditions under which corresponding transactions can be executed. Also, the
following features are available:

¢ ban transaction regardless of conditions,
» permit regardless of conditions.

Operations with permissions and bans per transaction types are possible both by specifying specific trans-
action types and using the “everything but” principle. The script is set by the Setscript transaction, so
permission, prohibition or verification for compliance with conditions must be explicitly specified.

Important: The script does not modify the transaction, it only verifies that the conditions are met.

75


https://docs.wavesplatform.com

Technical description of the Waves Enterprise platform, Release master

12.1.2 Complexity of scripts

RIDE is not a Turing-complete language, which imposes limitations on the available complexity of logic.
Computational complexity is constrained from the top to guarantee network performance. For complex
business processes, the mechanics of which does not fit into one script, a combination of several scripts (for
several addresses, respectively), or a combination of scripts for token assets and address can be used. We
are actively developing RIDE features, and in the near future nested functions expanding its capabilities in
terms of complexity of tasks to be implemented will appear in the language.

12.1.3 Signatures and default script

Each transaction in the blockchain has a cryptographic proof of integrity based on the signature of the
transaction by the sender’s private key. This also guarantees that transaction authorship is unalienable. For
a better understanding of the mechanism, imagine that “by default” a script is installed on each address,
which verifies the only condition for each outgoing transaction — the signature of the sender’s address.

Example of a default script code:

sigVerify(tx.bodyBytes, tx.proofs[0], tx.senderPk)

The script mechanics enhances proof verification capabilities. A transaction can be signed by multiple users
or other than on behalf of the address from which it was sent. This is necessary because the contract checks
only transactions originating from its address. Accordingly, the user generates a transaction on behalf of the
contract, signs it with his proof and successfully passes the script test.

Important: If the proof verification is not explicitly specified in your script, it is not executed. Accordingly,
when the transaction body is generated manually, it is possible to send transactions on behalf of an address
with a script with another address proof.

12.1.4 Account data

Data can be stored in the key-value format on addresses in the Waves Enterprise blockchain. The data
stored on the address is available for viewing at the request return data from address by key. The data is
placed on the address when sending a data transaction. Since RIDE scripts are stateless, data transactions
form an updated data storage which the script addresses. Configuring proof verification on a smart account
allows multiple users to collaborate on data on a smart account. For example, with document flow statuses.

Important: Keys are unique for the address. Only one value corresponds to one address key. When
publishing a new value for an existing key, it will be overwritten. The history and the author of changes can
be tracked in the blockchain.

76 Chapter 12. Smart Contracts


https://docs.vostok.io/ru/latest/how-to-use/rest-api-node/address.html#Get-Addresses-data-address

Technical description of the Waves Enterprise platform, Release master

12.2 Docker Smart Contracts

In addition to contracts implemented on the basis of RIDE scripts for smart accounts and smart-assets, the
Waves Enterprise platform provides the option to develop and use Turing-complete smart contracts. For
implementation of Turing-complete contracts an approach is used where programs are launched in an isolated
Docker container environment. Application development can be performed without restrictions in terms of
the programming language to be used. Each application is launched in a Docker container to ensure isolation
and manage resources available to a particular application. To store smart contracts, Docker Registry with
read access only (Docker images) of contracts is used for machines with nodes. The node state can be
accessed through a REST API node.

Important: It is a must to run the Docker-engine and the Docker-daemon simultaneously on the node
which is proccessing the Docker smart-contracts.

: BROADCASTING e : MINING NODE e
: NODE : : .

UTX POOL UTX POOL CONTRACT EXECUTOR DOCKER REGISTRY

CallContract tx

5 5 _CalCon s 5
tx broadcast download image

| T A/ B A—

! 1 ExecutedContract tx a !

«—
| | A
change state change state
. I ®
' ' g -
! ! £ E
% : : % 5 :
! N [=%
| ; =
i | =

: o | 2 .
LEVEL DB - - LEVEL DB : fEEP
: ; ! DOCKER RUNTIM .

CallContracttx | : ! get state =
— | | — e

REST AFI REST AFI ! SMART CONTRACT

12.2.1 Creating a contract

Creating a smart contract starts with preparation of a Docker image, which consists of the contract program
code, the required environment and the special scenario Dockerfile. A prepared Docker image is assembled
(built) and sent to Docker Registry.

Example of Dockerfile:

FROM python:alpine3.8
ADD contract.py /
ADD run.sh /

(continues on next page)

12.2. Docker Smart Contracts 77



Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

RUN chmod +x run.sh
RUN apk add --no-cache --update iptables
CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

The contract is created by publishing a special (CreateContractTransaction) transaction containing a link
to the image in Docker Registry. After the transaction is received, the node downloads the image using the
link specified in the “image” field, the image is checked and launched as a Docker container.

12.2.2 Executing a Contract

Smart contract execution is initiated by a special (CallContractTransaction) transaction containing the
contract ID and call parameters. The transaction ID defines the Docker container. The container is executed
unless it has been launched before. The contract launch parameters are transferred to the container. | Smart
contracts change their state by updating the key-value pairs.

12.2.3 Contract Call Disabling
If necessary, the contract developer can disable calling the contract. To do this, a special (DisableContract-

Transaction) transaction is published specifying the Contract ID. The contract becomes unavailable after its
disconnection, but you can get information about the contract from the the blockchain later.

12.2.4 Description of Transactions

The following transactions are implemented to ensure the interaction between the blockchain and the Docker
Contract:

Code Transaction type Purpose

103 | CreateContract- Initiates the Contract. Transaction is signed by a user with the role “con-
Transaction tract developer”

104 | CallContract- Calls the Contract. Transaction is signed by the initiator of contract execu-
Transaction tion

105 | EzecutedContract- | Records the contract execution result in the contract state. | br | Transaction
Transaction is signed by the block generating node

106 | DisableContract- Disables calling a contract. Transaction is signed by a user with the role
Transaction “contract_ developer”

12.2.5 Node configuration

Downloading and execution of Docker Contracts initiated by transactions with codes 103-108 are performed
on nodes with enabled option docker-engine.enable = yes (for details see module “Installation and Con-
figuration” > “Starting Docker contracts”).

78 Chapter 12. Smart Contracts




Technical description of the Waves Enterprise platform, Release master

12.2.6 REST API

The description of REST API of Docker Contracts is given in module “Use” > “Node’s REST API” >
“Contracts”.

12.2.7 Implementation examples

¢ Creating a simple contract

12.2. Docker Smart Contracts 79



Technical description of the Waves Enterprise platform, Release master

80 Chapter 12. Smart Contracts



CHAPTER
THIRTEEN

ANCHORING

One of the main ideas behind private blockchain is that transactions are processed by a certain number of
participants known in advance. In a private blockchain there is a threat of information spoofing, because the
number of participants is quite small if we compare it to the public blockchain where there are no restrictions
to join the network. When using PoS consensus algorithm, the threat of overwriting a blockchain becomes
real.

To increase the confidence of the private blockchain participants in data placed there, the anchoring mech-
anism was developed. Anchoring allows checking the data for invariability. The guarantee of invariability is
achieved by publishing data from a private blockchain to a larger network, where data spoofing is unlikely
due to a larger number of participants and blocks. Published data represent a signature and a height of
blocks in a private network. Mutual connectivity of two or more networks increases their resistance, because
as a result of a long-range attack as forgery or alteration of data resulting from a long-range attack would
require attacking all connected networks.

13.1 How does anchoring work in the Waves Enterprise blockchain

i current-height = N i | current-height == N+ 10 |
| height-above = 10 | | |

BLOCK #N BLOCK #(N + 10)

L J

MAINNET
Data b : MAINMET height check
height {every 30 sec)
signature | Datate:

- 4 —_— h_mght
signature
mainnet-tx-id
mainnet-t«-timestamp

~ = > |
— OO0 —{ BLOCK #{K - 100) }—{ BLOCK #K | BLOCK #(K+)
AN
SIDECHAIN i current-height = K

| threshold = 100

Fig. 1: Mainnet anchoring scheme

Anchoring process is shown below:

81


https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/

Technical description of the Waves Enterprise platform, Release master

1. Anchoring configurations are set in the configuration file of the private blockchain node. You should
use recommended values for the configurations to avoid anchoring malfunctioning.

2. Each height-range an anchoring transaction, that contains data of the block at current-height
- threshold, is broadcasted to the Mainnet by the anchoring node. The Data Transaction with a
key-value list is used as an anchoring transaction. The node then requests height of the broadcasted
transaction.

3. The node then checks the Mainnet height each 30 seconds until its height reaches the height of the
created transaction + height-above.

4. When required height is reached and the presence of previously created data transaction is confirmed,
another anchoring data transaction is created in the private blockchain.

13.2 Transaction structure for anchoring

Mainnet transaction consists of the following fields:
e height - the height of the chosen block from the private blockchain.
e signature - the signature of the chosen block from the private blockchain.
The private blockchain transaction consists of the following fields:
¢ height - the height of the chosen block from the private blockchain.
e signature - the signature of the chosen block from the private blockchain.
* mainnet-tx-id - the Mainnet anchoring transaction ID.

* mainnet-tx-timestamp - the timestamp of the Mainnet anchoring transaction.

13.3 Errors during the anchoring

Errors during the anchoring can occur at any step. In case of any error in the private blockchain the Data
Transaction containing the error code and the description is always published. The error transaction includes
the following data:

* height - the height of the chosen block from the private blockchain.
e signature - the signature of the chosen block from the private blockchain.
* error-code - the error code.

* error-message - the error message.

82 Chapter 13. Anchoring



Technical description of the Waves Enterprise platform, Release master

Table 1: Error types

Code

Message

Possible cause

Unknown error

An unknown error occurred during the send
of the transaction to the Mainnet

1 Fail to create data transaction for Creating of the transaction to be sent to the
Mainnet Mainnet failed
2 Fail send transaction to Mainnet The transaction publication to the Mainnet
failed (it could be a JSON request error)
3 Invalid http status of response from The Mainnet has returned an HTTP code
mainnet transaction broadcast other than 200 after the transaction publi-
cation
4 Fail to parse http body of response from The Mainnet has returned an unknown
mainnet transaction broadcast JSON after the transaction publication
) Mainnet return transaction with The Mainnet has returned mismatched ID
id="'$mainnetTxId' but it differ from after the transaction publication
transaction that we sent id='$sentTxId
6 Mainnet didn't respond on transaction info | The Mainnet has not responded to the re-
request quest about the transaction info
7 Fail to get current height in Mainnet Failed to get current Mainnet height
8 Anchoring transaction in mainnet The anchoring transaction has disappeared
disappeared after height rise enough from the Mainnet after its height evened
height-above value
9 Fail to create sidechain anchoring Fail to public the anchoring transaction in
transaction the private blockchain
10 | Anchored transaction in sidechain was Anchored transaction in sidechain was

changed during mainnet height arise await,
looks like a rollback has happened

changed during mainnet height arise await,
looks like a rollback has happened

13.3. Errors during the anchoring

83




Technical description of the Waves Enterprise platform, Release master

84 Chapter 13. Anchoring



CHAPTER
FOURTEEN

AUTHORIZATION SERVICE

The authorization service is an external service and it provides authorization for all components of the
blockchain network. Service is built on the basis of ‘OAuth 2.0 <https://en.wikipedia.org/wiki/OAuth> ¢_
authorization protocol. OAuth 2.0 is the open framework for realization of the authorization mechanism,
allowing to give to the third part the limited access to the protected resources without credentials transfer
to the third part. The data flow scheme between participants of information interaction on the OAuth 2.0
basis is presented below.

Authorization request

S SO ;

| Authorization grant |

T T TTssssmmmeemeeeey

3 Authorization grant 3

o o e e e »

: Access token and refresh token 1

]

Accesstoken  pemeemmmemeeeeeeeeeeeoooo !
------------------------------------------ - | . .
I- Protected resource AUthor'zatlon
Client . T ]
Server
Access token Resource Server
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >
Access token error
o]
Refresh token

B o o s »

3 New access token and updated refresh token

11. _________________________________________________________________________________

Fig. 1: Basic authorization scheme based on OAuth 2.0 protocol

JSON Web Token is the authorization unit. Tokens are used to authorize each request from the client to the
server and have a limited lifetime. The client receives two types of token - access and refresh. Access token
is used to authorize requests for access to protected resources and to store additional information about the
user. The refresh token is used to get a new access token and to refresh the refresh token.

In general, the authorization scheme includes the following operations:

85


https://en.wikipedia.org/wiki/OAuth
https://jwt.io/

Technical description of the Waves Enterprise platform, Release master

CLIENT APP

- (4) Data——,

(3) Auth key )
(1) Auth key

AUTH SERVICE

DATA SERVICE NODE

* \
L (2) Refresh tokesn and @

access token

\-4@
EXTERNAL SERVICE % \‘
Sub Auth key
Client 1 Ewtd3twet
Client 2 36y21erqg

Client 3 Gyt78ngy6

Fig. 2: The authorization scheme of the Waves Enterprise blockchain platform

. The client (it could be any blockchain network component like the web client, data service or an
external application) once provides its authentication data to the authorization service.

. If the initial authentication procedure is successful, the authorization service stores the client’s authen-
tication data in the database, generates and sends signed access and refresh tokens to the client. Tokens
include the lifetime info and basic customer data, such as an ID and a role. Client authentication data
are stored in the authorization service configuration file. The client checks the lifetime of the access
token each time before sending a request to a third-party service. In case of expiration of the token,
the client refers to the authorization service to obtain a new access token. The refresh token is used
for requests to the authorization service.

. The client sends a request of receiving data from a third-party service using the current access token.

. The external application checks the lifetime of the access token, its integrity, and compares the previ-
ously obtained public key of the authorization service with the key contained in the signature of the
access token. In case of successful verification, this service provides the requested data to the client.

86

Chapter 14. Authorization service



CHAPTER
FIFTEEN

MAINNET AND PARTNERNET CONNECTION

15.1 Working inside the “Waves Enterprise Mainnet”

15.1.1 Connection of the node to the “Waves Enterprise Mainnet”

Warning: The account balance must be at least 10 000 WEST if you want to connect your node to
the network “Waves Enterprise Mainnet” and do mining!

Follow these steps for the node connection to the “Waves Enterprise Mainnet”:

1.

10.

11.

12.

Go to the website https://client.wavesenterprise.com/ and create an account following the web-interface
hints.

Transfer tokens to the “Waves Enterprise Mainnet” network.

Transfer for leasing any number of tokens to the 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu address
and keep the transaction ID. Further you can withdraw tokens from the lease, because this operation
is necessary to verify your ownership of this address and the balance.

Install the node software.

Perform the node configuration. An example of a node configuration file can be found on the project
page on GitHub. To add a node to the Mainnet network, the name of the configuration file is
mainnet-example.conf.

Go to the website https://support.wavesenterprise.com /servicedesk/customer/portal /3 and perform
the registration.

Select the type of request “Participant connection” for legal or natural person.

Register on the resource by filling in all the required fields of the form. If you want to mine, check the
box Please grant mining rights.

Enter the transaction ID of the token lease transfer in the Proof of WEST token ownership field.

Please, wait for the connection application consideration. You can start working in the “Waves Enter-
prise Mainnet” after successful registration.

Run the node after obtaining permission to connect to the network “Waves Enterprise Mainnet”, public
key of which you specified in the application.

Transfer or lease tokens to the address of the connected node for the mining and work in the network.

87


https://client.wavesenterprise.com/
https://github.com/waves-enterprise/WE-releases/tree/master/configs
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release master

88 Chapter 15. Mainnet and Partnernet connection



Technical description of the Waves Enterprise platform, Release master

15.1.2 Fees in the

“Waves Enterprise Mainnet”

T errdasnm

# Transaction Fee Description
type
1 Genesis trans- | no Initial binding of the balance to the addresses of nodes created at the start
action fee of the blockchain
2 Payment
Transaction
(not used)
3 Issue Transac- | 1IWESTIokens issue. The fee is charged only in WEST
tion
4 Transfer 0.01WEBRens transfer
Transaction
5 Reissue 1WESTTokens reissue
Transaction
6 Burn Transac- | 0.05WFERkens burn
tion
8 Lease Trans- | 0.01WEBRRens lease
action
9 Lease Cancel | 0.01WESdhcel of the tokens lease
Transaction
10 Create  Alias | 1WESTAlias creation
Transaction
11 MassTransfer | 0.05WESdss tokens transfer. Minimum commission is specified, the fee depends
Transaction on the number of addresses in the transaction
12 | Data Transac- | 0.05WEBEnsaction with the data in the key-value pairs format. The fee is always
tion charged to the transaction author. Minimum commission is specified, the
fee depends on data volume
13 SetScript 0.5WESIFansaction which is binding a script with a RIDE contract to an account
Transaction
14 SponsorFee
Transaction
(not used)
15 SetAs- 1WESTTransaction which is binding a script with a RIDE contract to an asset
setScript
101 | Genesis no Assignment of the first network administrator for further distribution of
Permission fee rights
Transaction
102 | Permission 0.01WHSSliance /withdrawal of rights from the account
Transaction
103 | CreateCon- 1WESTDocker-contract creation
tract Transac-
tion
104 | CallContract 0.1WESXdcker-contract call
Transaction
105 | Ezecuted- no Docker-contract execution
Contract fee
Transaction
106 | Disable- 0.01WHSdeker-contract disable
Contract
Transaction
107 | Update- 1WESTDocker-contract update
Contract
Transaction
lglp \ﬁgwéﬁ?ﬁﬁ de tl{éo“Wa\}ggd@nrt%jﬁPf?éiRﬁamer’ genesis block with the blockchain start 89
isterNode fee
Transaction
111 | RegisterNode 0.01WESHew node registration




Technical description of the Waves Enterprise platform, Release master

15.1.3 Examples of the “Waves Enterprise Mainnet” configuration files

You can read here about the node configuration.

The accounts.conf file example

// accounts.conf listing

accounts-generator {
waves-crypto = yes
chain-id = V
amount = 1
wallet = ${user.home}"/node/keystore.dat"
wallet-password = "some string as password"
reload-node-wallet {
enabled = false
url = "http://localhost:6869/utils/reload-wallet"
}
}

The chain-id parameter contains the identification network byte, for the “Waves Enterprise Mainnet” in is

V.

