
Technical description of the Waves Enterprise
platform

Release 1.13.0

https://wavesenterprise.com

Apr 11, 2024

PLATFORM INSTALLATION AND USAGE

1 Contents 2
1.1 System requirements . 2
1.2 Licenses of the Waves Enterprise blockchain platform . 3
1.3 Deploying the platform in the trial mode (Sandbox) . 5
1.4 Deploying a platform with connection to Mainnet . 9
1.5 Deployment of the platform in a private network . 15
1.6 Examples of node configuration files . 61
1.7 System errors . 70
1.8 gRPC tools . 77
1.9 REST API methods . 97
1.10 Development and usage of smart contracts . 98
1.11 JavaScript SDK . 121
1.12 Confidential data exchange . 141
1.13 Role management . 143
1.14 Connection and removing of nodes . 144
1.15 Node start with a snapshot . 145
1.16 Architecture . 146
1.17 Waves-NG blockchain protocol . 149
1.18 Data immutability in a blockchain . 151
1.19 Tokens of the Waves Enterprise blockchain platform . 152
1.20 Connection of a new node to blockchain network . 152
1.21 Activation of blockchain features . 154
1.22 Anchoring . 156
1.23 Snapshooting . 159
1.24 Smart contracts . 161
1.25 Transactions of the blockchain platform . 174
1.26 Atomic transactions . 261
1.27 Consensus algorithms . 263
1.28 Cryptography . 271
1.29 Permissions . 273
1.30 Client . 274
1.31 Generators . 288
1.32 Authorization and data services . 290
1.33 Differences between the opensource and the commercial versions of the Waves Enterprise

blockchain platform . 324
1.34 External components of the platform . 325
1.35 Official resources and contacts . 326
1.36 Glossary . 327
1.37 What is new at Waves Enterprise . 331

i

Technical description of the Waves Enterprise platform, Release 1.13.0

The Waves Enterprise blockchain platform is a comprehensive distributed ledger system that allows the
formation of both public and private blockchain networks to solve various tasks, including those in the
corporate and public sectors.

What is blockchain?

Blockchain is a continuous consequent chain of linked blocks that contain some information. This chain is
replenished with new blocks. The process of new blocks creation is called mining. Each block contains a
hash sum of the previous block data. This makes it impossible to change the content of any block after
its broadcasting in the network, because it requires modification of all chain blocks at all the nodes of the
blockchain.

At the corporate level, the blockchain technology is used for development of distributed ledger systems. A
distributed ledger system does not have a unified control center, its data are stored simultaneously at all
nodes of a network. In order to update data, consensus algorithms are used that automatically confirm that
all network nodes have the same data copy.

Such a system provides security of transferred data and resolves the problem of trust between the network
participants.

What is the Waves Enterprise blockchain platform designed for?

The Waves Enterprise blockchain platform allows to perform a wide range of business and public tasks:

• Workflow speed-up due to authomatization of business processes and lower number of mediators.

• Protection of data from external modification with the use of encryption and multi-level check of every
operation within the network.

• Business applications of any complexity due to wide opportunities of smart contract development and
comfortable blockchain integration tools.

• Achievement of mutual trust between participant of business workflow due to guaranteed acceptance
of majority opinion in the de-centralized network.

Learn more about private projects based on the Waves Enterprise blockchain platform at our official website.

PLATFORM INSTALLATION AND USAGE 1

https://wavesenterprise.com/use-cases/category/all

CHAPTER

ONE

CONTENTS

1.1 System requirements

Currently Waves Enterprise blockchain platform supports Unix-like systems (for example, popular Linux and
MacOS distributives). Waves Enterprise platform can be run effectively on the following operating systems:

• server operating system:

– CentOS 6/7 (x64);

– Debian 8/9/10 (x64);

– Red Hat Enterprise Linux 6/7 (x86);

– Ubuntu 20.04 (x64).

• workstation operating systems:

– Ubuntu 20.04 (x64) и выше;

– macOS Sierra and above.

Hardware and system requirements for the computer where a new Waves Enterprise node is deployed are
stated below.

Variant vCPU RAM SSD JVM operation mode

Минимальные требования 2+ 4Gb 50Gb java -Xmx2048M -jar
Recommended requirements 2+ 4+ Gb 50+ Gb java -Xmx4096M -jar

Hint: Xmx flag defines the maximum size of JVM memory available.

1.1.1 Environment requirements for the Waves Enterprise blockchain platform

Important: Waves Enterprise platform is distributed as a Docker image, so there is no need to install any
software other than Docker and Docker-compose and to configure the environment. With Docker you can
deploy a Docker container from a Docker image which already contains Java, CryptoPro and other necessary
software.

However, you must purchase the licenses for the proprietary software from its manufacturer and then transfer
the licenses to the node via the environment variables as described below in the Installing CryptoPro CSP
license section.

2

Technical description of the Waves Enterprise platform, Release 1.13.0

The open-source components do not require license keys to be obtained and passed to the node.

Following are the environment requirements for the Waves Enterprise blockchain platform:

• Oracle Java SE 11 (64-bit) or OpenJDK 11 and higher

• Docker CE

• Docker-compose

Installing CryptoPro CSP license

After you have obtained a CryptoPro CSP license, locate the /configs/node/node.env env file on the node,
and set the environment variables to the values specified in the license:

CSP_LICENSE={{ CSP_LICENSE }}

JCSP_LICENSE={{ JCSP_LICENSE }}

COMPANY_NAME={{ COMPANY_NAME }}

where

• CSP_LICENSE – CSP license key,

• JCSP_LICENSE – JCSP license key,

• COMPANY_NAME – company name as specified in the JCSP license.

See also

External components of the platform

1.2 Licenses of the Waves Enterprise blockchain platform

The commercial version of the Waves Enterprise blockchain platform is intended for use in the corporate
and government sectors and is distributed through user licenses.

Note: The opensource version of the Waves Enterprise blockchain platform does not require a license.

The scheme for obtaining a license to use the commercial platform version is as follows:

To access and manage the obtained licenses, the License management service is provided. The specifics of
working with it are described in the platform installation manuals:

Deploying a platform with connection to Mainnet

Deployment of the platform in a private network

1.2. Licenses of the Waves Enterprise blockchain platform 3

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://jdk.java.net/java-se-ri/11
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/
https://client.wavesenterprise.com/admin-license/auth

Technical description of the Waves Enterprise platform, Release 1.13.0

1.2.1 License types

You do not need a license to familiarize yourself with the features of the platform. A detailed description
of the functionality of the platform and its installation procedure in the trial mode is given in the article
Deploying the platform in the trial mode (Sandbox).

The following types of licenses are available for full use of the platform:

• Trial License allows you to get acquainted with the platform and technology during the implementation
of the partner’s pilot project. It is issued under a contract for the duration of the pilot project, or for
the time of development and debugging of the product.

• Commercial license allows you to use the platform for commercial projects. It is issued for a period
determined by the contractual relationship with the partner.

• Non-commercial license allows you to use the platform in the implementation of projects not aimed at
generating profit. The license is issued for a period determined by the contractual relationship with
the partner.

• Mainnet license is a special license that allows you to use the Waves Enterprise Mainnet blockchain
network to exchange data and perform partner transactions. When working in the Mainnet, there are
fees for the transactions performed. The license is issued free of charge to anyone who has fulfilled the
conditions for the connection. The license is valid for one year. After one year, the node owner should
request a new license.

Each type of license applies to one node.

To discuss the number of licenses and nodes on your network and other terms of partnership with Waves
Enterprise, contact the Waves Enterprise sales team at sales@wavesenterprise.com.

1.2. Licenses of the Waves Enterprise blockchain platform 4

mailto:sales@wavesenterprise.com

Technical description of the Waves Enterprise platform, Release 1.13.0

1.2.2 License usage

After you receive the license file, follow these steps:

• If the node is not running, place the license file in the folder whose path is specified in the license-file
parameter of the node configuration file.

• If the node is running, copy the content of the license file and pass it to the node using the POST
/licenses/upload API method.

1.2.3 Duration of licenses

The term of the license is negotiated at the conclusion of the contract.

A trial license standard validity period is 3 months.

A Mainnet license is granted for 1 year. When the one year period expires, the node holder must request a
new license.

For other projects, the license is issued for any term as agreed upon.

When the license expires, the covered node loses the ability to form new blocks and send new transactions
to the network.

See also

Mainnet fees

1.3 Deploying the platform in the trial mode (Sandbox)

To familiarize yourself with the Waves Enterprise blockchain platform, a free trial version running in a Docker
container is available to you. No license is required to install and use it, and the blockchain height is limited
to 30,000 blocks. With a block round time of 30 seconds, the full operation time of the platform in trial
mode is 10 days.

When you deploy the platform in the trial mode, you get a local version of the blockchain where you can
test the basic features:

• signing and sending transactions;

• obtaining data from the blockchain;

• installation and call of smart contracts;

• transfer of confidential data between nodes.

You can interact with the platform through gRPC API and REST API interfaces.

1.3. Deploying the platform in the trial mode (Sandbox) 5

Technical description of the Waves Enterprise platform, Release 1.13.0

1.3.1 Platform installation

Before you start the installation, make sure you have Docker Engine and Docker Compose installed on your
machine. Also, familiarize yourself with the blockchain platform system requirements.

Note that you may need administrator rights to run commands on Linux (the sudo prefix followed by the
administrator password).

1. Create a working directory and place the docker-compose.yml file into it. You can download this file
from the official Waves Enterprise repository on GitHub with the latest platform release or use the
wget utility in the terminal:

wget https://raw.githubusercontent.com/waves-enterprise/we-node/release-1.13/node/src/

→˓docker/docker-compose.yml

2. Open the terminal and navigate to the directory containing the downloaded docker-compose.yml file.
Start the Docker container to deploy the platform:

docker run --rm -ti -v $(pwd):/config-manager/output wavesenterprise/config-

→˓manager:latest

Wait for the message informing about the end of the deployment:

INFO [launcher] WE network environment is ready!

This will create 3 nodes with automatically generated credentials. Information about the nodes is available
in the ./credentials.txt file:

node-0

blockchain address: 3Nzi7jJYn1ek6mMvtKbPhehxMQarAz9YQvF

public key: 7cLSA5AnvZgiL8CnoffwxXPkpQhvviJC9eywBKSUsi58

keystore password: OEtrVSL9gzjO87jYx-gIoQ

keypair password: JInWk1kauuZDHGXFJ-rNXQ

API key: we

node-1

blockchain address: 3Nxz6BYyk6CYrqH4Zudu5UYoHU6w7NXbZMs

public key: VBkFFQmaHzv3YMiWLhh4qsCn4prUvteWsjgiiHEpWEp

keystore password: FsUp3xiX_NF-bQ9gw6t0sA

keypair password: Qf2rBgBT9pnozLPOkO1yYw

API key: we

node-2

blockchain address: 3NtT9onn8VH1DsbioPVBuhU4pnuCtBtbsTr

public key: 8YkDPLsek5VF5bNY9g2dxAthd9AMmmRyvMPTv1H9iEpZ

keystore password: T77fAroHavbWCS6Uir2oFg

keypair password: bELB4EU1GDd5rS-RId_6pA

API key: we

3. Run the finished configuration:

docker-compose up -d

If the nodes run successfully, the following message will be displayed:

1.3. Deploying the platform in the trial mode (Sandbox) 6

https://github.com/waves-enterprise/we-node/tree/release-1.13/node/src/docker

Technical description of the Waves Enterprise platform, Release 1.13.0

Creating network "platf_we-network" with driver "bridge"

Creating node-2 ... done

Creating node-0 ... done

Creating node-1 ... done

The REST API and gRPC API node interfaces are available at the following addresses:

Node REST API gRPC API

node-0 localhost:6862 localhost:6865
node-1 localhost:6872 localhost:6875
node-2 localhost:6882 localhost:6885

4. To stop the running nodes, run the following command:

docker-compose down

1.3.2 Further actions

Sandbox mode of the platform: fixing issues

1. Error when starting the container for platform deployment:

2021-02-07 16:26:59,289 INFO [launcher] ./output/configs/nodes/node-0/accounts.conf

2021-02-07 16:27:07,432 INFO [launcher] ./output/configs/nodes/node-1/accounts.conf

2021-02-07 16:27:19,948 INFO [launcher] ./output/configs/nodes/node-2/accounts.conf

2021-02-07 16:27:28,023 INFO [launcher] Creating blockchain section for the node config␣

→˓files

Traceback (most recent call last):

File "launcher.py", line 304, in <module>

create_new_network()

File "launcher.py", line 228, in create_new_network

create_blockchain(addresses, nodes)

File "launcher.py", line 106, in create_blockchain

network_participants.append(ConfigFactory.from_dict({"public-key": addresses.get_

→˓keys()[i],

IndexError: list index out of range

Cause: Second start of the container.

Solution: Delete the working directory with the platform files and start over by downloading the docker-
compose.yml file.

2. Platform startup error after successful deployment:

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container␣

→˓name "/node-1" is already in use by container

→˓"47cfd7a517e160d201ae969b24392ca0bc2b9720c73e7324dac45daaa24814cb". You have to remove␣

→˓(or rename) that conCreating node-2 ... error

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container␣

→˓name "/node-2" is already in use by container "ccd28832f1fb5457186e50d5e5Creating node-

→˓0 ... error

(continues on next page)

1.3. Deploying the platform in the trial mode (Sandbox) 7

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

tainer to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The conCreating␣

→˓postgres ... error

eb8ac184f88195f1a560ee8ef7ade5c46f899d". You have to remove (or rename) that container␣

→˓to be able to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container␣

→˓name "/postgres" is already in use by container

→˓"d4bc6d758faafcc9b2bc352b9cbcc5dc909f2959059b7abf17db0088916506d1". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container␣

→˓name "/node-1" is already in use by container

→˓"47cfd7a517e160d201ae969b24392ca0bc2b9720c73e7324dac45daaa24814cb". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container␣

→˓name "/node-2" is already in use by container

→˓"ccd28832f1fb5457186e50d5e58f98ed3b35c944931589a42a0262a205a17393". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The container␣

→˓name "/node-0" is already in use by container

→˓"7ed421ac8c8c5ca91a916970c1eb8ac184f88195f1a560ee8ef7ade5c46f899d". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container␣

→˓name "/postgres" is already in use by container

→˓"d4bc6d758faafcc9b2bc352b9cbcc5dc909f2959059b7abf17db0088916506d1". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: Encountered errors while bringing up the project.

Cause: Containers of individual nodes or services are already in use by running containers.

Solution: If you need to rebuild the platform again, stop it with the docker-compose down command. Use
the command docker stop [container ID] to stop running containers of nodes and services. You can
enter several running container IDs in a row, separated by a space, or stop all containers with the command
docker stop $(docker ps -a -q). Then use the command docker rm [container ID] to remove them.
The IDs of the containers used are available in error reports like the one above. You can remove multiple
containers or all used containers with a single command using a similar syntax.

3. Container startup error:

ERROR: for nginx-proxy Cannot start service nginx-proxy: driver failed programming␣

→˓external connectivity on endpoint nginx-proxy␣

→˓(86add881e45535e666443cb00e6a6cb66f79a906e412d4f78d2db9d81c6d63d7): Error starting␣

→˓userland proxy: listen tcp 0.0.0.0:80: bind: address already in use

ERROR: for nginx-proxy Cannot start service nginx-proxy: driver failed programming␣

→˓external connectivity on endpoint nginx-proxy␣

→˓(86add881e45535e666443cb00e6a6cb66f79a906e412d4f78d2db9d81c6d63d7): Error starting␣

→˓userland proxy: listen tcp 0.0.0.0:80: bind: address already in use

(continues on next page)

1.3. Deploying the platform in the trial mode (Sandbox) 8

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

ERROR: Encountered errors while bringing up the project.

Cause: The 80:80 port on your machine is occupied by another application.

Solution: Stop the containers with the docker-compose down command. Then change the ports parameter
of the nginx-proxy section in the docker-compose.yml file, selecting a free port:

nginx-proxy:

image: nginx:latest

hostname: nginx-proxy

container_name: nginx-proxy

ports:

- "81:80"

After that the client and REST API will be available at 127.0.0.1:81 or localhost:81. The rest of the services
will be available at the addresses with their former ports.

4. Error when navigating to 127.0.0.1 or localhost in Mozilla Firefox:

SSL_ERROR_RX_RECORD_TOO_LONG

Reason: By default, the localhost is accessed via HTTPS, but SSL is not provided when deploying the
platform in the Sandbox mode.

Solution: Enter the full address using HTTP: http://127.0.0.1 or http://localhost.

See also

Deploying the platform in the trial mode (Sandbox)

sandbox-monitoring

See also

Transactions of the blockchain platform

Smart contracts

Confidential data exchange

gRPC tools

REST API methods

1.4 Deploying a platform with connection to Mainnet

In this platform deployment option, all of your transactions will be sent to the Mainnet, Waves Enterprise’s
core network. When working with the Mainnet, there are fees in WEST for each transaction.