The api-key-hash file example

// api-key-hash.conf listing

apikeyhash-generator {
waves-crypto = no
api-key = "some string"

}

The node configuration file example

node {
# Type of cryptography
waves-crypto = yes

# Node owner address
owner-address = ""

ntp {

fatal-timeout = "1 minute"
server = "pool.ntp.org"

}

# Node "home" and data directories to store the state
# directory = ${user.home}"/node"
# data-directory = ${node.directoryl}"/data"

Settings for Privacy Data Exchange
Uncomment and fill to enable
privacy {

storage {

H H B R

url = "jdbc:postgresql://"${POSTGRES_ADDRESS}":"${POSTGRES_PORT}"/"${POSTGRES_DB}

(continues on next page)

90

Chapter 15. Mainnet and Partnernet connection



Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

driver = "org.postgresql.Driver"
profile = "slick.jdbc.PostgresProfile$"

user = ${POSTGRES_USER}
password = ${POSTGRES_PASSWORD}
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000

numThreads = 20

schema = "public"

migration-dir = "db/migration"

H OH B R B R R R R E

# Blockchain settings

# Mainnet blockchain settings (should match on all nodes for consistency)
blockchain {

type = CUSTOM

consensus.type = pos

custom {

address-scheme-character = "V"

functionality {
feature-check-blocks-period = 15000
blocks-for-feature-activation = 10000
pre-activated-features = {

2=0
3=0
4 =0
5=0
6 =0
7=0
9=0
10 =0

# Mainnet genesis settings

genesis {
average-block-delay: 40s
initial-base-target: 10000000000
block-timestamp: 1559320391040
initial-balance: 100000000000000000
genesis-public-key-base-58: "D7tDsKd7DQ7HOm6fPRyk1GsNQxjAQXsETtuVgqSaaXDs"
signature:

—"PTkwe3dWSWgUYL8FZubkccPfPzoxGgLuK jTCkeapTxoDbdpo6EtcqndXoS jqKUUVS67xXfogGmaNroLgNocWcBg

D

n
—

transactions = [
{recipient: "3Nnq14SGqeYETSd15J6z8LsgBRYB2yalyRC", amount: 99990000000000000}
{recipient: "3Nrysx7J1TN6vBleYdHgug2nfxA7um918zy", amount: 1000000000000},
{recipient: "3NuiCzDhmeSKL5QFabsqZzzm9zTL4max4fZ", amount: 1500000000000},
{recipient: "3NqaDWdEgGsqJj1iHjznDQMtk6v5KVxmRceg", amount: 2000000000000},
{recipient: "3Nckru7f8Y8vS3PXGyybiwoheRrKvqWbu8x", amount: 2500000000000},
{recipient: "3NmHrYoC8S2SUosy6UJp47bBuq2Cr2X6Yql", amount: 3000000000000}

(continues on next page)

15.1. Working inside the “Waves Enterprise Mainnet” 91



Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

]

network-participants = [
{public—key: "GasRtAUXMhifrUUmgU66rRZPii68tE4QxdOmtCcrV3xL",

< connection_manager]},

{public-key: "Er29kgV3yeumEAtPxBAkS5fXPERYYalwmAcPgzWw4mxHi",
{public-key: "9eoVBycnr2m8bgulWvYySoFJ1QqFLPAMzhnmErp291£6",
{public-key: "9ngXJ3d1XSQgXcYbgZm2wH4QHS8CTc5mtfIM4XDoz5db",
{public-key: "2cvrBT6jePt6mjinE1EdLLymoqRHFhWwepM3E5gRuSeL",
{public-key: "87ZVwBTeBiKYdF2Q5hxGazwhR1pKy9VYgun8rLFMEmoW" ,

fees {

genesis = 0
genesis-permit = 0
issue = 100000000
transfer = 1000000
reissue = 100000000
burn = 5000000
exchange = 500000
lease = 1000000
lease-cancel = 1000000
create-alias = 100000000
mass-transfer = 5000000
data = 5000000
set-script = 50000000
sponsor-fee = 100000000
set-asset-script = 100000000
permit = 1000000
create-contract = 100000000
call-contract = 10000000
executed-contract = 0
disable-contract = 1000000
update-contract = 100000000
register-node = 1000000
create-policy = 100000000
update-policy = 50000000
policy-data-hash = 5000000
additional {
mass-transfer = 1000000
data = 1000000

# Application logging level. Could be DEBUG | INFO | WARN | ERROR.
—INFO.
logging-level = DEBUG

features {
supported = [] # NG

}

# P2P Network settings
network {

roles:

roles:
roles:
roles:
roles:
roles:

[permissioner,

[miner]},
[miner]},
[miner]},
[miner]},
[miner]}

Default value is

(continues on next page)

92

Chapter 15. Mainnet and Partnernet connection




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

# Network address
bind-address = "0.0.0.0"
# Port number

port = 6864

# Peers network addresses and ports

# Example: known-peers = ["node-0.wavesenterprise.com:6864", "node-1.wavesenterprise.
—com:6864"]
known-peers = [ ]

# Node name to send during handshake. Comment this string out to set random node name.
# node-name = "node"

# String with IP address and port to send as external address during handshake. Could,
—be set automatically if uPnP is enabled.

declared-address = "0.0.0.0:6864"

}

wallet {

# Path to keystore. In case of GOST cryptography keys stored in a './keystore/' folder.,
—In case of Waves-cryptography keys stored in a 'keystore.dat' file.

file = ${user.home}"/node/keystore.dat"

# Access password

password = ""

}

# Node's REST API settings
rest-api {

enable = yes

bind-address = "0.0.0.0"
port = 6862

# Hashed secret Api-Key to access node's REST API
api-key-hash = ""

# Api-key hash for Privacy Data Exchange REST API methods
privacy-api-key-hash = ""

}

# New blocks generator settings
miner {

enable = no

quorum = 2
interval-after-last-block-then-generation-is-allowed = 35d
micro-block-interval = 5s
min-micro-block-age = 3s
max-transactions-in-micro-block

500
200ms

minimal-block-generation-offset

}

# Anchoring settings
scheduler-service.enable = no

# Docker smart-contracts engine config
docker-engine {
enable = no

(continues on next page)

15.1. Working inside the “Waves Enterprise Mainnet”

93



Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

execution-limits {
timeout = 10s
memory = 512
memory-swap = 512

}

}

}

15.2 Working inside the “Waves Enterprise Partnernet”

15.2.1 Connection of the node to the “ Waves Enterprise Partnernet”

Follow these steps for the node connection to the “Waves Enterprise Partnernet”:

1.
2.
3.

10.

Create the accounts.conf configuration file before the generator start.
Download the current release of the node and generator in the jar format.

Generate a key pair for the connected node using the generator. For your convenience it is recommended
to create one key pair for one node, please, specify the number of nodes 1 in the amount field of the
accounts.conf configuration file. Enter the node address password during the key pair creation and
keep it for the following steps. Press enter key if you do not want to use this password.

. Create the node configuration file using the template from the project GitHub. Please, fill all the fields

marked with #FILL string. If you want the node to be a miner specify the value yes of the enable
parameter of the miner block and request the miner rights inside the connection application. Otherwise
specify the no value. Also specify the PostgreSQL DB address as a value of the url parameter of the
privacy {storage {}} block.

If you do not want to enter the password each time when node is starting, create the
WE_NODE_QOWNER_PASSWORD and WE_NODE_OWNER_PASSWORD_EMPTY global variables in your OS.

Go to the website ‘<https:/ /support.wavesenterprise.com /servicedesk> and perform the registration.
Select the type of request “Participant connection” for legal or natural person.

Register on the resource by filling in all the required fields of the form. If you want to mine, check the
box Please grant mining rights.

Please, wait for the connection application consideration. You can start working in the “Waves Enter-
prise Partnernet” after successful registration.

Run the node after getting the application approve.

15.2.2 Examples of the “Waves Enterprise Partnernet” configuration files

You can read here about the node configuration.

94

Chapter 15. Mainnet and Partnernet connection


https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/blob/master/configs/partnernet.conf
https://support.wavesenterprise.com/servicedesk

Technical description of the Waves Enterprise platform, Release master

The accounts.conf file example

// accounts.conf listing

accounts-generator {
waves-crypto = yes
chain-id = P
amount = 1
wallet = ${user.home}"/node/keystore.dat"
wallet-password = "some string as password"
reload-node-wallet {
enabled = false
url = "http://localhost:6869/utils/reload-wallet"
}
}

The chain-id parameter contains the identification network byte, for the “Waves Enterprise Partnernet” in
is P. If you want to use the GOST cryptography specify the no value of the waves-crypto parameter inside
all the configuration files. Also install the CryptoPro JCP 2.0.40035 software before the node configuration.

You can find full info about installation here.

The api-key-hash file example

// api-key-hash.conf listing

apikeyhash-generator {
waves-crypto = yes
api-key = "some string"

}

The node configuration file example

node {
waves-crypto = yes
# Blockchain settings
blockchain {
type: CUSTOM
consensus.type = PoS
custom {
address-scheme-character: "P"
functionality {
feature-check-blocks-period = 1
blocks-for-feature-activation = 1
pre-activated-features { 1 = 0, 2=0,3=0,4=0,5=0,6=0,7=0,8=0,9
-0, 10 = 0 }
double-features-periods-after-height = 100000000
}
genesis {
average-block-delay: 60s
initial-base-target: 153722867
block-timestamp: 1559260800000
initial-balance: 1625000000000000
genesis-public-key-base-58: "8RbUBqKWWxLuVk49LgeE39y83LUTVp1zHEJwlMM7zKaMC"
signature:

Lﬂ“zaKzauxLubawz1byw5PnGALIoerUSidnoGAunonogGubb4suanCr4JySAvwoAmpuiqgggﬁﬂﬁgyéﬁqﬁg§q§ﬂ§§zU

"
—

15.2. Working inside the “Waves Enterprise Partnernet”

95



https://www.cryptopro.ru/sites/default/files/private/jcp/jcp-2.0.40035.zip

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

transactions = [
{ recipient: "3LWg4n6VmN6DKBSwGFlhwnaCzXdjMkQCFrn", amount: 1250000000000000 1},
{ recipient: "3LPPZNhakdm9ZPiGShNvWGCshFqsQXFjUQ1", amount: 300000000000000 },
{ recipient: "3LEpXfh7XmCRias92swo6LUJqyo9MA7SaFc", amount: 75000000000000 }
]
network-participants = [
{public-key: "CaFrRzAv7B3DrECR4i2Los1DwxHj4yKAEKCT3zEke9U4", roles: [permissioner,
—miner, connection_manager]},
{public-key: "Vxb6LQ8QtIAfs6VIuyiMbMN5qM2pm1EEcWdoZo3WmkN", roles: [miner,g
—permissioner]},
{public-key: "FmzyByBePwbKDjSdnYjwF9G12zGrQc7Gcr8WvQ5ybejC", roles: [miner]}
]
}
}
}
# Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value sy,
—INFO.
logging-level = DEBUG
# P2P Network settings
network {
# Network address
bind-address = "0.0.0.0"
# Port number
port = 6864
known-peers = [
"node0-partnernet.wavesenterprise.com:6864",
"nodel-partnernet.wavesenterprise.com:6864",
"node2-partnernet.wavesenterprise.com:6864"
]
# Node name to send during handshake. Comment this string out to set random mode name.
# String with IP address and port to send as external address during handshake. Couldy
—be set automatically <f uPnP ¢s enabled.
declared-address = "0.0.0.0:6864"

}

wallet {

file = "" #FILL
password = "" #FILL
}

# Privacy network settings: node owner address is used to sign handshakes
owner-address = "" #FILL

ntp {

fatal-timeout = "1 minute"
server = "pool.ntp.org"

}

# Matcher settings
matcher.enable = no

# Node's REST API settings
rest-api {

enable = yes

bind-address = "0.0.0.0"

port = 6862

api-key-hash = "" #api-key for all api #FILL
privacy-api-key-hash = "" #api-key for SendData apt #FILL
}

(continues on next page)

96

Chapter 15. Mainnet and Partnernet connection




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

# New blocks generator settings

miner {

enable = yes
interval-after-last-block-then-generation-is-allowed = 15d
quorum = 1

minimal-block-generation-offset = 200ms

}

# Anchoring

scheduler-service.enable = no

# For docker smart-contracts

docker-engine {

enable = yes

# Optional connection string to docker host

# docker-host = "uniz:///var/run/docker.sock”

# Optional string to node REST API if we use remote docker host
# node-rest-api = "https://clinton.weservices.com/node-0"
execution-limits {

timeout = 10s

memory = 512

memory-swap = 512

}

allow-net-access = yes

}

privacy {
# DB connection config
storage {

url = "" #FILL insert DB connection string here, ezample "jdbc:postgresql://db_
—hostname:5432/_____ Puser=_____________ &password=____"
driver = "org.postgresql.Driver"

profile = "slick.jdbc.PostgresProfile$"
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000

numThreads = 10

schema = "public"
migration-dir = "db/migration"
3

X

}

15.2. Working inside the “Waves Enterprise Partnernet”

97



Technical description of the Waves Enterprise platform, Release master

98 Chapter 15. Mainnet and Partnernet connection



CHAPTER
SIXTEEN

REST API

The Waves Enterprise blockchain platform provides an opportunity to interact with blockchain both in terms
of receiving data (transactions, blocks, balances, etc.) and in terms of writing information to blockchain
(signing and sending transactions) via RESTful API of the node. REST API allows users to interact remotely
with the node using requests and responses in JSON format. HTTPS protocol is using to work with API
and as an interface it is utilized the Swagger framework.

16.1 Node REST API methods

16.1.1 Activation

Hint: The rules for generating requests to the node are given in module How to use REST API.

GET /activation/status

Returns the activation status of the new functionality in the node(s).

Method Response:

{"height": 47041,
"votingInterval": 1,
"votingThreshold": 1,
"nextCheck": 47041,
"features": [
{”id": 1,
"description": "Minimum Generating Balance of 1000 WEST",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
{"id": 2,
"description": "NG Protocol",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
{"id": 3,
"description": "Mass Transfer Transaction",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },

(continues on next page)

99




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

{"id": 4,
"description": "Smart Accounts",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },

{"id": 5,
"description": "Data Transaction",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },

{"id": 6,
"description": "Burn Any Tokens",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },

{"id": 7’
"description": "Fee Sponsorship",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },

{"id": 8,
"description": "Fair PoS",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },

{"id": 9,
"description": "Smart Assets",
"blockchainStatus": "VOTING",
"nodeStatus'": "IMPLEMENTED",
"supportingBlocks": 0 },

{"id": 10,
"description": "Smart Account Trading",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 } ]

16.1.2 Addresses

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /addresses

Get all addresses of participants whose key pairs are stored in the node keystore.

Method Response:

L
"3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6AS" ,
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

100 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /addresses/seq/{from}/{to}

Gets all addresses of participants whose key pairs are stored in node keystore in the specified range.

Method Response:

[
"3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6AS" ,
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

GET /addresses/balance/{address}

Get the balance for the address {address}.
Method Response:

{
"address": "3N3keodUiS8WLEwOW4ABKDNxgNdUpwSnpb3K",
"confirmations": O,
"balance": 100945889661986

}

POST /addresses/balance/details

Get balances for the address list.

Method Query:

{

"addresses": [
"3N65yEf310jBZUvpu4lCo7n8D73 juFtheUJ", "3N11u447zghwjOMemYkrkt9vOxDaMwTYOnG"
]

GET /addresses/effectivebalance /{address} /{confirmations}

Get the balance for the address {address} after a number of confirmations > = value {confirmations}.
Returns the total balance of the participant, including assets transferred to the participant for the leasing.

Method Response:

{
"address": "3N65yEf310jBZUvpu4LCo7n8D73juFthelUJ",
"confirmations": 1,
"balance": 0

}

16.1. Node REST API methods 101




Technical description of the Waves Enterprise platform, Release master

GET /addresses/effectiveBalance/{address}

Get the effective balance of the specified address.
Method Response

{
"address": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"confirmations": O,
"balance": 1240001592820000

}

GET /addresses/balance /details /{address}

Returns detailed information about balance of address {address}.

Method Query:

{
"addresses": [
"3N65yEf310jBZUvpud4lCo7n8D73 juFtheUJ"
]
}

Method Response:

[
{
"address": "3N65yEf310jBZUvpu4lCo7n8D73juFthelUJ",
"regular": O,
"generating": 0,
"available": 0,
"effective": 0
}
]

Response Options
¢ Regular - total balance of participant, including assets transferred for leasing
 Available - total balance of participant, except for assets transferred for leasing

« Effective — total balance of participant, including assets transferred to participant for leasing (Available
+ assets transferred to you for leasing)

¢ Generating - minimum balance of participant, including assets transferred to participant for leasing,
for the last 1000 blocks (used for mining)

102 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /addresses/scriptinfo/{address}

Get information about the script installed on the address {address}.

Method Response:

{
"address": "3N3keodUiS8WLEwOW4BKDNxgNdUpwSnpb3K",
"script":

—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxYf3450cMRkRKFgzTtXXnnv7upRHXJzZrLS
n

"scriptText": "ScriptV1(BLOCK(LET (x,CONST_LONG(1)) ,FUNCTION_CALL (FunctionHeader (==,List (LONG,,,
—LONG)) ,List (FUNCTION_CALL (FunctionHeader (+,List (LONG, LONG)),List(REF(x,LONG), CONST_LONG(1)),
—LONG) , CONST_LONG(2)),BOOLEAN) ,BOOLEAN))",

"complexity": 11,

"extraFee": 10001

Ro8tUW6YMtEiZ

Response Options
* “address” - address in Base58 format
* “script” - Base64 representation of the script
* “scriptText” - source code of the script
* “complexity” - complexity of the script

» “extraFee” - fee for outgoing transactions set by the script

POST /addresses/sign/{address}

Returns the message encoded in BASE58 format signed by address private key {address}, stored in node
keystore. The message is first signed and then converted.

Method Query:

{
"message": "mytext"

}

Method Response:

{
"message": "wWshKhJj",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":
—"62PFG855ThsEHUZ4N8VE8kMyHCKOGWnvtTZ3hq6JHYv12BhPleR jegA6nSa3DAoTTMammhamadvizDUYZAZtKY9S"

16.1. Node REST API methods 103



Technical description of the Waves Enterprise platform, Release master

POST /addresses/verify /{address}

Validates signature of a message executed by address {address}, including the one created through POST
method/addresses/sign/{address}.

Method Query:

{
"message": "wWshKhJj",
"publickey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":
—"bkwwE9sDZzssoNaoBSJnb8RLqfYGt 1NDGbTWWXUeX8b9amRRIN3hr5£hs9vHBq6VES5ng4hqbCUoDEso(NauRRts"

Method Response:

{

"valid": true

POST /addresses/signtext/{address}

Returns a message signed by address private key {address} stored in the node keystore.

Method Query:

{
"message": "mytext"

}

Method Response:

{
"message": "message",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

—"bkVZfWfFmoYn38cJfNhkdct5WCyksMgQ7k jwHK7Z jnrzs 9OQYRWo6HuUJoGc8WRMozdYcAVIvo jInPpArgPvu2uc3u"

POST /addresses/verifytext/{address}

Validates signature of a message executed by address {address}, including the one created through the
POSTmethod /addresses/signtext/{address}.

Method Query:

{
"message": "message",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

—"6kVZfWfFmoYn38cJfNhkdct5WCyksMgQ7k jwHK7Z jnrzs 9QYRWo6HuUJoGec8WRMozdYcAVIvo jInPpArgPvu2uc3u"

104 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

Method Response:

{

"valid": true

GET /addresses/validate/{addressOrAlias}

Validates correctness of specified address or its alias {addressOrAlias} in a network blockchain of operating

node.

Method Response:

{
addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc",
valid: true

POST /addresses/validateMany

Checks the validity of addresses or aliases.

Method Query:

{
addressesOrAliases: [
"3HSVTt jim3FmV21HWQ1LurMhFz jut7AalAc",
"alias:T:asdfghjk",
"alias:T:1nvA1iDAl11ass99911% &$$$ "

Method Response:

{
validations: [

{
addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc",
valid: true

},

{
addressOrAlias: "alias:T:asdfghjk",
valid: true

},

{
addressOrAlias: "alias:T:1nvAliDAl11ass99911%°&$$$ ",
valid: false,

reason: "GenericError(Alias should contain only following characters:

—abcdefghi jklmnopqrstuvwxyz)"
}
]
}

-.0123456789@_

16.1. Node REST API methods

105




Technical description of the Waves Enterprise platform, Release master

GET /addresses/publicKey/{publicKey}

Returns participant address based on its public key.

Method Response:

{
"address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq"
}

GET /addresses/data/{address}

Returns all data recorded to address account {address}.

Method Response:

L
{
"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4GgilN36aWnY",
"type": "integer",
"value": 1500000
}
]

GET /addresses/data/{address}/{key}

Returns data recorded to address account {address} by key {key}.
Method Response:

{
"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4Ggi1N36aWwnY",
"type": "integer",
"value": 1500000

}

16.1.3 Alias

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /alias/by-alias/{alias}

Gets participant address by its alias {alias}.
Method Response:

{

"address": "address:3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"

106 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /alias/by-address/{address}

Gets alias {alias} of participant by its address {address}.
Method Response:

L
"alias:HUMANREADABLE1",
"alias:HUMANREADABLE2",
"alias:HUMANREADABLE3",
]

16.1.4 Anchoring

GET /anchoring/config

Hint: Rules of the creating requests to a node, see How to use REST API section.

Get the anchoring section of the node configuration file.

Method answer

{

"enabled": true,

"currentChainOwnerAddress": "3FWwx401177A40eHAEWS5EQ6Bkn4Lv48quYz",
"mainnetNodeAddress": "https://clinton-pool.weservices.com:443",
"mainnetSchemeByte": "L",

"mainnetRecipientAddress": "3JzVWCSV6v4ucSxtGSjZsvdiCT1FAzwpqrP",
"mainnetFee": 8000000,

"currentChainFee'": 666666,

"heightRange": 5,

"heightAbove": 3,

"threshold": 10

}

16.1.5 Assets

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /assets/balance/{address}

Returns balance of all address {address} assets.

Method Response:

{
"address": "3Mv61qe6egMSjRDZiiuvIDnf3Q1qWOtTZDB",
"balances": [
{

"assetId": "Ax9T4grFxx5m3KPUEK jMdnQkCKtBktf694wU2wJYvQUD",

(continues on next page)

16.1. Node REST API methods

107




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"balance": 4879179221,
"quantity": 48791792210,
"reissuable": true,

"minSponsoredAssetFee" : 100,
"sponsorBalance" : 1233221,
"issueTransaction" : {
"type" : 3,
}
},
{
"assetId": "49KfHPJcKvSAvNKwM7CTof jKHzL87SaSx8eyADBjvbWi",
"balance'": 10,
"quantity": 10000000000,
"reissuable": false,
"issueTransaction'" : {
"type" . 3’
}
}

Method Parameters:
e “Address” - participant address
¢ “balances” - object with participant balance
e “agsetld” - asset ID
¢ “balance” - asset balance
e “quantity” - number of issued assets
e “reissuable” - indicator whether asset can be reissued or not
e “issueTransaction” - asset creation transaction
* “minSponsoredAssetFee” - minimum value of fee for sponsorship transactions

* “sponsorBalance” - assets allocated for payment of sponsored asset transactions

GET /assets/balance/{address}/{assetld}

Returns address {address} balance by asset {assetId}.
Method Response:

{
"address": "3Mv6lqe6egMSjRDZiiuvJDnf3Q1qWOtTZDB",
"assetId": "Ax9T4grFxx5m3KPUEKjMdnQkCKtBktf694wU2wJYvQUD",
"balance": 4879179221

}

108 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /assets/details/{assetld}

Returns description of asset {assetId}.

Method Response:

{
"assetId" : "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ",

"issueHeight" : 140194,
"issueTimestamp" : 1504015013373,

"issuer" : "3NCBMxgdghg4tUhEEffSXy11L6hUi6fcBpd",
Ilnamell : "na.rﬂe" )

"description" : "Sponsored asset",

"decimals" : 1,

"reissuable" : true,

"quantity" : 1221905614,

"script" : null,

"scriptText" : null,

"complexity" : O,

"extraFee": O,
"minSponsoredAssetFee" 100000 // null assume no sponsorship, number - amount of assets fory
—minimal fee

}

GET /assets/{assetld}/distribution

Returns distribution of asset {assetId}.

Method Response:

{
"3P8GxcTEyZtG6LEfnnOknpOwu8uLKrAFHCb" : 1,

"3P2voHxcJg79cs j4YspNqlakepX8TSmGhTE" : 1200
}

POST /assets/balance

Returns the assets balance for one or few addresses.

Method Response

{
"3GLWx8yUFcNSL3DERSkZyE4TpyAyNiEYsKG": [,

"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn": []
}

16.1. Node REST API methods 109



Technical description of the Waves Enterprise platform, Release master

16.1.6 Blocks

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /blocks/height

Returns block number of current blockchain state.

Method Response:

{
"height": 7788
}

GET /blocks/height/{signature}

Returns height (number) of block by its signature.

GET /blocks/first

Returns contents of first block (genesis block).

GET /blocks/last

Returns contents of last block.

Method Response:

{
"version": 2,
"timestamp": 1479313809528,
"reference":
—"4MLXQDbARiJDEAoy5vZ8QYh1yNnDhdGhGWkDKna8J6(QXb7agVpFEi16hHBGUxxnq8x4myG4w66DR4Ze8FM5dh8G1",
"nxtconsensus": {
"basetarget": 464,
"generationsignature": "7WUV2TufaRAyjiCPFdnAWbn2Q7Jk7nBmWbnnDXKDEeJv"

}’
"transactions": [
{
"type": 2,
Ilid" .

—"64hxaxZvB9iD1cfRf1j8KPTXs4qE7SHaDWTZKoUvgfVZotaJUtSGabBxi86ufAfp5ifoNAGknBqS9CpxBKGORNVR",
"fee": 100000,
"timestamp": 1479313757194,
"signature":
—"64hxaxZvB9iD1cfRf1]j8KPTXs4qE7SHaDWTZKoUvgfVZotaJUtSGabBxi86uf Afp5ifoNAGknBqS9CpxBKGORNVR",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGA8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3N8UPtqiy322NVr1fLP7SaK1AaCU7oPaVuy",
"amount": 1000000000

(continues on next page)

110 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

] s
"generator": "3N5GRqzDBhjVXnCn44baHcz2GoZybqLxtTh",

"signature":
—"4ZhZdLAvaGneLU4K4b2eTgRQvbBjEZrtwolqAhM9ar3A3weGEutbfNKM4WI9JZnV8BXenx8 JRGVNwpf xf3prGaxd",

"fee": 100000,
"blocksize": 369

}

GET /blocks/at/{height}

Returns contents of block at height {height}.

GET /blocks/seq/{from}/{to}

Returns contents of blocks ranging from {from} to {to}.

GET /blocks/seqext/{from}/{to}

Returns contents of blocks with additional transactions info ranging from {from} to {to}.

GET /blocks/signature/{signature}

Returns contents of block by its signature {signature}.

GET /blocks/address/{address}/{from}/{to}

Returns all blocks generated (mined) by address {address}.

GET /blocks/child/{signature}

Returns block inherited from block with signature {signature}.

GET /blocks/headers/at/{height}

Returns block header at height {height}.

GET /blocks/headers/seq/{from}/{to}

Returns block headers ranging from {from} to {to}.

16.1. Node REST API methods 111



Technical description of the Waves Enterprise platform, Release master

GET /blocks/headers/last

Returns header of last block in the blockchain.

16.1.7 Consensus

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /consensus/algo

Returns type of consensus algorithm used on the network.

Method Response:

{
"consensusAlgo": "Fair Proof-of-Stake (FairPoS)"

}

GET /consensus/settings

Returns consensus settings specified in node configuration file.

Method Response:

{
"consensusAlgo": "Proof-of-Authority (PoA)",
"roundDuration": "25 seconds",
"syncDuration": "5 seconds",
"banDurationBlocks": 50,
"warningsForBan": 3

}

GET /consensus/minersAtHeight/{height}

Returns miner queue at height {height}.
Method Response:

{

"miners": [
"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",
"3N2EsS6hJPYgRn7WF JHLJNnrsm92sUKcXkd",
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF" ,
"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEdZNS"

1,

"height": 1

}

112 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /consensus/miners/{timestamp}

Returns miner queue at timestamp {timestamp}.

Method Response:

{

"miners": [
"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",
"3N2EsS6hJPYgRn7WF JHLJNnrsm92sUKcXkd",
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF "
"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEdZNS"

1,

"timestamp": 1547804621000

GET /consensus/bannedMiners/{height}

Returns a list of blocked miners at height {height}.
Method Response:

{

"bannedMiners": [],
"height": 1000

GET /consensus/basetarget/{blockld}

Returns value of ‘base complexity’ _ (basetarget) of creating block {blockId} .

GET /consensus/basetarget

Returns value of ‘base complexity’ (basetarget) of creating last block.

GET /consensus/generatingbalance/{address}

Returns generating balance available for minning node {address} - minimum participant balance including

assets transferred to participant for leasing, for last 1000 blocks.

GET /consensus/generationsignature/{blockld}

Returns value of ‘generation signature’ of generating block {blockId}.

16.1. Node REST API methods

113




Technical description of the Waves Enterprise platform, Release master

GET /consensus/generationsignature

Returns value of ‘generation signature’ of last block.

16.1.8 Contracts

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /contracts

Returns the contracts info.

Method Response

[
{
"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCqlCCh8i",
"image": "registry.wvservices.com/wv-sc/mayl4_1:latest",
"imageHash": "ff9b8af966b4c84e66d3847ab14e65f55b2c1f63afcd8b708b9948a814cb8957",
"version": 1,
"active'": false

POST /contracts

Returns some parameters for the one or more contract IDs specified in the query.

Method Response

{
"8vBJhy4eS80EwCHC3yS3M6nZd5CLBa6XNt4Nk3yEEEXG" : [
{
"type": "string",
"value": "Only description",
"key": "Description"
1,
{
"type": "integer",
"value": -9223372036854776000,
||keyll B Ilkey_mayﬂ
}
]
}

114 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /contracts/status/{id}

Returns the contract execution transaction status.

Method Response

[
{
"sender": "3GLWx8yUFcNSL3DERSkZyE4TpyAyNiEYsKG",
"senderPublicKey": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"txId": "4q5Q8vLeGBpcdQofZikyrr jHUS4pB1AB4qNEn2yHRKWU",
"status": "Success",
"code": null,
"message': "Smart contract transaction successfully mined",
"timestamp": 1558961372834,
"signature":
—"4gXy7qtzkaHHH6NkksnZ5pnv8 juF65Mv jQ9JgVztpgNwLNwuyyr27Db3gCh5YyADqZeBH72EyAkBouUoKvwJ3RQJ"
1,
}
"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"txId": "4q5Q8vLeGBpcdQofZikyrr jHUS4pB1AB4qNEn2yHRKWU",
"status": "Success",
"code": null,
"message': "Smart contract transaction successfully mined",
"timestamp": 1558961376012,
"signature":
—"3VhqcO9DvNhMvFFtWnBuV4XwQ62ZcTAVLNZYmeGc7mGzMcnGZ3RLshDs393fnQulWTh8CmL58Ynvn jyULEEiSyorV"
}
]

GET /contracts/{contractld}

Returns result of smart contract execution by its ID (contract creation transaction ID).

Method Response:

[
{
"key": "avg",
lltypell : "String” ,
"value": "3897.80146957"
1,
{
"key": "buy_price",
"type": "string",
"value": "3842"
}
]

16.1. Node REST API methods

115




Technical description of the Waves Enterprise platform, Release master

GET /contracts/executed-tx-for/{id}

Returns result of smart contract execution by ID of contract execution transaction.

Method Response:

{
"type": 105,
"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 500000,
"timestamp": 1549365523980,
"proofs": [

"4BoG6wQnYyZWyUKzAwh5n1184tsEWUQUTWmXMExvvCU95xgk4UFB8iCnHJ4Ghv Jm86REB69hKM7 s2WLAWTSXquAs"
1,
"version": 1,
"tx'e {
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",
"sender": "3N3YT;j1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR56Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,

"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619
},
"results": []

GET /contracts/{contractld}/{key}

Returns smart contract execution value by its ID (contract creation transaction ID) and key {key}.

Method Response:

{
"key": "updated",
"type": "integer",
"value": 1545835909
}

116 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

16.1.9 Crypto

Hint: The rules for generating queries to the node are given in module How to use REST API.

The description of text data encryption is presented in the subsection Encrypting text data in transactions.

Attention: Nodes of the 1.0 version and below use Base58 encoding to encrypt/decrypt text data.
Starting from the 1.0.2 version the Base64 encoding is used. If there are different versions of nodes in
the network, use the crypto methods as follows:

¢ In case of accepting data from newer version nodes by the older version node you need to convert
data from the encryptedText string from Base64 to Base58.

¢ In case of accepting data from older version nodes by the newer version node you need to convert
data from the encryptedText string from Base58 to Base64.

POST /crypto/encryptSeparate

Encrypts the text separately for the each recipient with the unique key.
Method Query

{
"sender": "3MCUfX4P4U56hoQwSqXnLJenB6cDkxBjisL",
"password": "some string as a password",
"encryptionText": "some text to encrypt",
"recipientsPublicKeys": [
—"BbR65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",
"9LopMj2GqWxBYgnZ2gxaNxuXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdquNtqzuDS8Zmn48w3S"]
}

Method Response

{
"encryptedText": "IZ5Kk5YNspMWl/jmlTizVxD6Nik=",
"publicKey":
—"BbR65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",
"wrappedKey" :

—"uWVoxJAzruwTDDSbphDS31T jSQX6CSWXivp3x34uE3XtnMqqK9swoaZ3LyAgFDR706CfkgzFkWmTen4qAZewPfBbwR"
1,
{

"encryptedText": "F9uO10RGvSEDe6dWmlpzJQ+3xqE=",

"publicKey":
—"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVgkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S",
"wrappedKey" :
—"LdzdoKadUzBTMwczGYgulAM4YrbbLrOUh1MvQ3MPcLZUhCD9herz4dvim6ssaVHPiBNUGgqKnLZ6Si4Cc64UvhXBbG"
}

16.1. Node REST API methods 117




Technical description of the Waves Enterprise platform, Release master

POST /crypto/encryptCommon

Encrypts the data with a single CEK key for all recipients and the CEK wraps into a unique KEK for the
each recipient.

Method Query

{
"sender": "3MCUfX4P4U56hoQwSqXnLJenB6cDkxBjisL",
"password": "some string as a password",
"encryptionText": "some text to encrypt",
"recipientsPublicKeys": [
—"BbR6b0Lxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFc jRHJ1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",
"9LopMj2GqWxBYgnZ2gxalNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdquNtqzuDS8Zmn48w3S" ]
}

Method Response

{

"encryptedText": "NpCCig2i3jzoOxBnfqjfedbti8Y=",

"recipientToWrappedStructure": {
"6R650Lxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc" :

"M8pAe8HnKiWLE1HsC1ML5t8b7giWxiHfvagh7Y3F7rZL8ql1tqMCIMYJo4qz4b3xjcuuliVs7tY3k705igb3Aw1Dkkw" ,
"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVgkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S" :

"Dogn6gPvBBeSu2vdwgFYMbDHM4knEGMbgPn8Np76mNRRoZXLDioofyVbSSaTTEr4cviwzEwVMugiy2wuzFWk3zCiT3"

}

}

POST /crypto/decrypt

Decrypts the data. The decryption is available only if the message recipient’s key is in the node’s keystore.

Method Query

{
"recipient": "3MbF8B1qxSY1W6kA2ZnQiDB4JTGz9W1jvQy",
"password": "some string as a password",
"encryptedText": "o0iKFJijfid8HkjsjdhKHhud987d",
"wrappedKey": "M5F8B1qxSY1W6kA2ZnQiDB4JTGzA2ZnQiDB4JTGz9W1jvQy"
"senderPublicKey": "M5F8B1qxSY1W6kA2ZnQiDB4JTGzA2ZnQiDB4JTGz9W1jvQy",

Method Response

{
"decryptedText": "some string for encryption",

}

118 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

16.1.10 Leasing

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /leasing/active/{address}

Returns list of lease creation transactions, in which {address} was involved as sender or recipient.

Method Response:

[
{

"type": 8,
"id": "2jWhz6uGYsgvfoMzNRSEEGdi9eafyCA2zLFfkMANPETT",
"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",
"senderPublicKey": "DWONKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",
"fee": 100000,
"timestamp": 1544390280347,
"signature":

" 25kpwh7nY jRUtfbAbWYRYyMDPCUCoyMoUuWTJ6vZQrXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD" ,
"version": 1,
"amount": 31377465877,
"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqalLtZcyzH",
"height": 1298747

"type" : 8,
"id": "2jWhz6uGYsgvfoMzNRBEEGdi9eafyCA2zLFfkM4NP6TT",
"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",
"senderPublicKey": "DWONKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",
"fee": 100000,
"timestamp": 1544390280347,
"signature":

—"25kpwh7nY jRUt£bAbWYRYMDPCUCoyMoUuWTJ6vZQrXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD" ,
"version": 1,
"amount": 31377465877,
"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqalLtZcyzH",
"height": 1298747

}

16.1. Node REST API methods 119



Technical description of the Waves Enterprise platform, Release master

16.1.11 Node

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /node/config

Returns main node configuration parameters.