To connect to Mainnet, you only need to install one node.

In case you need to deploy a network of multiple nodes with connection to the Mainnet, contact the technical
support service.

A Mainnet license is granted free of charge for 1 year to anyone who meets the conditions for connection.
When the one year period expires, the node holder must request a new license.

1.4. Deploying a platform with connection to Mainnet 9

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

1.4.1 Account creation, token transfer and confirming transaction

Before deploying the node software, create a WE account using the client. Then perform the following steps:

1. In the client, create a blockchain address using the Address not selected button in the upper right
corner of the application, or using the Create address button in the Tokens tab. Don’t forget to write
down or remember the seed phrase! With its help, you will always be able to restore access to your
address in case of losing your credentials. After creating the address, click the Use address button.

2. Transfer to the created address an amount in WEST that exceeds the generating balance. To do this,
go to the Tokens tab of the client and click the Add tokens via Waves Exchange button. Copy your
blockchain address, and then follow the prompts of the exchange service to purchase WEST.

3. Lease any number of WEST tokens to 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu and save the identifier
for this transaction: it will be used to confirm your balance and ownership of your blockchain address.
Since tokens are leased to this address, you will be able to revoke them at any time in the future.

1.4.2 Node deployment

Check out the system requirements for the blockchain platform.

After successful transfer of tokens, deploy the node:

1. Create a working directory and place in it the docker-compose.yml file. You can download this file from
the official Waves Enterprise repository on GitHub with the latest platform release or in the terminal
using the wget utility:

wget https://raw.githubusercontent.com/waves-enterprise/we-node/release-1.12/node/src/

→˓docker/docker-compose.yml

2. Download the file mainnet.conf file from the official GitHub repository of Waves Enterprise, selecting
the current version of the platform. Then rename it to private_network.conf and place it in the
root of the working directory.

3. Deploy your node:

docker run --rm -ti -v $(pwd):/config-manager/output/ wavesenterprise/config-

→˓manager:latest

After deploying the node, all generated addresses and passwords will be stored in the credentials.txt file in
the working directory.

1.4.3 Node connection to the Mainnet

1. Go to the Waves Enterprise Technical Support site and register.

2. Create a Participant Connection application for an entity or individual.

3. Fill in all the required fields of the form, in particular, the public key of the node to be connected. If
you plan to mine on Mainnet, check the box I ask for mining rights.

4. In the Confirmation of WEST token ownership field, enter the ID of the transaction by which you
leased the tokens to 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu.

5. Wait for the application review and confirmation of successful registration, and then start the node
whose public key you specified in the connection request:

1.4. Deploying a platform with connection to Mainnet 10

https://client.wavesenterprise.com/auth/login/main
https://github.com/waves-enterprise/we-node/tree/release-1.12/node/src/docker
https://github.com/waves-enterprise/we-node/tree/release-1.12/configs
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

docker-compose up -d node-0

After starting the container, the node REST API will be available at http://localhost:6862. To stop
your node, run the docker-compose down command.

6. To perform mining and send transactions, transfer 50,000 WEST or more to the address of the con-
nected node.

Hint: To view the status of your Mainnet license, use the GET /licenses/status request to the node.

Mainnet fees

The table below shows the fees that are charged to users for transactions on the Waves Enterprise Mainnet.

1.4. Deploying a platform with connection to Mainnet 11

Technical description of the Waves Enterprise platform, Release 1.13.0

Trans-

ac-

tion

num-

ber

Trans-

action

name

Fee Description

1 Genesis
transac-
tion

no fee Initial binding of the balance to the addresses of the nodes created at
blockchain startup

3 Issue
Trans-
action

1
WEST

Token issue. Fee can be paid in WEST only

4 Transfer
Trans-
action

0.01
WEST

Token transfer

5 Reissue
Trans-
action

1
WEST

Token reissue

6 Burn
Trans-
action

0.05
WEST

Token burning

8 Lease
Trans-
action

0.01
WEST

Token leasing

9 Lease
Cancel
Trans-
action

0.01
WEST

Cancelling of token leasing

10 Create
Alias
Trans-
action

1
WEST

Creation of an address alias

11 MassTrans-
fer
Trans-
action

0.05
WEST

Mass transfer of tokens. The minimum fee is specified. The fee amount
depends on the number of addresses in a transaction. To find out the exact
fee amount, use the POST /transactions/calculateFee REST method

12 Data
Trans-
action

0.05
WEST
per
kilo-
byte

Transaction with data in the form of fields with a key-value pair. The com-
mission is always charged to the author of the transaction. The minimum fee
is specified. The fee amount depends on the data size. To find out the exact
fee amount, use the POST /transactions/calculateFee REST method

13 SetScript
Trans-
action

0.5
WEST

Transaction binding a script with a RIDE contract to an account

14 Spon-
sorship
Trans-
action

1
WEST

Sponsorship setting or cancelling

15 SetAs-
setScript

1
WEST

Transaction binding a script with a RIDE contract to an asset

101 Genesis
Per-
mission
Trans-
action

no fee Appointment of a first network administrator for further permission granting

102 Per-
mission
Trans-
action

0.01
WEST

Granting/removing permissions on an account

103 Create-
Con-
tract
Trans-
action

1
WEST

Creation of a Docker smart contract

104 Call-
Con-
tract
Trans-
action

0.1
WEST

Call of a Docker smart contract

105 Execut-
edCon-
tract
Trans-
action

no fee Execution of a Docker smart contract

106 Disable-
Con-
tract
Trans-
action

0.01
WEST

Disabling of a Docker smart contract

107 Update-
Con-
tract
Trans-
action

1
WEST

Updating of a Docker smart contract

110 Genesis-
Regis-
terNode
Trans-
action

no fee Registration of a node in a network genesis block while starting the blockchain

111 Regis-
terNode
Trans-
action

0.01
WEST

Registration of a new node in the network

112 Cre-
atePol-
icy
Trans-
action

1
WEST

Creation of a confidential data group

113 Up-
datePol-
icy
Trans-
action

0.5
WEST

Updating a confidential data group

114 Policy-
Data-
Hash
Trans-
action

0.05
WEST

Sending data hash to the network

120 Atomic
Trans-
action

0
WEST

Combining other transactions for atomic execution. The fee for the transac-
tion itself is specified final fee amount depends on combined transactions.

1.4. Deploying a platform with connection to Mainnet 12

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

GET /licenses

Deploying a platform with connection to Mainnet

Node update in the Mainnet

With each new release of the platform, we recommend that you update the nodes connected to Waves
Enterprise Mainnet. All the users whose nodes are running on the Mainnet receive an email notifying of the
node version update. If you haven’t received such an email, contact the technical support team.

In order to update your node, carry out the following:

1. Download the latest version of the docker-compose.yml file from the official Waves Enterprise repository
on GitHub selecting the latest release.

2. Place the docker-compose.yml file in the working directory of your node, replacing the old file.

3. If your node is working, stop it:

docker-compose down

4. After stopping the node, enter the following command:

docker-compose up -d node-0

The first time you start a node, starting from version 1.4.0, the state migrator will automatically start. The
migration is performed automatically and takes a few minutes. If the migration is successful, you will see
the Migration finished successfully message, and the node will continue to run.

Attention: If you do not use Docker Compose, contact the technical support team for the instructions
on how to update the node.

See also

Deploying a platform with connection to Mainnet

Mainnet: fixing issues

Mainnet fees

Mainnet: fixing issues

When deploying a platform with a connection to Mainnet, it is possible that such errors may occur during
the node deployment phase:

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container␣

→˓name "/node-1" is already in use by container

→˓"47cfd7a517e160d201ae969b24392ca0bc2b9720c73e7324dac45daaa24814cb". You have to remove␣

→˓(or rename) that conCreating node-2 ... error

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container␣

→˓name "/node-2" is already in use by container "ccd28832f1fb5457186e50d5e5Creating node-

(continues on next page)

1.4. Deploying a platform with connection to Mainnet 13

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://github.com/waves-enterprise/we-node/blob/release-1.12/node/src/docker/docker-compose.yml
https://github.com/waves-enterprise/we-node/blob/release-1.12/node/src/docker/docker-compose.yml
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

→˓0 ... error

tainer to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The conCreating␣

→˓postgres ... error

eb8ac184f88195f1a560ee8ef7ade5c46f899d". You have to remove (or rename) that container␣

→˓to be able to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container␣

→˓name "/postgres" is already in use by container

→˓"d4bc6d758faafcc9b2bc352b9cbcc5dc909f2959059b7abf17db0088916506d1". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container␣

→˓name "/node-1" is already in use by container

→˓"47cfd7a517e160d201ae969b24392ca0bc2b9720c73e7324dac45daaa24814cb". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container␣

→˓name "/node-2" is already in use by container

→˓"ccd28832f1fb5457186e50d5e58f98ed3b35c944931589a42a0262a205a17393". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The container␣

→˓name "/node-0" is already in use by container

→˓"7ed421ac8c8c5ca91a916970c1eb8ac184f88195f1a560ee8ef7ade5c46f899d". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container␣

→˓name "/postgres" is already in use by container

→˓"d4bc6d758faafcc9b2bc352b9cbcc5dc909f2959059b7abf17db0088916506d1". You have to remove␣

→˓(or rename) that container to be able to reuse that name.