Method Response:

{

"version": "0.6.6",

"waves-crypto": false,

"chainId": "D",

"consensus'": "P0OS",

"minimumFee": {
"1t 0,
"3": 100000000,
"4": 100000,
"5": 100000000,
"6": 100000,
"7": 300000,
"g": 100000,
"9": 100000,
"10": 100000,
"11": 100000,
"12": 100000,
"13": 1000000,
"14": 100000000,
"15": 100000000,
"102": 0

}

}

POST /node/stop

Query stops node.

GET /node/status

Returns main node configuration parameters.

Method Response:

{
"blockchainHeight": 47041,
"stateHeight": 47041,
"updatedTimestamp": 1544709501138,
"updatedDate": "2018-12-13T13:58:21.138Z"
}
120

Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /node/version

Returns version of application.

Method Response:

{

"version": "Waves Enterprise v0.9.0"

}

16.1.12 Peers

Hint: The rules for generating queries to the node are given in module How to use REST API.

POST /peers/connect

Request to connect a new host to the node.

Method Query:

{
"host":"127.0.0.1",
"port":"9084"

Method Response:

{
"hostname": "localhost'",
"status": "Trying to connect"

}

GET /peers/connected

Returns a list of connected nodes.

Method Response:

{
"peers": [
{
"address": "52.51.92.182/52.51.92.182:6863",
"declaredAddress": "N/A",
"peerName": "zx 182",
"peerNonce": 183759

"address": "ec2-52-28-66-217.eu-central-1.compute.amazonaws.com/52.28.66.217:6863",
"declaredAddress": "N/A",

"peerName": "zx 217",

"peerNonce": 1021800

(continues on next page)

16.1. Node REST API methods 121




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

GET /peers/blacklisted

Returns a list of blocked nodes (at the network level).

GET /peers/all

Returns a list of all known nodes.

Method Response:

{
"peers": [
{
"address'": "/13.80.103.153:6864",
"lastSeen": 1544704874714
}
]
}

POST /peers/clearblacklist

Clears the list of blocked nodes.
Method Query:
No need to transfer object of query.

Method Response:

{
"result": "blacklist cleared"

}

GET /peers/suspended

Returns a list of suspended nodes.

Method Response:

L
{
"hostname": "/13.80.103.153",
"timestamp": 1544704754619
}
]
122 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

POST /peers/identity

Gets the public key of the peer which is used by the node for the connection and the confidential data
transfer.

Method Query:

{

"address": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6AS",

"signature":
—"6RwWMUQcwrxtKDgM4ANes9AmuSEJgyfFOBo6nTpXyD89ZKMAcpCMI7igbWf2MmLXLdgNxdsUc68fd5TyRBEB6ngf "
}

Parameters:

¢ address - the blockchain address corresponding to the “privacy.owner-address” parameter in the node
configuration file;

* signature - electronic signature of the “address” field value.

Method Response:

{
"publicKey": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGA8"

}

Parameters:

¢ publicKey - the peer public key associated with “privacy.owner-address” parameter in the configuration
file. This parameter does not appear if the mode of the handshake checking turned off.

GET /peers/hostname/{address}

Gets the hostname and IP Address of the node by its address in the Waves Enterprise net.
Method Response:

{

"hostname": "nodel.we.io",
"ip": "10.0.0.1"

GET /peers/allowedNodes

Gets the actual list of allowed participants at the request moment.

Method Response:

{
"allowedNodes": [
{
"address": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"publicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxuaJyrgsLk5VY"
1,
{

"address": "3JLp8wt7rEUdn4CcabHp9jZ7w8T5XDAKicd",
"publicKey": "J3ffCciVu3sustgb5vxmEHczACMR89Vty5ZBLbPnoxyg"

(continues on next page)

16.1. Node REST API methods 123




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

},
{
"address": "3JRY1lcp7atRMBd8QQoswRpH7DLawM5Pnk3L",
"publicKey": "5vn4UcB9En1XgY6w2N6e9W7bqFshG4SL2RLFqQEWEbWxG"
}
1,

"timestamp": 1558697649489
}

16.1.13 Permissions

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /permissions/{address}

Returns roles (permissions) assigned to specified address {address} which are valid at the moment.

Method Response:

{
"roles": [
{
"role": "miner"
1,
{
"role": "permissioner"
}
1,
"timestamp": 1544703449430
}

GET /permissions/{address}/at/{timestamp}

Returns roles (permissions) assigned to specified address {address} which are valid at the moment {times-
tamp}.

Method Response:

{
"roles": [
{
"role": "miner"
1,
{
"role": "permissioner"
}
1,
"timestamp": 1544703449430
}

124 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

POST /permissions/addresses

Returns roles (permissions) assigned to specified address list which are valid at the moment.

Method Query:

{
"addresses": [
"3N2cQF{fUDzG2iujBrFTnD2TAsCNohDxYu8w", "3Mxb5sDg4NXeflBRzJRAofa3orYFxLanxmd7"
]1
"timestamp'": 1544703449430
}

Method Response:

{
"addressToRoles": [
{
"address": "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"roles": [
{
"role": "miner"
},
{
"role": "permissioner"
}
]
},
{
"address": "3MxbsDq4NXef1BRzJRAofa3orYFxLanxmd7",
"roles": [
{
"role": "miner"
}
1
}
1,
"timestamp": 1544703449430
}
16.1.14 PKI

Warning: The PKI methods can be used only with GOST cryptography.

Digital signature formats listed in the table below is used in PKI. The digital signature number in the table
is consistent for the sigType field value.

Table 1: Digital signature formats

# Digital signature format
1 CAdES-BES

2 CAdES-X Long Type 1
3 CAdJES-T

16.1. Node REST API methods 125




Technical description of the Waves Enterprise platform, Release master

POST /pki/sign

Hint: The rules for generating queries to the node are given in module How to use REST API.

This method creates a detached digital signature. inputData is data for generating a digital signature as an
array of bytes in the Base64 coding, keystoreAlias is a name of the key container of the digital signature
private key. Also you need to specify a password in the password string.

Request example

{

"inputData" : "SGVsbG8gd29ybGQh",
"keystoreAlias" : "keyl",
"password" : "password",

"sigType" : "CAdES_X_Long_Type_1",
}

Answer example

{
"signature" :
—"c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmt qaGdmamtkZmdoZmdkc2doZmQ jsnd jfvnksdnjfn="
}

GET /pki/keystoreAliases

This method returns all the keystore aliases based on the GOST cryptography.

Answer example

{

[

"3Mq9crNkTF£8oRPyisgtf4T jBvZxo4BL2ax",

"e19a135e-11£7-4£0c-9109-a3d1c09812e3"
]
}

POST /pki/verify

This method checks the detached digital signature for the sent data. The extendedKeyUsageList is optional
and may contain an array of object identifiers - OID. It is useful for the determination of the scope of the
certificate. Any node with query parameters can check the certificate.

Request example

{
"inputData" : "SGVsbG8gd29ybGQh",
"signature" : "c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmtqaGdmamtkZmdoZmdkc2doZmQ=",
"sigType" : "CAdES_X_Long_Type_1",

"extendedKeyUsageList": [
"1.2.643.7.1.1.1.1",
"1.2.643.2.2.35.2"

]

}

126 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

Answer example

{
"sigStatus" : "true"

}

Working with POST /pki/verify method

Using API Post /pki/verify method you can verify qualified digital signature. You need to install the root
certificate on the node for proper using of API Post /pki/verify. The CA root certificate uniquely identifies
the certification authority and is the basis in the chain of trust.

How to install a root certificate on a node

The root certificate is installing into the following Java directory:

-keystore /Library/Java/JavaVirtualMachines/jdk1.8.0_191.jdk/Contents/Home/jre/1ib/
—»security/cacerts

The default password for the Java cacerts certificate store is changeit. You can change the password if you
wish. Install certificates using the following command:

sudo keytool -import -alias testAliasCA_cryptopro -keystore /Library/Java/
—»JavaVirtualMachines/jdk1.8.0_191. jdk/Contents/Home/jre/lib/security/cacerts -file ~/
—Downloads/cert.cer

16.1.15 Privacy

Hint: Rules of the creating requests to a node, see How to use REST API section.

POST /privacy/sendData

Writing the confidential data to the node store.
Method request:

{
"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHdKUgEytUUz",
"password": "apgJP9atQccdBPA",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
|ltypell: |lfi1e|l’

"info': {
"filename":"Service contract #100/5.doc",
"size": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "some comments"
},

(continues on next page)

16.1. Node REST API methods 127




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"data":
—"TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGI5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlzIHNpbmd1bGFyIHBhc3Npb

"
—

"hash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta"

R4gZnJvbSBvdGhl

Parameters:

* sender - blockchain address for data broadcast (corresponds the “privacy.owner-address” parameter
value in the node configuration file);

¢ password - access password to the private key of the node keystore;
¢ policyld - the group ID managing data forwarding;

 type - the type of the data;

* info - the information about the data;

¢ data - binary data;

* hash - data hash.

Method answer:

{
"senderPublicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxualyrgsLksVy",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHdKUgEytUUz",
"dataHash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta",
"proofs": [
"2jM4tw4uDmspuXUBt6492T7 opuZskYhFGWIgkbq532BvLYRF6RIn3hVGNLUMLK8JSM61GkVgYvYJg9UscAayEYfc"
1,
"fee": 110000000,
"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQ5aa",
"type": 114,
"timestamp": 1571043910570

GET /privacy/{policy-id} /recipients

Getting all addresses of participants, signed to the access group {policy-id}.

Method answer:

L

"3NBVqYXrapgJP9atQccdBPAg JPwHDKkh6AS",
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

128 Chapter 16. REST API



Technical description of the Waves Enterprise platform, Release master

GET /privacy/{policy-id}/getHashes

Getting all addresses of participants, signed to the access group {policy-id}.

Method answer:

[
"3GCFaCWtvLDnCOyX29YftMbn75gwfdwGsBn",
"3GGxcmNyq8ZAHzK7 or14Ma84khwWW8peBohJ",
"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn",
"3GKpShRQRTddF1yYhQ58ZnKMTnp2xdEzKqW"

GET /privacy/{policy-id}/getHashes

Getting the array of identified hashes which are written with association to the {policy-id}.

Method answer:

[
"FdfdNBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",
"eedfdNBVqYXrapgJP9atQccdBPAgJPwHDKKhGA"
]

GET /privacy/getData/{policy-item-hash}

Getting the confidential data package by its identified hash.

Method answer:

c29tZV9iYXN1INjRfZW5 jb2R1ZF9zdHJpbmc=

GET /privacy/getInfo/{policy-item-hash}

Getting the metadata for the confidential data package by the identified hash.

Method answer:

{
"sender": "3HYW75PpAeVukmbYo9P(3mzSHAKUgEytUUz",
"policy": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
Iltypell: Ilfilell’

"info": {
"filename": "Contract ¥k100/5.doc",
"size'": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "Comment"

},

"hash": "e67ad392ab4d933f39d5723aeed96c18c491140e119d590103e7£d6de15623£1"
}

16.1. Node REST API methods

129




Technical description of the Waves Enterprise platform, Release master

POST /privacy/forceSync

Forced getting the confidential data package by the identified hash.

Method answer:

{

"result": "success" // or "error'

"message": "Address '3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8' not in policy 'policyName'"
}

POST /privacy/getlnfos

Getting the meta information array about private data according with the provided group ID and data hash.

Request example:

{ "policiesDataHashes":

[
{
"policyId": "somepolicyId_1",
"datahashes": [ "datahash_1",'"datahash_2" ]
},
{
"policyId": "somepolicyId_2",
"datahashes": [ "datahash_3",'"datahash_4" ]
}
]
}

Method answer:

{
"policiesDataInfo': [
{
"policyId":"somepolicyId_1",
"datasInfo": [
{
"hash":"e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7fd6de15623f1",
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,
"type":"file",
"info":{
"filename":"Contract ¥100/5.doc",
"size'":2048,
"timestamp":1000000000,
"author":"AIvanov@Qorg.com",
"comment":"Comment"

"hash":"e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7fd6de15623f1",
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,

lltyPeH . llfilell .

"info":{

(continues on next page)

130 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"filename":"Contract ¥101/5.doc",
"size'":"2048",
"timestamp":1000000000,
"author":"AIvanov@org.com",
"comment":"Comment"

16.1.16 Transactions

Hint: The rules for generating node queries are given in module How to use REST API.

GET /transactions/info/{id}

Query transaction information by its ID.

Query Parameters:

"id" - Transaction ID

Method Response:

{
"type" . 4’
"id": "52GG9U2e6foYRKp5vAzsT(86aDAABfRI7synz7ohBp19",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGA8",
"assetId": "E9yZC4cVhCDfbjFJCc9CqkAtkoFybKaCe64iaxHM2adG",
"amount": 100000,
"fee": 100000,
"timestamp": 1479313236091,
"attachment": "string",
"signature":

—"GknccUA79dBcuWgKjqB7vYHcns j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNKHEOA jtsUm",
"height": 7782

}

16.1. Node REST API methods 131




Technical description of the Waves Enterprise platform, Release master

GET /transactions/address/{address} /limit/{limit}

Returns latest {limit} transactions from address {address}.

Method Response:

[

"type": 2,

Ilidll .
—"4XE4M9eSoVWVdHwDYXqZsXhEc4q8PHOMDMUBegCSBBVHIyP2Yb1Z0Gi59c1Qzq2TowLmymLNkFQjWp95CdddnyBW" ,

"fee": 100000,

"timestamp": 1479313097422,

"signature":
—"4XE4M9eSoVWVdHWDYXqZsXhEc4q8PHOmDMUBegCSBBVHIyP2Yb1Z0Gi59¢c1Qzq2TowLmymLNkFQjWp95CdddnyBW" ,

"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGAS",

"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",

"recipient": "3N9iRMou3pgmyPbFZn5QZQvBTQBkL2fR6R1",

"amount": 1000000000

GET /transactions/unconfirmed

Returns all unconfirmed transactions from node utx-pool.

Method Response:

[
{

"type": 4,
"id": "52GGIU2e6foYRKp5vAzsT(86aDAABfRJ7synz7ohBp19",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkhGA8",
"assetId": "E9yZC4cVhCDfbjFJCcI9CqkAtkoFybKaCe64iaxHM2adG",
"amount": 100000,

"fee": 100000,

"timestamp": 1479313236091,
"attachment": "string",
"signature":

—"GknccUA79dBcwWgKjqB7vYHcns j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNkHEOA jtsUm"
}
]

132 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

GET /transactions/unconfirmed/size

Return the number of transactions available in UTX pool.

GET /unconfirmed/info/{id}

Query transaction details from UTX pool by its ID.

POST /transactions/calculateFee

Calculates fee amount for transferred transaction.

Query Parameters

"type" - Tramsaction type

"senderPublicKey" - Public key of sender

"sender'" is ignored

"fee" is ignored

and all the other parameters appropriate for a transaction of the given type.

Method Query

{
"type": 10,
"timestamp": 1516171819000,
"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
"alias": "ALIAS",

}
or
{
"type": 4,
"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
"recipient": "3P8JYPHrnXSfsWP1LVXySdzU1P83FElssDa",
"amount": 1317209272,
"feeAssetId": "S8LQW8f7P5d5PZM7GtZEBgaqRPGSzS3DfPuiXrURJ4AJS",
"attachment": "string"
}

Method Response

{
"feeAssetId": null,
"feeAmount": 10000

or

"feeAssetId": "S8LQW8f7P5d5PZM7GtZEBgaqRPGSzS3DfPuiXrURJ4AJS",
"feeAmount": 10000

16.1. Node REST API methods

133




Technical description of the Waves Enterprise platform, Release master

POST /transactions/sign

Signs a transaction with sender’s private key stored in node keystore. After signing, method response must
be sent to method input Broadcast.

It is necessary to enter the password into the password field in order to sign requests with the key from
keystore node.

Sample queries

o

Transaction type

Issue

Transfer

Reissue

Burn

Exchange

Lease

Lease Cancel

Alias

Mass Transfer

Data

Set Script

Set Sponsorship

101 | Permission (for Genesis block)
102 | PermissionTransaction
103 | CreateContractTransaction
104 | CallContractTransaction
105 | EzecutedContractTransaction
106 | DisableContractTransaction
110 | GenesisRegisterNode Transaction
111 | RegisterNode Transaction
112 | CreatePolicy Transaction
113 | UpdatePolicy Transaction
114 | PolicyDataHash Transaction

O 00| O Ut x| W

— =
=

—
[\]

—
w

—_
~

3. Issue

{
"type": 3,
"version":2,
"name": "Test Asset 1",
"quantity": 100000000000,
"description": "Some description",

"sender": "3FSCKyfFo3566zwilJjSFLBwKvd826KXUagR",
"decimals": 8,

"reissuable'": true,

"fee": 100000000

4. Transfer

134 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

{
"type": 4,
"version": 2,
"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimzZX",
"password": "",
"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",
"amount": 40000000000,
"fee": 100000
}
10. Alias
{
"type": 10,
"version": 2,
"fee": 100000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"alias": "hodler"
}
12. Data
{
"type": 12,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8vOoB7bsy2AY56CUopa6H3",
"author": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"data":
L
{
"key": "objectId",
"type": "string",
"value": "obj:123:1234"
}
1,
"fee": 100000
}

13. Set Script

{
"type": 13,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"fee": 1000000,
"name": "faucet",
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="

102. PermissionTransaction

Sample query

{
"type":102,
"sender" :"3GLWx8yUFcNSL3DERSkZyE4TpyAyNiEYsKG" ,

(continues on next page)

16.1. Node REST API methods 135



Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"senderPublicKey":"4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"fee":0,

"proofs":[""],

"target":"3GPtjbosoYqHpyfmsFv7BMiyKsVzbGlykfL",

llopTypell : lladdll .

"role":"contract_developer",

"dueTimestamp" :null

103. CreateContractTransaction

Sample query

{

"type": 103,

"sender" :"3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58" ,
"image":"localhost:5000/sum-contract-kv",

"params":[],

"imageHash": "930d18dacb4f49e07e2637a62115510f045dab5cal16b9c7c503486828641d662",
"fee":500000

Sample response

{

"type": 103,

"id": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqghbwTXvJeYGo2",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNVOGrdauNpgdWXLsq",

"fee": 500000,

"timestamp": 1549443811183,

"proofs": [
"YSomSCKBhQWHKHR8£8ZMp7EzuA6UouuloqbWA5VDiZ802adL4XMQP3jgccket jGCEpnTnC jm5bABZG486CVREZM"

1,

"version": 1,

"image": "localhost:5000/sum-contract-kv",

"imageHash": "930d18dacb4f49e07e2637a62115510£045dabbcal6b9c7c503486828641d662",

"params': []

104. CallContractTransaction

Sample query

{

"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",

"fee": 10,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"type": 104,
"version": 1,
"params": [
{
"type": "integer",
Ilkeyll: Ilall,
"value": 1
1,
{

(continues on next page)

136 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"type": "integer",
Ilkeyll : Ilbll s
"value": 100

Sample response

{
"type": 104,
"id": "9fBrL2nb5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,
"timestamp": 1549365736923,
"proofs": [
"294cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v"
1,
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghb5wTXvJeYGo2",
"params": [
{
Ilkeyll B llall R
"type": "integer",
"value": 1
1,
{
"key": "b",
"type": "integer",
"value": 100
}

105. ExecutedContractTransaction

Sample response

{

"type": 105,

"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 500000,

"timestamp": 1549365523980,

"proofs": [
"4BoG6wQnYyZWyUKzAwhbn1184tsEWUqQUTWmXMExvvCU95xgk4UFB8iCnHJ4Ghv Jm86REB69hKM7s2WLAWTSXquAs"

1,

"version": 1,

"tx": A
"type": 103,
"id": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 500000,

(continues on next page)

16.1. Node REST API methods 137




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"timestamp": 1549365501462,
"proofs": [
"2ZK1YlecfQXeWsS5sfcTLMbW1KA3kwi9Up2H72z3Q6yVzMeGxT9xWIT6 jREQsmuDBcvk3DCCiWBdFHaxazU8pbo41"
1,
"version": 1,
"image": "localhost:5000/contract256",
"imageHash": "930d18dacb4f49e07e2637a62115510£045dab5cal16b9c7c503486828641d662",
"params': []
1,

"results": []

106. DisableContractTransaction

Sample query

{
"senderPublicKey":
—"427j4GA89Z2SncgzpxoocmWZChrpghDGVKcJUctAGWIB20STQrZCQyzbvriDSFubZmCBsFutDyg9ES6WqqULyV5e",
"contractId":"Fz3wqAWWcPMT4M1q6H7 crLKtToF JvbelLSvqjaU4ZwMpg",

"fee":0,
"timestamp":1549474811381,
"proofs": [

"4Dny2XwkXmoLN7emoqdFdjvvKdgnCBuA3XwGgBiWNkZBFXDpRfz36Cyp2Cbp jrLBadCnuobbkK5wyM41FGU6yp6h"
]’
"type":106

Sample response

{
"type" : 106,
"id" : "BwcVQeC9CdmeYxiWydc5NK1MSgqPqQmWYy4PJ6eqZDtP",
"sender" : "3HhXnbMuZAaCRr9LOhWSKwfNrcDR6CThJVB",
"senderPublicKey"
—"427j4GA89Z2SncgzpxoocmWZChrpghDGVKcJUctAGWIB20STQrZCQyzbvriDSFubZmCBsFutDyg9ES6WqqULyV5e",
"fee" : 0,
"timestamp" : 1549474811381,
"proofs" : [
—"4Dny2XwkXmoLN7emoqdFd jvvKdgnCBuA3XwGgBiWNkZBFXDpRfz36Cyp2CbpjrLBadCnuobbkK5wyM41FGU6yp6h" 1,
"version" : 1,
"contractId" : "Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4Zulipg"

110. GenesisRegisterNode

Sample query

{
"type": 110,
"id": "2Xgbsqgfbp5fig4nsaloTkQsXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmIMgYLpvwynbxHPTFpFEfFdyLpJ",
"fee": O,
"timestamp": 1489352400000,
"signature":
—"2Xgbsqgfbpbfig4nsaAoTk(sXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmIJMgYLpvwynbxHPTFpFEfFdyLpJ",
"targetPublicKey": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"target": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj"

138 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

Sample response

{
"signature":
—"2Xgbsqgfbpbfig4nsaAoTk(sXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmIMgYLpvwynbxHPTFpFEfFdyLpJ",
"fee": O,
"id": "2Xgbsqgfbp5fig4nsaloTkQsXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmIMgYLpvwynbxHPTFpFEfFdyLpJ",
"type": 110,
"targetPublicKey": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"timestamp": 1489352400000,
"target": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"height": 1
}

111. RegisterNode
Sample query

{
"type": 111,
llopTypell : lladdll .
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz",
"targetPubKey": "apgJP9atQccdBPAgJPwH3NBVqYXrapgJP9atQccdBPAgJPwHapgJP9atQccdBPAgJPwHDKkh6AS",
"nodeName": "Node #1",
"fee": 500000,
"timestamp": 1557239100
}

112. CreatePolicy

Sample query

{
"type":112,
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,
"description": "Policy for rusal internal nodes",
"policyName": "Policy name",
"timestamp": 1000000000,
"recipients": [ "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc", "3HYW75PpAeVukmbYo9P(Q3mzSHdKUgEytUUz" ],
"owners": [ "3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz", "3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ]
}

113. UpdatePolicy
Sample query

{

"type":113,

"policyId": "45n2BC8TmobhH7zbog8ZsR1imcHSd1uU84UvWE0oSbqQBH", // id of the ewisting policyy
—otherwise 1t occurs the error "Object with policyld = <reqest 1d> does not exzist"”

"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,

"timestamp": 1000000000,

"opType": "add", // or "remove" when removing participants from policy

"recipients": [ "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc", "3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz" ],

"owners": [ "3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz", "3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ]

114. PolicyDataHash
Sample query

16.1. Node REST API methods 139




Technical description of the Waves Enterprise platform, Release master

{

"type":114,

"sender" :"3HYW75PpAeVukmbYo9P(Q3mzSHAKUgEytUUz",

"timestamp": 1000000000,

"policyId": "45n2BC8TmobhH7zbog8ZsR1mcHSd1uU84UvWE0SbqQBH",

"hash": "ad2a814482df0dd0d2cf6321f535be720caa7b3aal1289b0575£60d7a5e109631",
}

POST /transactions/broadcast

Sends a signed transaction to blockchain.

Method Query

{

"type":10,

"senderPublicKey" :"G6h72icCSjdW2A89QWDb37hyXJoYKq3XuCUJY2joS3EU",

"fee":100000000,

"timestamp":46305781705234713,

"signature":
—"4gQyPXzJFEzMbsCd9ubn3B2WauEc4172ssyrXCL882oNa8NfNihnpKianHXrHWnZs1RzDLbQ9rcRYnSqxKWfEPJG",
"alias":"dajzmj6gfuzmbfnhamsbuxivc"

}

Method Response

{

"type":10,

"id":"9q7X84wFuVvKqRdDQeWbtBmpsHt9SXFbvPPtUuKBVxxr",
"sender":"3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
"senderPublicKey":"G6h72icCSjdW2A89QWDb37hyXJoYKq3XuCUJY2joS3EU",

"fee":100000000,

"timestamp":46305781705234713,

"signature":

—"4gQyPXzJFEzMbsCd9ubn3B2WauEc4172ssyrXCL882oNa8NfNihnpKianHXrHWnZs 1RzDLbQ9rcRYnSqxKWfEPJG",
"alias":"dajzmj6gfuzmbfnhamsbuxivc"

}

140 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

16.1.17 Utils

Hint: The rules for generating queries to the node are given in module How to use REST API.

POST /utils/hash/secure

Returns secure (double) hash of specified message.

Method query:

ridethewaves!

Method response:

{

"message": "ridethewaves!",
"hash": "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tClzjjLXqsu"
}

POST /utils/hash/fast

Returns hash of specified message.

Method query:

ridethewaves!

Method response:

{

"message": "ridethewaves!",

"hash": "DJ35ymschUFDmgCnDJewjcnVExVkWgX7mJDXhFy9X8o0Q"
}

POST /utils/script/compile

Response parameters:

"script" - ckpunr B dopmMaTe Base64
"complexity" - CIOXHOCTB CKpHITa
"extraFee" - xoMmccua 3a HCXoIAmue TPaH3aKIWK, yCTAHOBJIEHHHE CKPHUIITOM

Method query:

let x = 1
(x + 1) == 2

Method response:

16.1. Node REST API methods

141




Technical description of the Waves Enterprise platform, Release master

"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£3450cMRkRKFgzTtXXnnv7upRHXJzZrLS

n
'y

"complexity": 11,
"extraFee": 10001

Ro8tUW6YMtEiZ

or

Method query:

x == 1

Method response:

{
"error": "Typecheck failed: A definition of 'x' is not found"

}

POST /utils/script/estimate

Decoding base64 script.
Method query:

AQQAAAABeAAAAAAAAAAAAQKAAAAAAAACCQAAZAAAAATFAAAAAXgAAAAAAAAAAAEAAAAAAAAAAATJdecYi

Method response:

{
"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£3450cMRkRKFgzTtXXnnv7upRHXJzZrLS

n
'y

"scriptText": "FUNCTION_CALL (FunctionHeader (==,List(LONG, LONG)),List(CONST_LONG(1), CONST_
—LONG(2)) ,BOOLEAN) ",

"complexity": 11,

"extraFee": 10001

Ro8tUW6YMtEiZ

GET /utils/time

Returns current node time.

Method response:

{
"system": 1544715343390,
"NTP": 1544715343390

142 Chapter 16. REST API



Technical description of the Waves Enterprise platform, Release master

POST /utils/reload-wallet

Reloads node keystore. Runs if new key pair was created in keystore without restarting node.

Method response:

{

"message": "Wallet reloaded successfully"

}

16.2 Authorization service REST API methods

You can read more about working with REST API in this section. The authorization service REST API
methods are accessed via HT'TPS protocol. Methods are closed by authorization and are marked with the

icon.

16.2.1 GET /status

Getting the authorization service status.

Method answer

{
"status": "OK"
}

16.2.2 POST /v1/user

Registering a new user.

Method request

{
"username": "string",
"password": "string",
"locale": "string"
1

Method answer

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
1

16.2. Authorization service REST APl methods

143




Technical description of the Waves Enterprise platform, Release master

16.2.3 GET /v1/user/profile

Getting user data.

Method answer

{
"id": "string",
"name": "string",
"locale": "en",
"addresses": [
"string"
1,
"roles": [
"string"
]
}

16.2.4 POST /v1/user/address

Getting an user address.

Method request

{

"address": "string",
"type": "string"
X

Method answer

{

"addressId": "string"

}

16.2.5 GET /v1/user/doesEmailExist

Checking an user email address.

Method answer

{

"exist": true

}

144

Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

16.2.6 POST /v1/user/password/restore

Restoring an user account password.

Method request

{
"email": "string"

}

Method answer

{
"email": "string"

}

16.2.7 POST /v1/user/password/reset

Reseting an user password.

Method request

{
"token": "string",
"password": "string"

}

Method answer

{
"userId": "string"

}

16.2.8 GET /v1/user/confirm/{code}

Entering a confirmation code to reset an user account password.

16.2.9 POST /v1/user/resendEmail

Resending a password recovery code to the specified email address.

Method request

{
"email": "string"

}

Method answer

{
"email": "string"

}

16.2. Authorization service REST APl methods

145




Technical description of the Waves Enterprise platform, Release master

16.2.10 POST /v1/auth/login

Registering a new user in the authorization service.

Method request

{
"username": "string",
"password": "string",
"locale": "string"
1

Method answer

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
}

16.2.11 POST /v1/auth/token

Registering external services and applications in the authorization service.

Method request

{
"token": "string"

}

Method answer

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
X

16.2.12 POST /v1/auth/refresh

Getting a new refresh token.

Method request

{
"token": "string"

}

Method answer

146 Chapter 16. REST API



Technical description of the Waves Enterprise platform, Release master

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
}

16.2.13 GET /v1/auth/publicKey

Getting the authorization service public key.

Method answer

MIICIjANBgkqhkiGOwOBAQEFAAOCAg8AMIICCgKCAGEATA90]/ZQTkk jf4UuMfUu
QIFDTYxYf6QBKMVJIng/wXyPYYkV8HVFYFizCaEciv3CXmBH77sXnuT1rEtvK7zHB
KvV870HmZuazjIgZVSkOn0Y7F8UUVNXnl1zVD1dPs0GJ60rM41DnC1W65mCrP3bjn
£V4RbmykN/1k7McA6EsMcLEGbKkFhmeq2Nk4hn2CQvoTkupJUn0CP1dh04bq11Q7
Ffj9K/FJq73wSXDoH+qqdRG9sfrtgrht JHerruhv3456e0zyAcD08+s JUQFKYS0B
SZMEndVzFS2ub9(Q8e7Bf cNxTmQPM4PhHO5wuTqL32qt3uJBx20141u30ND44ZxrDJ
BbVog730PjRYX j+kTbwUZI66SP4alcq8sypQyLwqKk5DtLRozSNOOIrupJJ/puZs
9zPEggL91TOrirbEhG1£5U8/6XN8GVXX4iMk2f D8FHLF JuXCD703j4JC2iWfFDC6a
uUkwUfqf jJB8BzIHkncoq0ZbpidEE21TW1l+svuEu/wyP5rN1yMiE/e/fZQqM2+00
cH5Qow6HH35Br10CSZciutUcd1U7YPQESJ5tryy1xn9bsMb+0nlocZTtvec/owdM
RmnJwmO j1nd+cc190KLG5/boeA+2zqWul jCbWRIcOoCmgbhuqZCHaHTBEAKDWcsC
VRz5qD6FPpePpT(Db6ss3bkCAWEAAQ==

16.3 REST API methods for the data service

16.3.1 Transactions

GET /transactions

Returns a list of transactions matching the search query criteria and filters applied.

Important: It is returned a maximum of 500 transactions for the API GET /transactions method

request.

Method Response:

[
{
nign: "string",
"type": 0,
"height": O,
"fee": O,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",

"timestamp": O,
"version": 0

(continues on next page)

16.3. REST API methods for the data service

147




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

GET /transactions/count

Returns the number of transactions matching the search query criteria and filters applied.

Method Response:

{
"count": "string"

}

GET /transactions/id/{id}

Returns transaction by ID {id}.
Method Response:

{

|lid|l: ”String”,

“type“: 0,

"height": O,

"fee": O,

"sender": "string",
"senderPublicKey": "string",
"signature": "string",

"timestamp": O,
"version": 0

}

16.3.2 Token assets
GET /assets

Returns a list of token assets available in the blockchain (as token issue transactions).

Method Response:

[
{
l|id|l . ”Stril’lg”,
”type”: 0,
"height": O,
"fee": 0,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",

"timestamp": O,
"version": O,
"assetId": "string",
"name": "string",

(continues on next page)

148 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"description": "string",
"quantity": O,
"decimals": O,
"reissuable": true

16.3.3 Users

GET /users

Returns a list of users matching the search query criteria and filters applied.

Method Response:

[

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
1,
"balances": [
{
"assetId": "string",

"amount": O

3
]

GET /users/{userAddress}

Returns information about the user as per user’s address.

Method Response:

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
1,
"balances": [
{
"assetId": "string",
"amount": 0

}

(continues on next page)

16.3. REST API methods for the data service

149




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

16.3.4 Blocks

GET /blocks/{height}

Returns the block at the specified height.

Method Response:

{
"version": 0,
"timestamp": O,
"reference": "string",
"nxt-consensus": {
"base-target": O,

"generation-signature": "string"
I
"features": [
0
1,
"generator": "string",
"signature": "string",

"blocksize": 0,
"transactionCount": O,
"fee": 0,
"height": 0,
"transactions": [
{
"id": "string",
"type" . 0’
"height": 0,
"fee": O,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": 0

}

16.3.5 Data transactions

GET /api/vl/txlds/{key}

Returns a list of data transaction ID’s containing the specified key.

Method Response:

L
{

(continues on next page)
150 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

nig": "string"

GET /api/vl/txlds/{key}/{value}

Returns a list of data transaction ID’s containing the specified key and value.

Method Response:

L
{
"id": "string"
}
]

GET /api/vl/txData/{key}

Returns data transaction bodies containing the specified key.

Method Response:

[

{

"id": "string",
"type": "string",
"height": 0,

"fee": O,

"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": 0,

"key": "string",
"value": "string",
"position_in_tx": O

GET /api/vl/txData/{key}/{value}

Returns data transaction bodies containing the specified key and value.

Method Response:

[
{
nigqn. "string” s
”type": ”Stl‘ing”,
"height": 0,
"fee": O,
"sender": "string",
"senderPublicKey": "string",

(continues on next page)

16.3. REST API methods for the data service 151




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"signature": "string",
"timestamp": O,
"version": 0,

"key": "string",
"value": "string",
"position_in_tx": O
}

16.4 How to use REST API

All API methods are including GET, POST or DELETE HTTPS requests to URL https://yournetwork.
com/node-N/api-docs/swagger. json using the set of parameters. The requests groups with routes and
endpoints are selected in the Swagger interface. The route is the URL of the HTTP method, and the
endpoint is the final part of the route, this is the access to the method. Example:

URL to the HTTP-method

Route Endpoint

). A
r 1 r R

GET/transactions/unconfirmed/size

For requests requiring the following actions, mandatory authorization by api-key-hash is required. The
authorization type is specified in the node configuration file. If api-key-hash authorization type is selected,
it is necessary to specify the value of the secret phrase, the hash of which is wrote in the node configuration
file (rest-api.api-key-hash field).

* access to the node keystore (for example, sign method);
¢ access to operations with confidential data access groups;
* access to the node configuration.

When authorized by token, the value of access token is specified in the corresponding field. If token
authorization is selected, then all REST API methods for node access are closed.

16.5 Authorization methods

Depending on the authorization method, different values are specified to get the access to the node REST
API

152 Chapter 16. REST API




Technical description of the Waves Enterprise platform, Release master

Available authorizations X

OAuth2 Bearer (apiKey)

Name: Authorization

In: header

Value:

Fbt5fKHesnQG2CXmsKf4TC

| Authorize Close

ApiKey or PrivacyApiKey (apiKey)

Name: X-API-Key
In: header

Value:

Authorize Close

e DAuth2 Bearer (apiKey) - an access token value.

* ApiKey or PrivacyApiKey (apiKey) - api-key-hash value for both access to the node REST API
and privacy methods.