ERROR: Encountered errors while bringing up the project.

Cause: Containers of individual nodes or services are already in use by running containers.

Solution: Stop the node with the docker-compose down command. Use the command docker stop

[container ID] to stop running containers of nodes and services. You can enter several running con-
tainer IDs in a row, separated by a space, or stop all containers with the command docker stop $(docker

ps -a -q). Then use the command docker rm [container ID] to remove them. The IDs of the contain-
ers used are available in error reports like the one above. You can remove multiple containers or all used
containers with a single command using a similar syntax.

After removing the extraneous containers, turn the platform around again.

1.4. Deploying a platform with connection to Mainnet 14

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Deploying a platform with connection to Mainnet

Node update in the Mainnet

See also

Generators

Licenses of the Waves Enterprise blockchain platform

Contents

• Deployment of the platform in a private network

– Creation of a node account

– Platform configuration for operation in a private network

– Obtaining a private network license and associated files

– Genesis block signing

– Launching the network

– Attaching the Client application to the private network

1.5 Deployment of the platform in a private network

If your project or solution requires an independent blockchain, you can deploy your own blockchain network
based on the Waves Enterprise platform. Contact the Technical Support Service, and our experts will help
you configure the platform delivery to meet the needs of your project.

However, if you need to change any settings or configure the platform by yourself, this section provides a
step-by-step guide for deploying and manual configuring the platform for a private network.

Note: The order of creating node accounts, signing the genesis block and starting the network in the
commercial version of the platform may be different from that described in this section. This procedure is
presented in the documentation for the commercial version of the platform. For more information, contact
the Waves Enterprise sales team by email: sales@wavesenterprise.com.

1.5.1 Creation of a node account

Create accounts for each node of your future network.

A node account includes an address and a key pair – a public key and a private key.

To generate the keys use the AccountsGeneratorApp utility, which is included in the generator package. You
can download this package from the official repository of Waves Enterprise on GitHub selecting the platform
version you use.

1.5. Deployment of the platform in a private network 15

https://support.wavesenterprise.com/servicedesk/customer/portal/3
mailto:sales@wavesenterprise.com
https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

The address and the public key will be shown on the command line during account creation using the
generator utility. Node’s private key is written to the key storage file keystore.dat, which is placed in the
directory of the node.

To create an account, the accounts.conf configuration file is used, which contains the account generation
parameters. This file is located in the directory of each node.

To create a node account, go to its directory and place the downloaded generator-x.x.x.jar (where x.x.x is
the number of the blockchain platform release) file into it. Then run it entering the accounts.conf file as
an argument:

java -jar generator-x.x.x.jar AccountsGeneratorApp accounts.conf

When you create a key pair, you can make up your own password to protect the node’s key pair. Later
on, you can use it manually every time you start your node, or you can set global variables to ask for the
password at system startup. See the description of the account generator for more information on how to
use the password for a node key pair.

If you do not want to use a password to protect the key pair, press the Enter key, leaving the field blank.

The following messages will be displayed as a result of the utility operation:

2021-02-09 16:03:18,940 INFO [main] c.w.g.AccountsGeneratorApp$ - 1 Address:␣

→˓3Nu7MwQ1eSmDVwBzrN1nyzR8wqb2yzdUcyN; public key:␣

→˓F4ytnnS6H72ypCEpgNKYftGotpdX83ZxtWRX2dyGzDiA

2021-02-09 16:03:18,942 INFO [main] c.w.g.AccountsGeneratorApp$ - Generator done

A keystore.dat file will be created in the directory of the node, which contains the account’s public key.

1.5.2 Platform configuration for operation in a private network

Following files are used for configuration of the platform:

• The node.conf is the main configuration file of a node, which defines its operating principles and a
set of options.

• The api-key-hash.conf is a configuration file for generating api-key-hash and
privacy-api-key-hash field values; it is used to configure node authorization when authoriza-
tion by api-key hash method is selected. The guidelines for working with this configuration file will
be given when configuring the authorization method of the node.

Note: You can setup node configuration parameters in a single file or in several files, including one file into
another, for example:

include required(file("network.conf"))

include required(file("local.conf"))

Put the parameters common for all nodes in one file and set unique node parameters (such as owner-address)
in a separate file for each node.

Below is a step-by-step guide on how to manually configure a single node to work on a private network. If
you have multiple nodes deployed on your network, you will need to perform similar configuration steps for
each of them.

Step 1. General configuration of the platform

1.5. Deployment of the platform in a private network 16

Technical description of the Waves Enterprise platform, Release 1.13.0

This step configures cryptography, consensus, Docker smart contract execution and mining. All the param-
eters required for this are located in the node.conf file.

Platform installation and usage

General platform configuration: cryptography

The type and parameters of the cryptographic algorithm used in the blockchain are set in the crypto section
of the node configuration file. The crypto section is used to initialize the cryptography before reading the
complete node configuration file.

crypto {

type = WAVES

}

• type – cryptography type; use the WAVES value for Waves cryptography algorithms. If the waves-crypto
parameter is present in the configuration file and is set to yes, then the type parameter is assigned
the WAVES value;

Note: The node.waves-crypto field with yes and no values is still supported, but it is not planned to use
it in the platform future versions. Instead, the type field in the crypto section will be used.

See also

Deployment of the platform in a private network

Cryptography

Installation and usage of the platform

General platform configuration: consensus algorithm

The Waves Enterprise blockchain platform supports three consensus algorithms – PoS, PoA and CFT.
Detailed information about the consensus algorithms used can be found in the Consensus algorithms article.

The consensus settings are located in the consensus block of the blockchain section:

consensus {

type = ""

...

}

Select the preferred consensus type in the type field. Available values: pos, poa, and cft.

1.5. Deployment of the platform in a private network 17

Technical description of the Waves Enterprise platform, Release 1.13.0

type = ”pos” or the commented consensus block

If you do not select a consensus type in this field, leaving it blank, the default PoS algorithm will be used.
This option is equivalent to selecting the pos value. In this case, other fields in the consensus block are not
required, you only need to configure the PoS mining operation in the genesis block:

consensus {

type = "pos"

}

...

genesis {

average-block-delay = "60s"

initial-base-target = 153722867

initial-balance = "16250000 WEST"

...

}

Note: When you use the PoS algorithm (consensus.type = pos) and some other fields’ values are specified
in the consensus section, they are ignored. For example

consensus {

type = "pos"

round-duration = 5500ms

}

The round-duration field value will not be taken into account.

The following parameters of the genesis block in the blockchain section are responsible for mining with
PoS:

• average-block-delay – average block creation delay. The default value is 60 seconds.

• initial-base-target – the initial base number to regulate the mining process. The higher the
value, the more often the blocks are created. Also, the value of the miner balance affects the use of this
parameter in mining – the higher the balance of the miner, the lower the value of initial-base-target
becomes when calculating the queue of node-miner in the current round.

• initial-balance – the initial balance of the network. The greater the share of the miner’s balance
from the initial balance of the network, the smaller the value of initial-base-target becomes for
determining the miner node of the current round.

1.5. Deployment of the platform in a private network 18

Technical description of the Waves Enterprise platform, Release 1.13.0

type = ”poa”

To configure the PoA consensus algorithm, add the following parameters to the consensus block:

consensus {

type = "poa"

round-duration = "17s"

sync-duration = "3s"

ban-duration-blocks = 100

warnings-for-ban = 3

max-bans-percentage = 40

}

• round-duration – length of the block mining round in seconds.

• sync-duration – the block mining synchronization period in seconds. The total round time is the sum
of round-duration and sync-duration.

• ban-duration-blocks – the number of blocks for which the miner node is banned.

• warnings-for-ban – the number of rounds during which the miner node receives warnings. At the
end of this number of rounds, the node is banned.