16.5.1 api-key-hash authorization

The api-key-hash generation is happening during the node configuration. The value of the field rest-api.
api-key-hash can be also generated using the /utils/hash/secure method of node REST API. It is required
to specify the access password to the keystore in the password field of the POST /transaction/sign request
for signing requests by the node keystore key.

Sample query:

curl -X POST

--header 'Content-Type: application/json'

--header 'Accept: application/json'

--header 'X-API-Key: 1' -d '1' 'http://2.testnet-pos.nodes.com:6862/transactions/calculateFee’

16.5. Authorization methods 153




Technical description of the Waves Enterprise platform, Release master

16.5.2 Token authorization

If the authorization service is used, the client receives a pair of tokens - refresh and access - for the node
and other services access. Tokens can be obtained via the authorization service REST API.

154 Chapter 16. REST API



CHAPTER
SEVENTEEN

DOCKER SMART-CONTRACTS

17.1 Example of starting a contract

Hint: Technical description of contracts implementation is given in module Docker Smart Contracts.

17.1.1 Description of program logic

This module reviews an example of how to create and run a simple smart contract. The contract performs
summing up of 2x numbers transferred to the contract entry in call-transactions.

Program listing contract.py on Python:

import json
import sys
import os

def find_param_value(params, name):
for param in params:
if param['key'] == name: return param['value']
return None

if __name__ == '__main__"':
command = os.environ['COMMAND ']
tx = json.loads(os.environ['TX'])
if command == 'CALL':
a = find_param_value (tx['params'], 'a')
b = find_param_value(tx['params'], 'b')
if a is None or b is None: sys.exit(-1)
print (json.dumps ([{
"key": '{0}+{1}'.format(a, b),
"type": "integer",

"value": a + b}], separators=(',', ':')))
elif command == 'CREATE':
sys.exit (0)

else:
sys.exit(-1)

Description of operation
¢ The program expects to get the data structure in json format with the field “params”.

¢ It reads the values of the “a” and “b” fields.

155




Technical description of the Waves Enterprise platform, Release master

* Returns the result as a value of fields “{a} + {b}” in json format.

Example of incoming parameters

"params": [

{
"key":"a",
"type":"integer",
"value":1

},

{
"key":"b",
"type":"integer",
"value":2

}

17.1.2 Installing a smart contract

1. Download and install Docker for Developers for your operating system.

2. Prepare a contract image. In the sum-contract-kv folder, create the following files:

fofdo r_node/contracts /sum-contract-kv

contract.py Dockerfile run.sh®

Listing of run.sh file

#!/bin/sh

python contract.py

Dockerfile File Listing

FROM python:alpine3.8

ADD contract.py /

ADD run.sh /

RUN chmod +x run.sh

RUN apk add --no-cache --update iptables

CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

Important: It is required to install iptables into the smart contract container.

3. Install the image in Docker registry. Execute the following commands in the terminal:

docker run -d -p 5000:5000 --name registry registry:2

cd contracts/sum-contract-kv

docker build -t sum-contract-kv .

docker image tag sum-contract-kv localhost:5000/sum-contract-kv
docker start registry

docker push localhost:5000/sum-contract-kv

4. Run the following command in the terminal to get the information about the container:

156 Chapter 17. Docker Smart-contracts



https://www.docker.com/get-started
https://en.wikipedia.org/wiki/Iptables

Technical description of the Waves Enterprise platform, Release master

docker inspect 57c2c2d2643d
[
{
"Id": "sha256:57c2c2d2643da042ef8dd80010632ffdd11e3d2e3£85¢c20c31dce838073614dd",
"RepoTags": [
"wenode:latest"
1,
"RepoDigests": [1,
"Parent": "sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3bb8edf2686e1944bcc7133£07913",

"Coment“ : nn ,
"Created": "2019-10-25T14:15:03.856072509Z",
"Container": "",
"ContainerConfig": {
"Hostname": "",
"Domainname'": "",
HUserH : nn .

"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,

The smart contract identifier Id is the value of the imageHash field and it is used in transactions with the
created smart contract.

5. Sign a transaction to create a smart contract. In this example, the transaction is signed with the key
stored in the node keystore.

Hint: To create a key pair and the participant address, use the utility generators.jar. The procedure for
creating a key pair is given in item 1 of the module “Connecting to the Network”. The rules for generating
queries to the node are given in the module Node REST API.

Query Body

{
"fee": 100000000,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName'": "stateful-increment-contract",
"sender": "3PudkbvjVinPj1TkuuRahh4sGdgfr4YAUV2",
"password": "",
"params": [],
"type": 103,
"version": 1

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

—header 'X-API-Key: key word' -d ' {\
"fee": 100000000, \
"image": "stateful-increment-contract:latest", \
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", \
"contractName": "stateful-increment-contract", \
"sender": "3PudkbvjV1inPji1TkuuRahh4sGdgfr4YAUV2", \
"password": "", \

"params": [], \
"type": 103, \

(continues on next page)

17.1. Example of starting a contract 157



https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1 \
}' 'http://localhost:6862/transactions/sign'’

Sample response

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619

6. Send the signed transaction to the blockchain. The response from the sign method must be transferred
to the input for the broadcast method.

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-API-Key: key word' -d '{ \
{
"type": 103, \
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", \
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhgew", \
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \
"fee": 500000, \
"timestamp": 1550591678479, \
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1, \
"version": 1, \
"image": "stateful-increment-contract:latest", \
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", \
"contractName": "stateful-increment-contract", \
"params": [], \
"height": 1619 \
}
}' 'http://localhost:6862/transactions/broadcast’

7. Use the transaction ID to check that the contract initiation transaction is placed in the blockchain.

Sample response

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,

(continues on next page)

158 Chapter 17. Docker Smart-contracts




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5¢c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619

17.1.3 Smart Contract Execution

1. Sign a call-transaction to call (execute) the smart contract.
In the “contractID” field, specify the contract initialization transaction ID.

Query Body

{
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"fee": 10,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"type": 104,
"version": 1,
"params": [
{
"type": "integer",
"key": "a",
"value": 1

} 2

{
"type": "integer",
llkeyll : llbll ,
"value": 100

}

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-API-Key: key word' -d '{ \

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqhbwTXvJeYGo2", \

"fee": 10, \

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \

"type": 104, \

"version": 1, \

"params": [ \
{\
"type": "integer", \
"key": "a", \
"value": 1 \

N

(continues on next page)

17.1. Example of starting a contract 159




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

{\
"type": "integer", \
"key": "b", \
"value": 100 \
\
A\

I\
}' 'http://localhost:6862/transactions/sign’

Sample response

{
"type": 104,
"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,
"timestamp": 1549365736923,
"proofs": [
""2q4cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v"
1,
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"params": [
{
llkeyll : llall ,
"type": "integer",
"value": 1
1,
{
Ilkeyll B Ilbll .
"type": "integer",
"value": 100
}

2. Send the signed transaction to the blockchain. The response from the sign method must be transferred
to the input for the broadcast method.

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

—header 'X-API-Key: key word' -d '{ \

"type": 104, \

"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP", \

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq", \

"fee": 10, \

"timestamp": 1549365736923, \

"proofs": [ \
"294cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v" \

1.\

"yversion": 1, \

"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nqhbuTXvJeYGo2", \

"params": [ \

{\

(continues on next page)

160 Chapter 17. Docker Smart-contracts




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

]
} '

"key": "a", \
"type": "integer", \
"value": 1 \
A\
{\
"key": "b", \
"type": "integer", \
"value": 100 \
A\

\
'http://localhost:6862/transactions/broadcast’

3. Get the result of smart contract execution by its ID.

Sample response

[

{
"key": "1+100",
"type": "integer",
"value": 101

}

17.1. Example of starting a contract 161




Technical description of the Waves Enterprise platform, Release master

162 Chapter 17. Docker Smart-contracts



CHAPTER
EIGHTEEN

ROLE MANAGEMENT

The list of possible roles in the blockchain platform is given in module “Authorization of participants”.

Important: The prerequisite for changing permissions of participants (adding or deleting roles) is the
availability of the participant’s private key with the “permissioner” role in the node keystore from which the
query is made.

18.1 Option 1 (through REST API)

Participant permissions are managed by signing (sign method) and broadcasting (broadcast method) of
permission transactions through Node REST API.

Query object for sign method:

{
"type":102,
"sender" : 3GLWx8yUFcNSL3DERBkZyE4ATpyAyNiEYsKG,
"senderPublicKey" :4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g,
"fee":0,
"proofs":[""],
"target":3GPtj50soYqHpyfmsFv7BMiyKsVzbG1lykfL,
"opType":"add",
"role":"contract_developer",
"dueTimestamp" :null

Query fields:
* type - the type of the transaction for the participant permission management (type = 102);
¢ sender - the participant address with the permission to issue permission transactions;
¢ proofs - the transaction signature;
* target - the participant address, for which permissions are required to be assigned or deleted;

¢ role - participant permissions to be assigned or removed. Possible values: “miner”, “issuer”, “dex”,

“permissioner”; “blacklister”, “banned”, “contract _developer”, “connection manager”;

» opType - the type of the operation “add” (add permissions) or “remove” (delete permissions);
¢ dueTimestamp - the permission validity date in the timestamp format. The field is optional.

Transfer the response from the node to the broadcast method.

163




Technical description of the Waves Enterprise platform, Release master

18.2 Option 2 (using the utility)

Using the Generators utility the process can be automated.

Example of console launching:

java -jar generators.jar GrantRolesApp [configfile]

Example of configuration:

permission-granter {
waves-crypto = no
chain-id = T
account = {
addresses = [
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w"
]
storage = ${user.home}"/node/keystore.dat"
password = '"some string as password"
}
send-to = [
"devnet-aws-fr-2.we.wavesnodes.com:6864"
]
grants = [
{
address: "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w"
assigns = [
{
permission = "miner",
operation = "add",
due-timestamp = 1527698744623
1,
{
permission = "issuer",
operation = "add",
due-timestamp = 1527699744623
1,
{
permission = "blacklister",
operation = "add"
1,
{
permission = "permissioner",
operation = "remove"
}
]
}
]
txs-per-bucket = 10
}

The field “due-timestamp” limits the role validity; Fields “nodes”, “roles” are mandatory.

If the node is already assigned any of the roles specified in the config, then the case is handled in accordance
with the rules:

164 Chapter 18. Role management



Technical description of the Waves Enterprise platform, Release master

Current node status | Status  received | Processing result
from transaction
No role assigned New role Success - role assigned
Role assigned with- | Role with due- | Checking dueDate; if less than current, then IncorrectDate-
out dueDate Date time, otherwise Success - role assigned with duedate
Role assigned with | Role with due- | Checking dueDate; if less than current, then IncorrectDate-
dueDate Date time, otherwise Success - updating dueDate
Role assigned with | Role without | Success - role assigned without dueDate
dueDate dueDate
Role assigned | Role removal Checking node address; if <> for genesis address, then Success
with/without due- - role removed
Date

18.2. Option 2 (using the utility) 165



Technical description of the Waves Enterprise platform, Release master

166 Chapter 18. Role management



CHAPTER
NINETEEN

PARTICIPANTS CONNECTION TO THE NETWORK

The moment of the first node running is the beginning of the new blockchain net creation. You can create
the blockchain net from the starting only one node, further you can add new nodes as required.

e Connect a new node into the existing network.

¢ Delete unnecessary nodes from the network.

19.1 Connection of a new node to the existing net

You can add new nodes into the net at any time. The configuration files setting is described in the section
Node configuration. Perform all these actions and run the node. The following steps are making:

1.
2.

The new node user gives the public key and the node description to the net administrator.

The network administrator (the node with “Connection-manager” role) uses the received public key
and description for the 111 RegisterNode transaction creation with the "opType": "add" parameter.

Transaction falls to the block and further into the nodes states of network participants. As a result of
the transaction among the stored data, each participant of the network stores the public key and the
address of the new node.

If necessary, the network administrator can add additional roles to the new node using the transaction
102 Permit.

The user runs the node.

After starting, the node sends handshake-message with its public key to the participants from the
“peers” list of its configuration file.

Network participants compare the public key from the handshake message and the key from transaction
111 RegisterNode sent earlier by the network administrator. If the check is successful, the network
participant updates its database and sends the Peers Message message to the network.

Having successfully connected, the new node synchronizes with the network and receives the address
table of the network participants.

167



Technical description of the Waves Enterprise platform, Release master

19.2 Deleting the node

1. The network administrator creates the 111 RegisterNode transaction with the parameter "opType":
"remove" and the public key of the removed node within.

2. This transaction is fell into the block and approved by other nodes.

3. After accepting the transaction the nodes find the public key specified in the transaction 111 Regis-
terNode in their state and delete it from there.

4. Then nodes delete the network address of the removed node from the network.known-peers of the
node configuration file.

168 Chapter 19. Participants connection to the network



CHAPTER
TWENTY

CONFIDENTIAL DATA EXCHANGE

Before you can share the confidential data, you need to create access groups. Using transactions, you can
add or change access groups to the confidential data.

20.1 Creation of the confidential data access group

The confidential data access group can be created by any network participant. You need to specify the range
of participants, which will get the data. Then any of participant will perform the following actions:

1.

The network participant, the future owner of the group, is creating the 112 CreatePolicy with the
following parameters:

sender - the public key of the access group creator.

description - the description of the access group.

policyName - the name of the access group.

recipients - public keys of access group participants, which will have the access to the confidential data.

owners - public keys of access group participants, which, in addition to the data access, can change the
lineup of the group participants.

This transaction is fell into the block and approved by other nodes.

After accepting the transaction the nodes which are the access group participants will get the access
to the confidential data.

20.2 Changing the access group

Access groups can only be changed by their owners. The following actions are performed to change the list
of participants in the access group:

1.

The group owner creates the 1138 UpdatePolicy transaction with the following parameters:

policyld - identifier of the access group.

sender - the public key of the access group owner.

opType - the option of the adding (add) or the removing (remove) the group participants.

recipients - public keys of access group participants, which are added or removed from the access group.

owners - public keys of access group participants, which are added or removed from the access group.

. This transaction is fell into the block and approved by other nodes.

169



Technical description of the Waves Enterprise platform, Release master

3. After accepting the transaction the information about participants of the changed access group will
update.

20.3 Exchanging the confidential data

Important: The size of the transferred data via API method POST /privacy/sendData to the network is
up to 20 MB.

1. Using the API POST /privacy/sendData tool the client sends the data to the network (API parameters:
sender, password, policy ID, data type, data information, data and hash).

2. Access group participants use the GET /privacy/getData/{hash} tool for getting information about
data and its further download.

Follow these steps for the values creation of the data and hash fields:

1. Translate the data byte sequence into the Base64 encoding.

2. Place the result of the data conversion to the "data": "29sCt...RgdC60LL" field of the API POST
/privacy/sendData.
3. Specify the data hash sum according to the SHA-256 algorithm in the "hash": "9wetTB...

SU2zr1Uh" field. You need to specify the hash result in the Base58 encoding.
4. Send the data to the network by pressing the Try it out! button.

5. Node automatically will create the 11/ PolicyDataHash transaction as a result of the data sending.

170 Chapter 20. Confidential data exchange



CHAPTER
TWENTYONE

SYSTEM REQUIREMENTS

System and hardware requirements are given below.

Optional vCMRABEDVM Operation Mode

Minimum requirements 1| 3GB0Ghva -Xmx3072M -jar

Recommended requirements 2+ 4+ 30-fava -Xmx4096M -jar
GbGb

Hint: “Xmx” - flag defining maximum size of memory available for JVM.

Node environment requirements for the Waves cryptography usage
* JRE 1.8 (64-bit) or OpenJDK 12.0.1

Node environment requirements for the CryptoPro JCP cryptography usage
* Oracle JRE 1.8 (64-bit)
¢ CryptoPro JCP 2.0.40035

Warning: The Waves Enterprise platform only supports 2.0.40035 version for the CryptoPro JCP
software. You need to register on the site before downloading the installation package. Also you need to
register on the Oracle site to get the Oracle JRE 1.8 distributive.

Corporate client and data service environment requirements
¢ Docker CE
¢ Docker-compose
e node.js LTS version 10+
e npm 6+
Corporate client and data service environment requirements
e node.js LTS version 10+
e npm 6+
* PostgreSQL version 11
Authorization service environment requirements

* PostgreSQL version 11

171


http://www.oracle.com/technetwork/java/javase/downloads/2133155
https://jdk.java.net/12/
http://www.oracle.com/technetwork/java/javase/downloads/2133155
https://www.cryptopro.ru/sites/default/files/private/jcp/jcp-2.0.40035.zip
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/
https://nodejs.org/en/download/
https://www.npmjs.com/
https://nodejs.org/en/download/
https://www.npmjs.com/
https://www.postgresql.org/download/
https://www.postgresql.org/download/

Technical description of the Waves Enterprise platform, Release master

Hint: There must be separate PostgreSQL databases for the data service and the authorization service.

172 Chapter 21. System requirements



CHAPTER

TWENTYTWO

NODE INSTALLATION

Currently we support Unix-like systems (for example, popular Linux distributives and MacOS). However
Waves Enterprise platform can be run under the Windows natively in experimental mode. Also you can you
Unix virtual machines or the Docker environment for the installation and running the platform under the
Windows.

The node allows to use the GOST cryptography based on the CryptoPro software as well as the embedded
Waves cryptography module. If you want to use the GOST cryptography, please, contact Waves Enterprise
support for more information.

Important: Waves Enterprise nodes installation must be performed on a separate machine from the Waves
blockchain platform nodes.

The process of deploying and launching a node for Linux and MacOS systems is the same. The additional
services set needs the apps Docker CE and Docker-compose for the fully running. Follow these steps:

1. Download and install the Docker CE and Docker-compose installation packages. Registration on the
site is need for downloading.

1.2 After installation check if applications Docker CE and Docker-compose (the part of the
Docker CE installation package) have been successfully installed:

root@Eterna: fhome/angela# docker-compose -
docker-compose version 1.24.0, build ©0aa59064
root@Eterna: /home/angela# I

Last login: Wed May 29 17:48:43 on ttys@@0

= ~ docker --version

Docker version 18.09.2, build 6247962

=» ~ docker-compose --version

docker-compose version 1.23.2, build 1110ad@l

- -8

You can use the commands docker --version and docker-compose --version for

macOS and Linux OS.

2. Download the latest release of the node and the config file template from the GitHub. The following
files are included into the release:

e generators-x.x.x.jar utility which is used for the accounts creating and the genesis block signature;

173


https://wavesplatform.com/
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://github.com/waves-enterprise/WE-releases
https://github.com/waves-enterprise/WE-releases/tree/master/configs
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

¢ docker-compose configuration files for node deployment and all services.
3. Edit the node configuration file node. conf according with the Node configuration section.
4. Create the node directory. Copy created node.conf and keystore.dat files in this node folder.

5. The node is run using docker-compose. Run one of the following commands:

docker-compose up -d # IF the file name is the docker-compose.yml
docker-compose -f docker-compose-name.yml up -d # IF the file mane is different than thej
—previous one

The first command is used if you deploy a node using the docker-compose.yml default configuration file.
In any other case use the second command.

6. Stop the node using the command:

docker-compose down -d # IF the file name is the docker-compose.yml
docker-compose -f docker-compose-name.yml down -d # IF the file mane is different than they
—previous one

The first command is used if you stop a node using the docker-compose.yml default configuration file. In
any other case use the second command.

174 Chapter 22. Node Installation



CHAPTER
TWENTYTHREE

NODE CONFIGURATION

The node configuration includes the following steps:

23.1 Preparation of configuration files

These following configuration files are used for the configuration:
* accounts.conf — the configuration file for the accounts creation.

e api-key-hash.conf — the configuration file for the api-key-hash and privacy-api-key-hash values
creation when you choose the api-key string hash authorization.

¢ node.conf — the main node configuration file defining the operational principals and an option list.

23.1.1 accounts.conf configuration file for the accounts creation

When specifying a path, use the “forward slash” - / as a delimiting character for directory hierarchy levels.
During Linux using the value wallet must match the directory structure of the operating system, for
example /home/contract/we/keystore.dat. During node setting it is prohibited to use cyrillic symbols for
specifying paths to the working directory, keystore, etc.

// accounts.conf listing

accounts-generator {
waves-crypto = yes
chain-id = V
amount = 1
wallet = ${user.homel}"/node/keystore.dat"
wallet-password = "some string as password"
reload-node-wallet {
enabled = false
url = "http://localhost:6862/utils/reload-wallet"
}
}

The description of the configuration file parameters is represented below.

» waves-crypto — the choice of a cryptographic algorithm (“yes” - use cryptography Waves, “no” - use
GOST-cryptography);

e chain-id — an identifying byte of the network, the value will be necessary further on for entry in
parameter address-scheme-character of the node configuration file;

¢ amount — a number of generated key pairs;

175




Technical description of the Waves Enterprise platform, Release master

e wallet — the path to the key storage directory on the node, the value will be required further on
for entry in parameter wallet > file of the node configuration file. For the Waves cryptography,
the path to file keystore.dat is specified (example, ${user.home}/nodeName/keystore.dat), for the
GOST-cryptography - the path to directory (${user.home}/nodeName/keystore/);

* wallet-password — a password for access to closed node keys, the value will be necessary further for
entry into the parameter wallet > password of the node configuration file;

¢ reload-node-wallet — an option to update the node keyStore without restarting the application,
by default it is turned off (false). url parameter specifies the path to the /utils/reload-wallet
method of the REST API node.

23.1.2 api-key-hash.conf configuration file

api-key-hash.conf configuration file is intended only for the api-key-hash and privacy-api-key-hash
values creation when you choose the api-key string authorization.

// api-key-hash.conf listing

apikeyhash-generator {
waves-crypto = no
api-key = "some string for api-key"

}

Parameters description

* waves-crypto — the choice of a cryptographic algorithm (“yes” - use cryptography Wauves,
“no” - use GOST-cryptography);

e api-key — the key you need to come up with. The value of this key will need to be specified
in requests to REST API node (for more details see page REST API).

23.1.3 node.conf node configuration file

If you are planning to connect the new node to the existing network, it will be more easy to request full
configuration file from your network administrator or from any of net participants. When you are creating the
configuration file from a scratch or connecting to the “Waves Enterprise Mainnet”, you can get the example
of the file from our GitHub page. You can read here about changes in the node configuration file.

Warning: If your node’s version is 1.0.3 and higher you need to specify the following parameter in the
node section of the node configuration file:

"features": {
"supported": [100]
}

This option becomes active when the total quantity of blocks from feature-check-blocks-period = 15000
and blocks-for-feature-activation = 10000 parameters is achieved (25 000 of blocks). These parame-
ters are stored in the blockchain section and can not be changed during Mainnet or Partnernet connection.
Nodes will not be able to connect to the network without activation of this option.

The example of the node configuration file is represented below. This file does not include such options like
anchoring, Docker smart contracts and private data access groups. Also there are api-key authorization
and Waves cryptography. You can find the fields description here.

176 Chapter 23. Node configuration


https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

Note: If you want to use additional options, set the enable field of the selected option to yes or true and
configure the option section according to the description of its setting.

Warning: Please, fill ONLY the fields with the /FILL/ word inside as a value.

node {

# Type of cryptography
waves-crypto = yes

# Node owner address
owner-address = " /FILL/ "

# NTP settings
ntp {
server = "pool.ntp.org"

# Mazimum time without synchronization. Required for Pod comsensus.
fatal-timeout = 5 minutes

# Node "home" and data directories to store the state
directory = "/node"
data-directory = "/node/data"

wallet {
# Path to keystore.
file = "/node/keystore.dat"

# Access password
password = " /FILL/ "
X

# Blockchain settings
blockchain {
type = CUSTOM
fees.enabled = false
consensus {

type = "poa"
round-duration = "17s"
sync-duration = "3s"

ban-duration-blocks = 100
warnings-for-ban = 3
max-bans-percentage = 40
}
custom {
address-scheme-character = "E"
functionality {
feature-check-blocks-period = 1500
blocks-for-feature-activation = 1000
pre-activated-features = { 2 =0, 3=0, 4=0,5=0,6=0,7=0, 9=0, 10 =0, 100 = 0,
.

(continues on next page)

23.1. Preparation of configuration files 177




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

# Mainnet genesis settings

genesis {
average-block-delay: 60s
initial-base-target: 153722867

# Filled by GenesisBlockGenerator
block-timestamp: 1573472578702

initial-balance: 1625000000000000

# Filled by GenesisBlockGenerator
genesis-public-key-base-58: ""

# Filled by GenesisBlockGenerator
signature: ""

transactions = [

# Initial token distribution:
# - recipient: target's blockchain address (baseb58 string)
# - amount: amount of tokens, multiplied by 10e8 (integer)

#
# Ezample: { recipient: "3HQSr3VFCiE6JcWwV1yX8zttYbAGKTLV3Gz", amount:,
—3000000000000000 }
#
# Note:
#  Sum of amounts must be equal to initial-balance abowve.
#
{ recipient: " /FILL/ ", amount: 100000000000000 },
{ recipient: " /FILL/ ", amount: 150000000000000 },
{ recipient: " /FILL/ ", amount: 50000000000000 },
]
network-participants = [

# Initial participants and role distribution
# - public-key: participant's baseb58 encoded public key;
# - roles: list of roles to be granted;

#

# Ezample: {public-key: "EPzkVA9iQejsj@ikovyzkkY8iHnbXsR3wjgkgETZW1Tt", roles:,
— [permissioner, miner, connection_manager, contract_developer, tssuer]}

#

# Note:

# There has to be at least one miner, one permissioner and one comnection_manager for,

—the network to start correctly.

—network.

{

# Participants are granted access to the network via GenesisRegisterNodeTransaction.
# Role list could be empty, then given public-key will only be granted access to they

#
public-key: " /FILL/ ", roles: [permissioner, miner, connection_manager, contract_

—developer, issuer]},

{
{
]
}
}
}

public-key: " /FILL/ ", roles: [miner]},
public-key: " /FILL/ ", roles: []},

# Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default walue is INFO.

(continues on next page)

178

Chapter 23. Node configuration




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

logging-level = DEBUG
features.supported = [100]

# P2P Network settings
network {
# Network address
bind-address = "0.0.0.0"
# Port number
port = 6864

# Peers network addresses and ports
#  Ezample: known-peers ["node-1.com:6864", "node-2.com:6864"]

known-peers = [ /FILL/ 1]

# Node name to send during handshake. Comment this string out to set random node name.
#  Ezample: node-name = "your-we-node-name'
node-name = " /FILL/ "

# How long the information about peer stays in database after the last communication with 1t
peers-data-residence-time = 2h

# String with IP address and port to send as external address during handshake. Could be sety
—automatically if uPnP is enabled.

#  Ezample: declared-address = "your-node-address.com:6864"

declared-address = "0.0.0.0:6864"

# New blocks generator settings

miner {
enable = yes
# Important: use quorum = 0 only for testing purposes, while Tunning a single-node network;
# In other cases always set quorum > 0
quorum = O
interval-after-last-block-then-generation-is-allowed = 10d
micro-block-interval = 5s
min-micro-block-age = 3s
max-transactions-in-micro-block = 500
minimal-block-generation-offset = 200ms

# Nodes REST API settings
rest-api {
# Enable/disable REST API
enable = yes

# Network address to bind to
bind-address = "0.0.0.0"

# Port to listen to REST API requests
port = 6862

auth {
type: "api-key"

# Hash of API key string

(continues on next page)

23.1. Preparation of configuration files 179




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

# You can obtain hashes by running ApiKeyHash generator
api-key-hash: " /FILL/ "

# Hash of API key string for Privacydpi routes
privacy-api-key-hash: " /FILL/ "

#Settings for Privacy Data Ezchange
privacy {
storage {
enabled = false
# url = "jdbc:postgresql://postgres:5/32/node-1?user=postgres&password=wenterprise”
# driver = "org.postgresql.Driver"
# profile = "slick.jdbc.PostgresProfile$"

# user = "postgres@postgresépassword=wenterprise"”
# password = "wenterprise”

# connectionPool = HikariCP

# connectionTimeout = 5000

# connectionTestQuery = "SELECT 1"
# queueSize = 10000

# numThreads = 20

# schema = "public"

# migration-dir = "db/migration’

# Docker smart contracts settings
docker-engine {
# Docker smart contracts enabled flag
enable = no

# Basic auth credentials for docker host
#docker-auth {

# wusername = "some user"
# password = "some password"
#}

# Optional conmection string to docker host
docker-host = "unix:///var/run/docker.sock"

# Optional string to mode REST API if we use remote docker host
# node-rest-apt = '"mode-0"

# Ezecution settings
execution-limits {
# Contract execution timeout
timeout = 10s
# Memory limit in Megabytes
memory = 512
# Memory swap value in Megabytes (see https://docs.docker.com/config/containers/resource_
—constraints/)
memory-swap = 0

(continues on next page)

180 Chapter 23. Node configuration




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

# Reuse once created container on subsequent ezecutions
reuse-containers = yes

# Remove container with contract after specified duration passed
remove-container-after = 10m

# Allows mnet access for all contracts
allow-net-access = yes

# Remote registries auth information
remote-registries = []

# Check registry auth on node startup
check-registry-auth-on-startup = yes

# Contract ezecution messages cache settings
contract-execution-messages-cache {
# Time to expire for messages im cache
expire-after = 60m
# Max number of messages in buffer. When the limit is reached, the mode processes ally
—messages in batch
max-buffer-size = 10
# Maz time for buffer. When time is out, the node processes all messages in batch
max-buffer-time = 100ms
}
X
}

23.2 Description of the node configuration file parameters and sec-
tions

Several types of values are used for parameters in the configuration file.

¢ Integer data which used to specify the exact number of elements. It can be the number of transactions,
blocks or connections.

 Integer data including measuring units to specify the time periods or memory volume. You typi-
cally specify the time periods in days, hours, or seconds, or the cache memory volume, for example,
leveldb-cache-size = 256M or connection-timeout = 30s.

¢ String which used to specify the addresses, directory paths, passwords and so on. The directory path
is specifying in the acceptable format of your current OS and the value is quoted.

e Array for the list of values like addresses or public keys. The value is specified in square brackets
separated by commas.

¢ Boolean no or yes which used for option activation.

An example of the node configuration file is represented on the configuration files prepare page. It includes
the following sections:

* node - general section, which includes all sections of blockchain settings.

* ntp - NTP server parameters settings.

23.2. Description of the node configuration file parameters and sections 181




Technical description of the Waves Enterprise platform, Release master

* blockchain - common blockchain settings.

* features - network settings.

e network - network settings.

» wallet - settings of the private keys access.

* miner - mining settings.

* rest-api - REST API settings.

* privacy - confidential information access groups settings.

* docker-engine - Docker smart contracts settings.

23.2.1 node section

Additional section parameters:

* waves-crypto - cryptography type in the blockchain. Possible values: yes - Waves cryptography, no -
GOST cryptography.

¢ directory - the main directory for the storage of the node software.
* data-directory - the main directory for the storage of the node software.
* logging-level - logging level. Possible values: DEBUG, INFQO, WARN, ERROR, default value is INFO.
* owner-address - the node address, the future owner of the configuration file.
ntp section
e fatal-timeout - the timeout of the connection to an NTP server. The recommended value is 1 minute.

* server - aapec NTP-cepsepa. Pekomenayemoe 3uagenue - pool.ntp.org.

23.2.2 blockchain section

* type - the blockchain type. Could be DEFAULT or CUSTOM. Default value is DEFAULT.

* consensus.type - consensus type. Possible values are PoS or PoA.
fees unit

* enabled - the option of using fees for the transaction release. Possible values are false or true.
custom unit

e address-scheme-character - the address feature character which is used to prevent mixing up ad-
dresses from different networks. For the “Waves Enterprise Mainnet” - V and for the “Waves Enterprise
Partnernet” - P. You can use any letter you like for the sidechain or test versions of the Waves Enterprise
blockchain platform. Nodes must have the same network byte on the same blockchain network.

e functionality - main blockchain settings.
e genesis - genesis block settings.
functionality unit
¢ feature-check-blocks-period - the blocks period for feature checking and activation.
¢ blocks-for-feature-activation - the number of blocks required to accept feature.

* pre-activated-features - a set of blockchain options.

182 Chapter 23. Node configuration



Technical description of the Waves Enterprise platform, Release master

genesis unit

average-block-delay - an average delay between the blocks creation.
initial-base-target - an initial base number for the managing the mining process.

block-timestamp - a time and data code. The time is specified in milliseconds and the value must
consist of 13 digits. If you specify the standard value timestamp consisting of 10 digits, then you need
to add any three digits at the end.

initial-balance - an initial balance in smallest units.
genesis-public-key-base-58 - the public key hash of the genesis block, encrypted in Base58.
signature - the genesis block signature, encrypted in Base58.

transactions - a list of network participants with an initial balance, the creation of which will be
included in the genesis block.

network-participants - a list of network participants with specified roles, the creation of which will
be included in the genesis block.

23.2.3 network section

bind-address - the node network address.
port - the port number.
known-peers - a list of IP addresses of well known nodes.

declared-address - a string with IP address and port to send as external address during the hand-
shake.

23.2.4 wallet section

file - a path to the private keys storage.

password - a password for the private keys file access.

23.2.5 miner section

enable - a miner option activation.

quorum - required number of connections (both incoming and outgoing) to attempt block generation.
Setting this value to 0 enables off-line generation.

interval-after-last-block-then-generation-is-allowed - enable block generation only if the
last block is not older the given period of time.

micro-block-interval - an interval between microblocks.
min-micro-block-age - a minimal age of the microblock.
max-transactions-in-micro-block - a maximum number of transaction in the microblock.

minimal-block-generation-offset - a minimal time interval between blocks.

23.2.

Description of the node configuration file parameters and sections 183



Technical description of the Waves Enterprise platform, Release master

23.2.6 features section

e supported - a list of supported options.

23.3 Accounts creation

The user account includes an address and a key pair which consists of public and private keys. The address
and public key are shown to the user during account creation on the command line. The private key is
written to the keystore.dat.

23.3.1 Key pairs generating

Public and private keys for initial participants are creating by the generator. You can get the last version
of the generator on our GitHub page. Before running the utility you need to specify the accounts.conf
configuration file which contains parameters for keys creating. During the creation think up and enter a
password, then save it for later configuration. The given password will be used at creation of a global
variable WE_NODE_QOWNER_PASSWORD further. Press enter key if you do not want to use this password. Use
the following command to run the generator:

java -jar generators-x.X.X.jar AccountsGeneratorApp accounts.conf

23.3.2 Global variables

We recommend to use a password for the keys pair to increase security. The Waves Enterprise platform
supports two ways of the password usage:

1. Enter the password manually at the each start of the node.
2. Create global variables in your OS.

If you are using the manual enter the password there is no need to create global variables. But when you are
planning to use containers or any similar services to run the node then create the following global variables
in the OS for your convenience:

1. WE_NODE_OWNER_PASSWORD - the keys pair password specified during the key pair creation.

2. WE_NODE_OWNER_PASSWORD_EMPTY - true or false, specify the true value if you do not want to
use the keys pair password, in this case it is not necessary to create the WE_NODE_OWNER_PASSWORD
variable. When you are using the password than specify the false value and write into the
WE_NODE_OWNER_PASSWORD variable the keys pair password.

23.4 Signing the genesis block

Sign the genesis block using utility generators-x.x.x.jar. Command for signing: java -jar generators-x.
X.x.jar GenesisBlockGenerator node.conf, where Name.conf is the edited in this section node configu-
ration file. After signing genesis-public-key-base-58 and signature fields of the configuration file will
be filled with values of the public key and the proof of the genesis block.

Example:

genesis-public-key-base-58: "4ozcAj...penxrm"
signature: "5QNVGF...7Bj4Pc"

184 Chapter 23. Node configuration


https://github.com/waves-enterprise/WE-releases
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

23.5 Docker configuration

Installation and execution of docker smart contracts configures in the docker-engine of the node configu-
ration file.

# Docker smart contracts settings
docker-engine {
# Docker smart contracts enabled flag
enable = no
# Bastic auth credentials for docker host

docker-auth {

username = 'some user"
password = '"some password"

}
# Optional connection string to docker host
# docker-host = "uniz:///var/run/docker.sock"
# Optional string to node REST API if we use remote docker host
# node-rest-api = "htips://clinton.wavesenterprise.com/node-0"
# Run for integration tests
integration-tests-mode-enable = no
# Ezecution settings
execution-limits {

# Contract exzecution timeout

timeout = 60s

# Memory limit in Megabytes

memory = 512

# Memory swap value in Megabytes (see hittps://docs.docker.com/config/containers/resource_

—constraints/)

memory-swap = 0
}
# Reuse once created container on subsequent ezecutions
reuse-containers = yes
# Remove contatiner with contract after specified duration passed
remove-container-after = 10m
# Allows net access for all contracts
allow-net-access = no
# Remote registries auth information
remote-registries = []
# Check registry auth on node startup
check-registry-auth-on-startup = yes
# Contract ezecution messages cache settings
contract-execution-messages-cache {

# Time to expire for messages in cache

expire-after = 60m

# Maz number of messages in buffer. When the limit is reached, the node processes all messagesy

—1in batch

max-buffer-size = 10

# Maz time for buffer. When time is out, the mode processes all messages in batch

max-buffer-time = 100ms

Parameters:
* enable - the Docker smart contracts option activation (yes/no).
* docker-auth - the authorization parameters with login/password section.