• max-bans-percentage – percentage of miner node from the total number of nodes in the network that
can be banned.

type = ”cft”

The basic settings of the CFT consensus algorithm are identical to those of the PoA consensus algorithm:

consensus {

type: cft

warnings-for-ban: 3

ban-duration-blocks: 15

max-bans-percentage: 33

round-duration: 7s

sync-duration: 2s

max-validators: 7

finalization-timeout: 4s

full-vote-set-timeout: 4s

}

In comparison with the PoA, the CFT has the following additional configuration parameters needed to
validate blocks in a voting round:

• max-validators – limit of validators participating in a current round.

• finalization-timeout – time period, during which a miner waits for finalization of the last block in a
blockchain. After that time, the miner will return the transactions back to the UTX pool and start
mining the round again.

• full-vote-set-timeout – optional parameter which defines, how much time a miner will wait for the
full set of votes from all validators after the end of the round (node configuration file parameter:
round-duration).

While configuring CFT, please note the following recommendations:

1.5. Deployment of the platform in a private network 19

Technical description of the Waves Enterprise platform, Release 1.13.0

• The sync-duration parameter must be different from zero. It is recommended to set the value from
1 to 5 seconds, depending on the size and complexity of transactions.

• Approximate calculation of the finalization-timeout parameter: (round-duration +
sync-duration) / 2. It is not recommended to underestimate this value to speed up finalization:
if the miner gathers the necessary number of votes before the end of this time, it will immediately
release the finalizing microblock.

• If there is a large number of miners in the network, limit the number of round validators by the
max-validators parameter. The validator selection mechanism will ensure that all validators rotate
evenly across rounds. Too many validators can adversely affect network performance. The recom-
mended range of values is: from 5 to 10.

• If the network is running under constant load, set the full-vote-set-timeout parameter. Until this
timeout expires, the miner waits for a full set of votes from the validators. If the validator encounters
any problem, the network uses the full-vote-set-timeout to create an additional time slot that
allows the lagging validator to complete synchronization. The recommended value is sync-duration
* 2, it should not exceed sync-duration + finalization-timeout.

See also

Consensus algorithms

Deployment of the platform in a private network

General platform configuration: mining

General platform configuration: execution of smart contracts

Installation and usage of the platform

General platform configuration: execution of smart contracts

To work with smart contracts, the node uses two connection types, for each of which you can configure TLS:

1. The connection to the docker host, the remote machine on which the smart contracts run. This machine
uses a docker library that accesses the socket using its protocols. You can enable the secure connection
option for it. Such a connection is referred to as “docker-TLS” in this documentation. The docker-TLS
connection is configured in the node.docker-engine.docker-tls section of the node configuration
file; this setting is described below in this section;

2. The connection the running smart contract opens towards the node using gRPC protocol. This is
an API connection as the connection point of the smart contract to the node is the same as for any
other user or application. This API is configured in the node.api.grpc section. For instance, you can
enable or disable TLS for it. You can find an example of such a configuration in the Examples of node
configuration files section.

Note: The TLS protocol is not available in the opensource version of the platform.

If you are going to develop and execute smart contracts in your blockchain, set their execution parameters
in the docker-engine section of the node configuration file:

docker-engine {

enable = yes

use-node-docker-host = yes

(continues on next page)

1.5. Deployment of the platform in a private network 20

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

docker-host = "unix:///var/run/docker.sock"

execution-limits {

startup-timeout = 10s

timeout = 10s

memory = 512

memory-swap = 0

}

reuse-containers = yes

remove-container-after = 10m

allow-net-access = yes

remote-registries = [

{

domain = "myregistry.com:5000"

username = "user"

password = "password"

}

]

check-registry-auth-on-startup = no

default-registry-domain = "registry.wavesenterprise.com"

contract-execution-messages-cache {

expire-after = 60m

max-buffer-size = 10

max-buffer-time = 100ms

utx-cleanup-interval = 1m

contract-error-quorum = 2

}

contract-auth-expires-in = 1m

grpc-server {

host = "192.168.97.3"

port = 6865

}

remove-container-on-fail = yes

docker-tls {

tls-verify = yes

cert-path = "/node/certificates"

}

contracts-parallelism = 8

}

• enable – enable transaction processing for Docker contracts.

• use-node-docker-host – set the parameter to yes to define the IP address of the gRPC API available
to the contracts. This will read the IP address from the /etc/hosts file inside the node container.
Also, in order for the contracts to access the node, their containers will be connected to the same
docker network in which the node container was created.

• docker-host – Docker daemon address (optional). If this field is commented out, the address of the
daemon will be taken from the system environment.

• startup-timeout – time taken to create the contract container and register it in the node (in seconds).

• timeout – the time taken to execute the contract (in seconds).

• memory – memory limit for the contract container (in megabytes).

• memory-swap – allocated amount of virtual memory for the contract container (in megabytes).

1.5. Deployment of the platform in a private network 21

Technical description of the Waves Enterprise platform, Release 1.13.0

• reuse-containers – using one container for several contracts when using the same Docker image. To
enable this option, specify yes, to disable - no.

• remove-container-after – the time interval of container inactivity, after which it will be removed.

• allow-net-access – permission to access the network.

• remote-registries – Docker registry addresses and authorization settings.

• check-registry-auth-on-startup – check authorization for Docker registries at node startup. To
enable this option, specify yes, to disable - no.

• default-registry-domain – default Docker registry address (optional). This parameter is used if no
repository is specified in the contract image name.

• contract-execution-messages-cache – settings section of the cache with the execution statuses of
Docker contracts transactions;

• expire-after – time to store the status of the smart contract.

• max-buffer-size and max-buffer-time – settings for size and time of the status cache.

• utx-cleanup-interval – when the specified interval elapses, invalid transactions (with Error status)
are removed from the UTX pool of a non-miner node. 1m is used by default.

• contract-error-quorum – the minimum number of transaction Error (business error) statuses received
from different miner-nodes, after which the smart-contract call transaction is removed from the UTX
pool of a non-miner node. 2 is used by default.

• contract-auth-expires-in – lifetime of the authorization token used by smart contracts for calls to
the node.

• grpc-server – gRPC server settings section for Docker contracts with the gRPC API.

• host – network address of the node (optional).

• port – port of the gRPC server. Specify the listening port for gRPC requests used by the platform.

• remove-container-on-fail – removes the container if an error occurred during its startup. To enable
this option, specify yes, to disable – no.

• tls-verify – enable or disable TLS; if you specify yes, certificates are searched for in the directory
specified in the certs-path parameter; if you specify no, certificates are not searched for.

• certs-path – the path to the directory where TLS certificates are stored. {node.directory}/

certificates is used by default.

• contracts-parallelism – the parameter determines the number of parallel transactions of all con-
tainerized smart contracts. The default value is 8.

See also

Precise platform configuration: TLS

Deployment of the platform in a private network

Development and usage of smart contracts

General platform configuration: consensus algorithm

General platform configuration: mining

Smart contracts

Installation and usage of the platform

1.5. Deployment of the platform in a private network 22

Technical description of the Waves Enterprise platform, Release 1.13.0

General platform configuration: mining

The blockchain mining parameters are set in the miner section of the node configuration file:

miner {

enable = yes

quorum = 2

interval-after-last-block-then-generation-is-allowed = 10d

no-quorum-mining-delay = 5s

micro-block-interval = 5s

min-micro-block-age = 3s

max-transactions-in-micro-block = 500

max-block-size-in-bytes = 1048576

min-micro-block-age = 6 s

minimal-block-generation-offset = 200ms

pullin-buffer-size = 100

utx-check-delay = 1s

}

• enable – activation of the mining option. Enable – yes, disable – no.

• quorum – required number of miner nodes to create a block. A value of 0 will generate blocks offline
and is used only for test purposes in networks with one node. When specifying this value, take into
account that your own miner node does not sum up with the value of this parameter, i.e. if you specify
quorum = 2, then you need at least 3 miner nodes for mining.

• interval-after-last-block-then-generation-is-allowed – enable block generation only if the
last block is not older than the specified time period (in days).

• micro-block-interval – an interval between microblocks (in seconds).

• min-micro-block-age – the minimum age of the microblock (in seconds).

• max-transactions-in-micro-block – the maximum number of transactions in the microblock.

• minimal-block-generation-offset – the minimum time interval between blocks (in milliseconds).

• pulling-buffer-size – size of transactions buffer. The higher the value of the parameter, the longer
the transactions group.

• utx-check-delay – UTX pool inspection delay. The miner periodically inspects the pool to make sure
if it is empty or not. 1 s is used as the default value. The parameter value must be equal to or more
than 100 ms.

The mining settings depend on the planned size of transactions on your network.

Mining settings and consensus algorithm

Also, blockchain mining is closely related to the chosen consensus algorithm. The following parameters of
the miner section must be taken into account when configuring the consensus parameters:

• micro-block-interval – an interval between microblocks (in seconds).

• min-micro-block-age – the minimum age of a microblock. The value is specified in seconds and must
not exceed the value of micro-block-interval.

• minimal-block-generation-offset – a minimal time interval between blocks (in milliseconds).

1.5. Deployment of the platform in a private network 23

Technical description of the Waves Enterprise platform, Release 1.13.0

The values of microblock creation parameters must not exceed or otherwise conflict with the values of
average-block-delay for PoS and round-duration for PoA and CFT. The number of microblocks in a
block is not limited but depends on the size of the transactions included in the microblock.

UTX settings

The unconfirmed transactions pool (UTX) has a rebroadcasting mechanism, which allows the network to
recover faster if any failures occur – for example, if network connectivity between nodes is lost. In such
cases, transactions sent to a single node may not be broadcasted. The rebroadcasting mechanism solves such
problems by periodically checking the relevance of the transactions in a node UTX.

This mechanism checks all the transactions in the UTX once in a period of time set in the interval

parameter; it then resends to its peers those transaction whose creation date differs from the current date
by more than the period set in the threshold parameter.

The UTX parameters are set in the utx section of the node configuration file:

utx {

memory-limit=100Mb

rebroadcast-threshold=5m

rebroadcast-interval=5m

}

• memory-limit – the maximum UTX pool size; when calculating the UTX pool size, only the serialized
form, not the total size of transactions in memory, is taken into account;

• rebroadcast-threshold – after the transaction is created, when the time period specified in the
parameter elapses, the transaction is considered “old” and must be rebroadcast; the default value of
the parameter is 5m;

• rebroadcast-interval – task interval for re-broadcasting the “old” transactions; the default value of
the parameter is 5m.

See also

Deployment of the platform in a private network

General platform configuration: consensus algorithm

General platform configuration: execution of smart contracts

Waves-NG blockchain protocol

Step 2. Precise platform configuration

This step configures the node’s gRPC and REST API tools, their authorization, confidential data access
groups, etc. You may need these settings if you change the pre-set settings for your hardware or software
configuration.

All necessary parameters are also located in the node.conf node configuration file. The api-key-hash.conf
file is also used to configure authorization, which is necessary when selecting the authorization method by a
given api-key string hash.

1.5. Deployment of the platform in a private network 24

Technical description of the Waves Enterprise platform, Release 1.13.0

Precise platform configuration: gRPC and REST API authorization

Authorization is required to provide access to the gRPC and REST node API tools.

The Waves Enterprise blockchain platform supports two types of authorization for gRPC and REST APIs:

• api-key string hash authorization;

• JWT token (oAuth 2) authorization.

Attention: Authorization by api-key hash is a simple means of accessing a node, but the security level
of this authorization method is relatively low. An attacker may gain access to a node if the api-key

string is exposed. If you want to improve security on your network, we recommend using JWT token
authentication via authorization service.

The auth section of the node configuration file is used to configure authorization.

Hint: The REST and gRPC API interfaces use the same api-key for authorization by key string and
public-key for authorization by JWT-token.

type = ”api-key”

Authorization by hash of the key string api-key is used in the default node. When selecting the authorization
method by hash of the key string api-key the auth section contains the following parameters:

auth {

type = "api-key"

Hash of API key string

api-key-hash = "G3PZAsY6EA8esgpKxB2UYTQJZJPzc14gLnNbm2xvcDf6"

Hash of API key string for PrivacyApi routes

privacy-api-key-hash = "G3PZAsY6EA8esgpKxB2UYTQJZJPzc14gLnNbm2xvcDf6"

Hash of API key string for Сonfidential Smart Contracts API

confidential-contracts-api-key-hash = "G3PZAsY6EA8esgpKxB2UYTQJZJPzc14gLnNbm2xvcDf6"

}

• api-key-hash – hash from the REST API access key string;

• privacy-api-key-hash – the hash from the access key string to the REST methods for handling
confidential data and obtaining information about access groups (privacy) and similar gRPC methods;

• confidential-contracts-api-key-hash – the hash from the access key string to the REST methods
of handling confidential smart contracts and similar gRPC methods.

To fill in these parameters you will need the ApiKeyHash utility from the generator-x.x.x.jar package,
which you can download from the official Waves Enterprise repository on GitHub, selecting the platform
version you use.

Place this file in the root folder of the platform and also create a file api-key-hash.conf:

1.5. Deployment of the platform in a private network 25

https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

apikeyhash-generator {

crypto {

type = WAVES

}

api-key = "some string for api-key"

file = ${user.home}"/apikeyhash.out"

}

In this file, enter the string that you want to hash and use for authorization in the api-key parameter.

You can use the ‘’file” parameter to specify the name of the file to which the hash will be saved. The
parameter is optional. If it is not specified, the hash is output to the console.

Note: The waves-crypto field with yes and no values is still supported, but it will be deprecated in the
platform future versions. Instead, use the type field in the crypto section.

Enter the prepared api-key-hash.conf file as an argument when you run the ApiKeyHash utility from the
generator package:

java -jar generator-x.x.x.jar ApiKeyHash api-key-hash.conf

Output example:

Api key: some string for api-key

Api key hash: G3PZAsY6EA8esgpKxB2UYTQJZJPzc14gLnNbm2xvcDf6

2021-02-11 16:31:21,586 INFO [main] c.w.g.ApiKeyHashGenerator$ - Generator done

Specify the resulting Api key hash value in the api-key-hash, privacy-api-key-hash and
confidential-contracts-api-key-hash parameters in the auth section of the node configuration file as
indicated above.

type = ”oauth2”

When you select authorization by JWT-token, the auth section of the node configuration file looks as follows:

auth {

type: "oauth2"

public-key: "AuthorizationServicePublicKeyInBase64"

}

The public key for oAuth is generated during the initial deployment of the node. The key is located in the
./auth-service-keys/jwtRS256.key.pub file.

Copy the line between -----BEGIN PUBLIC KEY----- and -----END PUBLIC KEY----- and paste it as the
public-key parameter in the auth section of the node configuration file.

1.5. Deployment of the platform in a private network 26

Technical description of the Waves Enterprise platform, Release 1.13.0

OAuth2 authorization roles

A number of REST API methods and gRPC API methods can only be invoked by users with specific
authorization roles.

When registering a new user in Waves Enterprise Client the user is assigned the user role. Further the
administrator of the authorization service can change the list of roles assigned to the user.

The user role is encrypted in the JWT token.

The tables below show the methods and the roles required to invoke them that are used in the Waves
Enterprise Mainnet blockchain network.

The list of REST methods and the roles that have access to them in Mainnet

REST methods group REST method No role user admin privacy

activation * * *
addresses * * *
alias * * *
anchoring * * *
assets * * *
blocks * * *
consensus * * *

/consensus/algo is not available for user role *
contracts * * *
crypto * * *
debug

/debug/validate * * *
/debug/blocks/{howMany} *
/debug/cleanState *
/debug/configInfo *
/debug/createGrpcAuth *
/debug/freeze *
/debug/historyInfo *
/debug/info *
/debug/minerInfo *
/debug/portfolios/{address} *
/debug/print *
/debug/rollback *
/debug/rollback-to/{signature} *
/debug/state *
/debug/stateWE/{height} *
/debug/threadDump *
/debug/utx-rebroadcast *

leasing * * *
node

/node/status * * * *
/node/version * * * *
/node/healthcheck * * * *
/node/owner * * *
/node/config * * *
get /node/logging * * *

continues on next page

1.5. Deployment of the platform in a private network 27

Technical description of the Waves Enterprise platform, Release 1.13.0

Table 1 – continued from previous page

REST methods group REST method No role user admin privacy

get /node/metrics * * *
/node/stop *
post /node/logging *
post /node/metrics *

peers
/peers/all * * *
/peers/connected * * *
/peers/suspended * * *
/peers/allowedNodes *
/peers/connect *
/peers/hostname/{address} *

permissions * * *
privacy

/privacy/{policyId}/recipients * * *
/privacy/{policyId}/owners * * *
/privacy/{policyId}/hashes * * *
/privacy/{policyId}/transactions * * *
/privacy/{policyId}/getData/{policyItemHash} *
/privacy/{policyId}/getLargeData/{policyItemHash} *
/privacy/{policyId}/getInfo/{policyItemHash} *
/privacy/getInfos *
/privacy/sendData *
/privacy/sendDataV2 *
/privacy/sendLargeData *
/privacy/forceSync *