¢ docker-host - a Docker host URL address.

23.5. Docker configuration 185




Technical description of the Waves Enterprise platform, Release master

* node-rest-api - the REST API address if you are using the remote Docker host.
* integration-tests-mode-enable - the integration tests run option (yes/no).
e execution-limits - the Docker contracts run limits section:
— timeout - a timeout for the smart contract execution;
— memory - a memory limit for a smart contract in megabytes;
— memory-swap - a memory swap value in megabytes.
* reuse-containers - reuse option for the existing Docker contract.
* remove-container-after - container remove option after contract execution (yes/no).
* allow-net-access - the option which allows network access for all smart contracts (yes/no).
* remote-registries - a list of remote registry repositories for the Docker contracts run.

e check-registry-auth-on-startup - the option which checks the registry repositories authorization
during the node start (yes/no).

* contract-execution-messages-cache - the contract execution messages cache settings section. When
the limit is reached, the node processes all messages in batch:

— expire-after - a time period to expire for messages in cache;
— max-buffer-size - a maximum number of messages in buffer;

— max-buffer-time - a maximum time period in milliseconds of messages in buffer.

23.6 Authorization type configuration for the REST API access

The Waves Enterprise blockchain platform supports the following two types of authorization for the node’s
REST API access:

e api-key string hash authorization;
e authorization via the authorization service.

The authorization type is specified in the REST API configuration section of the node configuration file.
api-key string hash authorization type is a simple method of the access management to a node with a low
level security. If the api-key hash is leaking out to the attacker, he is getting the full access to the node.
When you utilize the separate authorization service with access tokens, you increase the security level of
your blockchain network to the high level. You can read more information about the authorization service
in the Authorization service section.

23.6.1 rest-api section of the node configuration file

The rest-api section allows to bound the node network address to the REST API interface, to choose and
configure the authorization type, also to specify the limits for some REST API methods.

# Node's REST API settings
rest-api {

# Enable/disable REST API
enable = yes

# Network address to bind to
bind-address = "127.0.0.1"

(continues on next page)

186 Chapter 23. Node configuration




Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

# Port to listen to REST API requests
port = 6862

# Authorization strategy should be either 'oauth2' or 'api-key', default is 'api-key'
auth {
type = "api-key"

# Hash of API key string
api-key-hash = "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tC1lzjjLXqsu"

# Hash of API key string for Privacydp: routes
privacy-api-key-hash = "H6nsiifwVKYEx6YzYD7woP1XCn72RVvx6tClzjjLXqgsu"

}
# For OAuth2:
# auth {

# type: "oauth2"

#  # OAuth2 service public key to verify auth tokens
# public-key: "AuthorizationServicePublicKeyInBase64"

#  # OAuth2 settings for initial sync
# service-url: "auth.service.url"
# service-token: "auth-token"

# o}

# Enable/disable CORS support
cors = yes

# Enable/disable X-API-Key from different host
api-key-different-host = no

# Mazxz number of transactions

# returned by /transactions/address/{address}t/limit/{limit}
transactions-by-address-limit = 10000
distribution-address-limit = 1000

}

Parameters description
e enable - REST API option activation.
* bind-address - a network address to bind the REST API interface.
e port - a port to listen to REST API requests.
* cors - enable/disable CORS support.

e transactions-by-address-limit - a maximum number of transactions returned by /transactions/
address/{address}/limit/{limit} method.

e distribution-address-limit - GET /assets/{assetId}/distribution/{height}/limit/
{limit}.

auth unit

e auth-type - the authorization type. oauth2 - the token authorization, api-key - the string hash
authorization.

* api-key-hash- a hash of API key string.

23.6. Authorization type configuration for the REST API access 187




Technical description of the Waves Enterprise platform, Release master

e privacy-api-key-hash - a hash of API key string for privacy methods.
e oauth-public-key - a public key of the authorization service.
* oauth-public-key - a public key of the authorization service.

* service-token - a node service token for getting the access token for the authorization between
participants of the blockchain network.

23.6.2 When you use the key string hash for the authorization

Specify the api-key value for the auth-type parameter. Create the api-key-hash for the REST API access
by using the generators-x.x.x.jar utility. To run the utility, you need to specify the api-key-hash.conf file
as one of the parameters, which defines the parameters of creating the api-key-hash. Use the following
command to run the generator:

java -jar generators-x.x.x.jar ApiKeyHash api-key-hash.conf

Specify the value obtained as a result of the utility execution in the parameter api-key-hash in the node
configuration file.

Create the privacy-api-key-hash by the same way as the api-key-hash to get the privacy methods access.
Specify the value obtained as a result of the utility execution in the parameter privacy-api-key-hash in
the node configuration file.

23.6.3 When you use the token authorization

Specify the oauth?2 value for the auth-type parameter, write the public key of the authorization service into
the oauth-public-key parameter.

23.7 Anchoring settings

If you are using the anchoring <anchoring™>‘option, please, configure the ‘‘anchoring‘ unit. targetnet is the
blockchain network which will be used by the sidechain node to send anchoring transactions.

anchoring {
enable = yes
height-range = 5
height-above = 6
threshold = 1

targetnet-authorization {
type = "oauth2" # "api-key" or "oauth2"
authorization-token = "PawC6b86r2pNRTR5e88uvcl3gfkG87w2Lqkvk4Jph2PUG3zPLedCT jnjh2ZTw3RE

"
—

authorization-service-url = "https://washington.testnet.com/authServiceAddress/vl/auth/
—token"
token-update-interval = "60s"

# api-key-hash = "S5M7C14rf3TAaWHvU6Kqo97vscd8fJFpvFuyQ3Q6vfztS"
# privacy-api-key-hash = "S5M7C14rf3TAaWHvUE6Kq0971scd8fJFpvFuwyl3Q6vfztS"
}

targetnet-scheme-byte = "K"
targetnet-node-address = "http://node.washington"

(continues on next page)

188 Chapter 23. Node configuration


https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

targetnet-node-port = 6862
targetnet-node-recipient-address = "3JWveBpXS1EcDpxcoAwVNAjFfUMrxaALgZt"
targetnet-private-key-password = ""

wallet {

file = "node-1_mainnet-wallet.dat"
password = "small"

}

targetnet-fee = 500000
sidechain-fee = 500000
}

Anchoring parameters

* height-range - the number of blocks which is used as an interval between anchoring transactions to
the Targetnet.

* height-above - the number of blocks in the Targetnet after which the private blockchain node cre-
ates the confirming data-transaction containing data from the first data-transaction. We recommend
specifying this value close to the Targetnet maximum rollback depth max-rollback.

¢ threshold - the number of blocks subtracted from the current height of the private blockchain. The
anchoring transaction sent to the Targetnet includes the data from the block at height current-height
- threshold. When the value is 0, the current block is anchored. We recommend specifying this value
close to the private blockchain maximum rollback depth max-rollback.

Anchoring authorization parameters

* type - authorization type for anchoring. api-key - api-key-hash authorization , auth-service -
authorization by a special security token.

For authorization by api-key-hash necessary a current key-value as api-key. For authorization by a special
security token you must use a type = "auth-service" and comment config-file structure values:

¢ authorization-token - a constant authorization token.

¢ authorization-service-url - URL address authorization service.

* token-update-interval - data interval for a token refresh.
Targetnet access parameters

A separate keystore.dat file with a key pair for the Targetnet access is generated for the node that will
send the anchoring transaction to the Targetnet.

* targetnet-scheme-byte - the Targetnet network byte.

* targetnet-node-address - the node network address in the Targetnet for the sending of anchoring
transactions.

* targetnet-node-port - the node port number in the Targetnet for the sending of anchoring transac-
tions.

* targetnet-node-recipient-address - the node address in the Targetnet for the recording of anchor-
ing transactions signed with a key pair of this address.

* targetnet-private-key-password - the node private key password for the anchoring transactions
signing.

23.7. Anchoring settings 189



Technical description of the Waves Enterprise platform, Release master

The network address and the port for the Targetnet/Partnernet networks anchoring can be obtained from
Waves Enterprise technical support staff. If multiple private blockchains with mutual anchoring are used,
you should use the appropriate private network settings.

Parameters of key pair file for the Targetnet anchoring transactions signing, wallet unit

e file - a file name and a path to the key pair file for the Targetnet anchoring transactions signing. The
file is located on the private network node.

¢ password - a password of the key pair file.
Fee parameters
* targetnet-fee - the fee for the anchoring transaction issue in the Targetnet.

* sidechain-fee - the fee for the anchoring transaction issue in the private blockchain.

23.8 Privacy data access groups configuration

When using the privacy methods activate the option and fill in the storage block with database settings
for storing the private data:

privacy {
storage {
enabled = true
url = "jdbc:postgresql://"${POSTGRES_ADDRESS}" :"${POSTGRES_PORT}"/"${POSTGRES_DB}
driver = "org.postgresql.Driver"
profile = "slick.jdbc.PostgresProfile$"
user = ${POSTGRES_USER}
password = ${POSTGRES_PASSWORD}
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000
numThreads = 20

schema = "public"
migration-dir = "db/migration"
}

}

Parameters description
¢ enabled - the option activation.
e url - the PostgreSQL DB address.
e driver - the JDBC driver name.
e profile - a profile name for the JDBC access.
* user - a user name for the DB access.
* password - a password for the DB access.
¢ connectionPool - a connection pool name. Default is HikariCP.
* connectionTimeout - a connection timeout.
¢ connectionTestQuery - a query name for the connection test.

* queueSize - a requests queue size.

190 Chapter 23. Node configuration



Technical description of the Waves Enterprise platform, Release master

e numThreads - a number of parallel connections.
* schema - an interaction scheme.
e migration-dir - a path to the data migration directory.

DB PostgreSQL is using as a database for the confidential data storage. The database should be installed
on the same machine with the node and should have an DB access account. You can use the PostgreSQL
tutorial for download and install the database according with your operation system type.

During the installation the system will offer to create an access account. These credentials must be entered
into the appropriate user/password parameters.

Specify the URL for the PostgreSQL connection into the url parameter. URL consists of:
* POSTGRES ADDRESS - a PostgreSQL host address.
« POSTGRES_PORT - a PostgreSQL host port number.
* POSTGRES DB - a PostgreSQL name.

You can specify the PostgreSQL credentials with the URL in the same string. The
example is  represented  bellow, where user=user_privacy_node_OQwe-dev is a login,
password=7nZL7Jr41q0WUHz5qKdypA&sslmode=require - a password with require option during the
authorization.

Example

privacy.storage.url = "jdbc:postgresql://vostk-dev.postgres.database.azure.com:5432/
—privacy_node_O7user=user_privacy_node_0Qwe-dev&password=7nZL7Jr41q0WUHz5qKdypA&
—sslmode=require"

You can download the latest distributives and configuration files examples from the GitHub Waves Enterprise
release page.

23.8. Privacy data access groups configuration 191


https://www.postgresql.org/
http://www.postgresqltutorial.com/install-postgresql/
https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

192 Chapter 23. Node configuration



CHAPTER
TWENTYFOUR

ADDITIONAL SERVICES DEPLOY

The additional services set needs the apps Docker CE and Docker-compose for the fully running. You can
check the full list of environment requirements for the Waves Enterprise platform in the System requirements

page.
The additional services set is offered as a Docker container with the following list of services:
¢ The corporate web client.
e The data service.
¢ The data crawler.
e The authorization service.
* PostgreSQL DB.
¢ Nginx-proxy.
Follow these steps to deploy the additional services set:
1. Download and unzip the file frontend-deployment.zip.

2. Specify the path to REST API and node hostname in the configuration file of the application
frontend-deployment/config/nginx-proxy.env:

// nginc-prowy.env listing

WE_NODE_ADDRESS=http://yournet.wavesenterprise.com:6862
WE_NODE_HOST=http://node-1:6862

3. Specify the path to REST API and authorization service hostname in the configuration file of the
application frontend-deployment/config/crawler.env:

// crawler.env listing

VOSTOK_AUTH_SERVICE_ADDRESS=http://auth-service:3000
VOSTOK_NODE_ADDRESS=http://yournet.wavesenterprise.com: 6862

4. The following PostgreSQL DB access parameters are used in the configuration files of
frontend-deployment/config/postgres.env and frontend-deployment/config/auth-service.
env applications:

// postgres.env listing

POSTGRES_HOST=crawler-db
POSTGRES_DB=blockchain
POSTGRES_USER=postgres

(continues on next page)

193


https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

POSTGRES_PASSWORD=wenterprise
// auth-service.env listing

POSTGRES_HOST=db
POSTGRES_DB=auth_db
POSTGRES_USER=postgres
POSTGRES_PASSWORD=wenterprise
POSTGRES_PORT=5432

5. You must generate an RSA key pair for the RSA_PUBLIC_FILE_PATH and RSA_PRIVATE_FILE_PATH
parameters. Run these commands sequentially:

ssh-keygen -t rsa -b 4096 -m PEM -f jwtRS256.key

openssl rsa -in jwtRS256.key -pubout -outform PEM -out jwtRS5256.key.pub
cat jwtRS256.key
cat jwtRS256.key.pub

6. Specify the following parameters in the configuration file of the application frontend-deployment/
config/auth-service.env:

e The REST API path and the node URL:

API_URL=http://yournet.wavesenterprise.com:3000
SITE_URL=http://yournet.wavesenterprise.com: 8080

¢ The data string, which is passed to the hash function along with the password.

PASSWORD_HASH_SALT="'X7ZAh1IVpqajPXVVAZusGBCOcWaGZ1DY"'

¢ Parameters of the mail account which will be used by the authorization service for letters.

IS_MAIL_TRANSPORT_ENABLED=true
MAIL_HOST=mail.example.com
MAIL_USER=noreply@example.com
MAIL_PASSWORD=3hSsgt3!8wrb
MAIL_PORT=587
IS_MAIL_SECURE=false

Important: After registration each user must confirm his account by the following the link from the letter
with account activation.

7. Specify the path to the authorization service REST API and URL-address in the configuration file of
the application frontend-deployment/config/we-data-service.env.

VOSTUK_AUTH_SERVICE_ADDRESS:http:/Vyournet.wavesenterprise.com:3000

8. Run docker-compose with the command docker-compose -f docker-compose-frontend.yml up -d.
Before starting the frontend service and all additional services a running node must be deployed.

9. Open the browser and go to localhost:8080 to check if the system client is successfully deployed.

194 Chapter 24. Additional services deploy


https://en.wikipedia.org/wiki/Salt_(cryptography)

CHAPTER
TWENTYFIVE

GLOSSARY

Account
A client data set which is stored in database and used for client identification
Alias

A user’s login associated with his address as a result of the transaction, the result of which is used to
record the alias address matching in the database, and it is possible to specify this alias in the subsequent
transactions

Anonymous network
Unpermissioned public blockchain which can be accessed by any participant as an anonymous person
Blockchain

A decentralized, distributed and public digital ledger that is used to record in such way that any involved
record cannot be altered retroactively, without the alteration of all subsequent blocks

Genesis block

The first block in the blockchain which contains special genesis transactions distributing the initial balance
and permissions

Access group

A table inside the node state containing the net participants list which can exchange the privacy data
according to this policy

Cryptocurrency

A form of digital currency based on encryption algorithms and ran inside decentralized platforms built on
the blockchain

Consensus

The way to agree on a single point of the data value in a network between participants
Mining

The process by which transactions are verified and added to a blockchain

Mainnet

A real network where transactions are executing, tokens are issuing and storing

Node

A computer which is ran the node software and connected to the blockchain network

Peer

195



Technical description of the Waves Enterprise platform, Release master

A net address of the node
Private key

A privately held string of data that allows you to sign transactions and to get access to tokens. The private
key is inextricably bound to the public key

Public network
Permissioned public blockchain where each participant is known and registered in the network
Public key

A string of data bound with the private key and used for interactions with net participants. The public key
is applied to transactions to confirm the correctness of the user’s signature made on the private key

Public address

A public address is the cryptographic hash of a public key and a net byte. They act as email addresses that
can be published anywhere, unlike private keys

Swagger

API tool

Seed phrase

A set from 24 accidentally chosen words for restoring the access to the tokens
Smart account

An account with specified features for creating and running smart-contracts
Smart asset

A token with an attached script, during each new transaction with such a token the transaction will be
confirmed first by the script, then by the blockchain

Smart contract

A computer program code that is capable of facilitating, executing, and enforcing the negotiation or perfor-
mance of an agreement between participant

State
The full history of transactions which is stored in the node DB
Token

An account unit, a blockchain asset, which is not a cryptocurrency and is intended to represent the digital
balance, it is an equivalent of the company’s shares

Transaction

An operation that participants on the blockchain network use to interact with eachother
Participant

A blockchain participant who send transactions to the net for getting approve

Hash

A unique configuration of the symbols (letters and digits), it is a result of the hash function performing over
the data according with the specified algorithm. Hash uniquely identifies the object

Private network

Permissioned private blockchain where all transactions are controlled by a central authority

196 Chapter 25. Glossary



Technical description of the Waves Enterprise platform, Release master

Gateway

The app for tokens transfer from one blockchain net to another one
Airdrop

A distribution of cryptocurrency to users, entirely for free

PoS (Proof-of-Stake)

A consensus algorithm based on the stake which is used for choosing the node for checking transactions and
generating a new block

PoA (Proof-of-Authority)

A consensus algorithm in a private blockchain that grants to the most authority nodes the right to check
transactions and generate a new block

197



Technical description of the Waves Enterprise platform, Release master

198 Chapter 25. Glossary



CHAPTER
TWENTYSIX

WHAT IS NEW IN THE WAVES ENTERPRISE 1.0 RELEASE

The following pages have been added:
o Authorization service

The following sections have been rebuilt:
e Node configuration
e Mainnet and Partnernet connection
* REST API

¢ Node installation

26.1 Changes in the node.conf node configuration file

e The NTP server section is added
¢ The auth section is added into the authorization type selection of the REST API section

199