transactions * * *
snapshot

/snapshot/status * * *
/snapshot/genesisConfig * * *
/snapshot/swapState *

utils * * *

The list of gRPC methods and the roles that have access to them in Mainnet

1.5. Deployment of the platform in a private network 28

Technical description of the Waves Enterprise platform, Release 1.13.0

gRPC service gRPC method No

role

user ad-

min

pri-

vacy

ConfidentialCon-

tractUser

TransactionPublic-
Service

grpc-tx * * * *
UtxInfo * * * * *
TransactionInfo * * * *

Blockchain-
EventsService

SubscribeOn * * * *
PrivacyEventsSer-
vice

SubscribeOn * * * *
PrivacyPublicSer-
vice

GetPolicyItemData *
GetPolicyItemInfo *
PolicyItemDataEx-
ists

*

SendData *
ContractStatusSer-
vice

ContractExecution-
Statuses

* * * *

ContractsExecution-
Events

* * * *

NodeInfoService
NodeConfig * * * * *

ContractPublicSer-
vice

ConfidentialCall *

See also

Deployment of the platform in a private network

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: confidential data groups configuration

Precise platform configuration: TLS

PrivacyEventsService and PrivacyPublicService methods authorization

Privacy group methods authorization

Authorization service

Authorization service: authorization variants

1.5. Deployment of the platform in a private network 29

Technical description of the Waves Enterprise platform, Release 1.13.0

Precise platform configuration: node gRPC and REST API configuration

The gRPC and REST API parameters for each node are in the api section of the configuration file:

api {

rest {

Enable/disable REST API

enable = yes

Network address to bind to

bind-address = "0.0.0.0"

Port to listen to REST API requests

port = 6862

Enable/disable TLS for REST

tls = no

Enable/disable CORS support

cors = yes

Max number of transactions

returned by /transactions/address/{address}/limit/{limit}

transactions-by-address-limit = 10000

distribution-address-limit = 1000

}

grpc {

Enable/disable gRPC API

enable = yes

Network address to bind to

bind-address = "0.0.0.0"

Port to listen to gRPC API requests

port = 6865

Enable/disable TLS for GRPC

tls = no

Parameters for internal gRPC services. Recommended to be left as is.

services {

blockchain-events {

max-connections = 5

history-events-buffer {

enable: false

size-in-bytes: 50MB

}

}

privacy-events {

max-connections = 5

(continues on next page)

1.5. Deployment of the platform in a private network 30

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

history-events-buffer {

enable: false

size-in-bytes: 50MB

}

}

contract-status-events {

max-connections = 5

}

}

}

rest – ˝ block

The rest { } block is used for setting of the REST API interface. It includes following parameters:

• enable – activation of the node REST API. Enabling – yes, disabling – no.

• bind-address – network address of the node where the REST API interface will be available.

• port – the listening port of the REST API requests.

• tls – enable or disable TLS for REST API requests. Specify yes to enable the option , or ``no``enable
to disable it. This option requires the node TLS setup.

Note: The TLS protocol is not available in the opensource version of the platform.

• cors – support of cross-domain requests to REST API. Enable – yes, disable – no.

• transactions-by-address-limit – maximum number of transactions returned by the GET /

transactions/address/{address}/limit/{limit} method.

• distribution-address-limit – the maximum number of addresses specified in the limit field and
returned by the GET /assets/{assetId}/distribution/{height}/limit/{limit} method.

grpc – ˝ block

The grpc { } block is used to configure the gRPC toolkit of a node. It includes the following parameters:

• enable – activation of the node gRPC interface.

• bind-address – the network address of the node where the gRPC interface will be available.

• port – the listening port of the gRPC requests.

• tls – enable or disable TLS for gRPC requests. Specify yes to enable the option , or no to disable it.
This option requires the node TLS setup.

Note: The TLS protocol is not available in the opensource version of the platform.

The services{ } section contains parameters of public gRPC services that collect data from the platform
components:

• blockchain-events – service for collecting data on events in the blockchain network;

1.5. Deployment of the platform in a private network 31

Technical description of the Waves Enterprise platform, Release 1.13.0

• privacy-events – service for collecting data on events related to privacy groups;

• contract-status-events – service for collecting data on statuses of smart contracts.

In this section, we recommend to use the default parameters mentioned in the example.

See also

Deployment of the platform in a private network

Precise platform configuration: gRPC and REST API authorization

Precise platform configuration: confidential data groups configuration

Precise platform configuration: TLS

Precise platform configuration: TLS

To work with smart contracts, the node uses two connection types, for each of which you can configure TLS:
docker-TLS and API connection.

Note: The TLS protocol is not available in the opensource version of the platform.

You can configure TLS for gRPC and REST API for each node using the gRPC and REST API operation
parameters in the api section of the node configuration file. To configure TLS, use the TLS parameter in the
rest block and in the grpc block .

To work with TLS for API:

1. enable TLS in the node.api.grpc section of the node configuration file;

2. obtain TLS artefacts:

• obtain keystore file named we.jks;

• issue we.cert client certificate;

• import the client certificate into the trusted certificates storage.

An example of the preparation of these artifacts is given in the following section:

Example of how to prepare artefacts for TLS

If you plan to use TLS , you must configure the TLS settings as part of the infrastructure setup.

To work with TLS for API you need to get a keystore file. Here is an example of using the
standard keytool utility for this purpose:

keytool \

-keystore we.jks -storepass 123456 -keypass 123456 \

-genkey -alias we -keyalg RSA -validity 9999 \

-dname "CN=Waves Enterprise,OU=security,O=WE,C=RU" \

-ext "SAN=DNS:welocal.dev,DNS:localhost,IP:51.210.211.61,IP:127.0.0.1"

• keystore – keystore file name;

• storepass – keystore password, which should be stated in the keystore-password section
of the node configuration file;

1.5. Deployment of the platform in a private network 32

Technical description of the Waves Enterprise platform, Release 1.13.0

• keypass – private key password, which should be stated in the private-key-password

section of the config file;

• alias – an alias name (upon a user decision);

• keyalg – keypair generation algorithm;

• validity – keypair validity time in days;

• dname – distinguished name according to the X.500 standard, connected with the keystore
alias;

• ext – extensions that are used for key generation, all possible host names and IP addresses
should be stated for work in different networks.

As a result of the keytool utility execution, the we.jks keystore file will be obtained. In order to
connect to the node operating with the TLS, a user should also generate a client certificate:

keytool -export -keystore we.jks -alias we -file we.cert

The obtained certificate file we.cert should be imported into the trusted certificate storage. If
a node is located in the same network with a user, it will be enough to state a relative path to
the we.jks file in the node config file, as demonstrated above.

In case the node is located in another network, the we.cert certificate file should be imported
into the keystore:

keytool -importcert -alias we -file we.cert -keystore we.jks

See also

Precise platform configuration: TLS

Deployment of the platform in a private network

Precise platform configuration: gRPC and REST API authorization

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: confidential data groups configuration

3. specify the relative path to the we.jks keystore file in the tls section of the node configuration file.

You will need the keytool utility included in the Java SDK or JRE to configure TLS.

tls section of the node configuration file

The tls section contains the following parameters:

tls {

type = EMBEDDED

keystore-path = ${node.directory}"/we_tls.jks"

keystore-password = ${TLS_KEYSTORE_PASSWORD}

private-key-password = ${TLS_PRIVATE_KEY_PASSWORD}

}

• type – TLS mode. Possible options:

– DISABLED – disabled, in this case other options should be excluded or commented out and

1.5. Deployment of the platform in a private network 33

Technical description of the Waves Enterprise platform, Release 1.13.0

– EMBEDDED – enabled, the certificate is signed by a node provider and packed within a JKS file
(keystore); the certificate directory and keystore access parameters should be stated by a user in
the fields below.

• keystore-path – keystore relative path within the node directory: ${node.directory}"/we_tls.

jks".

• keystore-password – password for the node keystore. Specify the password you set earlier with the
storepass flag for the keytool utility.

• private-key-password – password for the private key. Specify the password you set earlier with the
keypass flag for the keytool utility.

See also

Deployment of the platform in a private network

Example of how to prepare artefacts for TLS

Precise platform configuration: gRPC and REST API authorization

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: confidential data groups configuration

Precise platform configuration: confidential data groups configuration

If you use privacy API-methods to manage confidential data, configure the data access parameters in the
node configuration file privacy section.

gRPC API methods of the privacy group are described in the gRPC: handling confidential data section.
REST API methods of the privacy group are described in the REST API: confidential data exchange and
obtaining of information about confidential data groups section.

Important: privacy group API-methods can be used only in PKI test mode, i.e. when the
node.crypto.pki.mode node configuration file parameter is set to TEST, or when PKI is disabled (node.
crypto.pki.mode = OFF).

Below is an example of configuration using the PostgreSQL database:

Example with the PostgreSQL database used

privacy {

replier {

parallelism = 10

stream-timeout = 1 minute

stream-chunk-size = 1MiB

}

synchronizer {

request-timeout = 2 minute

init-retry-delay = 5 seconds

inventory-stream-timeout = 15 seconds

(continues on next page)

1.5. Deployment of the platform in a private network 34

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

inventory-request-delay = 3 seconds

inventory-timestamp-threshold = 10 minutes

crawling-parallelism = 100

max-attempt-count = 24

lost-data-processing-delay = 10 minutes

network-stream-buffer-size = 10

}

inventory-handler {

max-buffer-time = 500ms

max-buffer-size = 100

max-cache-size = 100000

expiration-time = 5m

replier-parallelism = 10

}

cache {

max-size = 100

expire-after = 10m

}

storage {

vendor = postgres

schema = "public"

migration-dir = "db/migration"

profile = "slick.jdbc.PostgresProfile$"

upload-chunk-size = 1MiB

jdbc-config {

url = "jdbc:postgresql://postgres:5432/node-1"

driver = "org.postgresql.Driver"

user = postgres

password = wenterprise

connectionPool = HikariCP

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 20

}

}

service {

request-buffer-size = 10MiB

meta-data-accumulation-timeout = 3s

}

}

1.5. Deployment of the platform in a private network 35

Technical description of the Waves Enterprise platform, Release 1.13.0

Choosing the database

Before changing the node configuration file, decide on the database that you plan to use to store confidential
data. The Waves Enterprise blockchain platform supports interaction with PostgreSQL database or Amazon
S3.

PostgreSQL

During the installation of a database running under PostgreSQL, you will create an account to access
the database. The username and password you set for this account must then be specified in the node
configuration file (in the user and password fields of the storage block of the privacy section, see the
vendor = postgres section for details).

To use PostgreSQL DBMS, you will need to install the JDBC interface (Java DataBase Connectivity). When
installing JDBC, set the profile name. This name must then be specified in the node configuration file (in
the profile field of the storage block of the privacy section, see the vendor = postgres section for details).

For optimization purposes, connection to PostgreSQL can be done through the pgBouncer tool. In this case,
pgBouncer requires special configuration, which is described below in the storage-pgBouncer section.

Amazon S3

When using Amazon S3, the information must be stored on the Minio server. During the Minio server
installation, you will be prompted for a login and password to access the data. These login and password
must then be specified in the node configuration file (in the access-key-id and secret-access-key fields,
see vendor = s3 section for details).

After installing the DBMS appropriate for your project, adjust the storage block of the privacy section in
the node configuration file as specified below.

storage block

Specify the DBMS you are using in the vendor parameter in the storage block of the privacy section:

• postgres – for PostgreSQL;

• s3 – for Amazon S3.

Important: If you do not use the privacy API methods, specify none in the vendor parameter and comment
out or delete the rest of the parameters in the privacy section.

vendor = postgres

When using the PostgreSQL DBMS, the storage block of the privacy section looks like this:

storage {

vendor = postgres

schema = "public"

migration-dir = "db/migration"

profile = "slick.jdbc.PostgresProfile$"

(continues on next page)

1.5. Deployment of the platform in a private network 36

https://www.postgresqltutorial.com
https://aws.amazon.com/s3/getting-started/?nc=sn&loc=6&dn=1
https://aws.amazon.com/s3/getting-started/?nc=sn&loc=6&dn=1
https://jdbc.postgresql.org/documentation/head/index.html
https://min.io/download/

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

upload-chunk-size = 1MiB

jdbc-config {

url = "jdbc:postgresql://postgres:5432/node-1"

driver = "org.postgresql.Driver"

user = postgres

password = wenterprise

connectionPool = HikariCP

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 20

}

}

The block must contain the following parameters:

• schema – the used scheme of interaction between elements within the database. By default, the public
scheme is used, but if your database provides another scheme, specify its name;

• migration-dir – directory for data migration;

• profile – profile name for JDBC access, set during JDBC installation (see the PostgreSQL section);

• upload-chunk-size – the size of the data fragment uploaded using POST /privacy/sendLargeData
REST API method or SendLargeData gRPC API method;

• url – the PostgreSQL database address (see the url field section for details);

• driver – the name of the JDBC driver that allows Java applications to communicate with the database;

• user – user name to access the database; specify the login of the account you created to access the
database under PostgreSQL;

• password – the password to access the database; specify the password of the account you created to
access the database under PostgreSQL;

• connectionPool – the connection pool name, HikariCP by default;

• connectionTimeout – time of connection inactivity before it is broken (in milliseconds);

• connectionTestQuery – a test query to test the connection to the database; for PostgreSQL, it is
recommended to send SELECT 1;

• queueSize – the size of the query queue;

• numThreads – the number of simultaneous connections to the database.

url field

In the url field, specify the address of the database you are using.

1.5. Deployment of the platform in a private network 37

Technical description of the Waves Enterprise platform, Release 1.13.0

More info on url field

Use the following format:

jdbc:postgresql://<POSTGRES_ADDRESS>:<POSTGRES_PORT>/<POSTGRES_DB>

, where

• POSTGRES_ADDRESS – PostgreSQL host address;

• POSTGRES_PORT – PostgreSQL host port number;

• POSTGRES_DB – the PostgreSQL database name.

You can specify the database address along with the account data using the user and password

parameters:

privacy {

storage {

...

url = "jdbc:postgresql://yourpostgres.com:5432/privacy_node_0?user=user_

→˓privacy_node_0@company&password=7nZL7Jr41qOWUHz5qKdypA&sslmode=require"

...

}

}

In this example, user_privacy_node_0@company is the username, 7nZL7Jr41qOWUHz5qKdypA is its password.

You can also use the sslmode=require command to require ssl usage when authorizing.

pgBouncer

To optimize interoperation with the PostgreSQL database you can use pgBouncer – the tool to connect to
the PostgreSQL database.

More info on pgBouncer

pgBouncer is configured in a separate configuration file – pgbouncer.ini.

We recommend to use pool_mode with session mode in pgbouncer.ini settings file to prevent data loss, as
pool_mode = transaction mode in pgBouncer configuration does not support prepared server-side state-
ments. When using session mode you should set the server_reset_query parameter to DISCARD ALL.

[pgbouncer]

pool_mode = session

server_reset_query = DISCARD ALL

More information about how session mode with prepared operators works can be found in the official docu-
mentation for pgBouncer.

1.5. Deployment of the platform in a private network 38

https://www.pgbouncer.org/faq.html#how-to-use-prepared-statements-with-session-pooling
https://www.pgbouncer.org/faq.html#how-to-use-prepared-statements-with-session-pooling

Technical description of the Waves Enterprise platform, Release 1.13.0

vendor = s3

When using the Amazon S3 DBMS, the storage block of the privacy section looks like this:

storage {

vendor = s3

url = "http://localhost:9000/"

bucket = "privacy"

region = "aws-global"

access-key-id = "minio"

secret-access-key = "minio123"

path-style-access-enabled = true

connection-timeout = 30s

connection-acquisition-timeout = 10s

max-concurrency = 200

read-timeout = 0s

upload-chunk-size = 5MiB

}

• url – address of the Minio server to store data; by default, Minio uses the 9000 port;

• bucket – name of the S3 database table to store data;

• region – name of the S3 region, the parameter value is aws-global;

• access-key-id – identifier of the data access key; specify the data access login that you set during
the Minio server installation (see Amazon S3);

• secret-access-key – data access key in the S3 repository; specify the data access password that you
set during the Minio server installation (see Amazon S3);

• path-style-access-enabled = true – the path to S3 table; unchangeable parameter;

• connection-timeout – period of inactivity before the connection is broken (in seconds);

• connection-acquisition-timeout – period of inactivity when establishing a connection (in seconds);

• max-concurrency – the maximum number of concurrent accesses to the storage;

• read-timeout – period of inactivity when reading data (in seconds);

• upload-chunk-size – the size of the data fragment uploaded using POST /privacy/sendLargeData
REST API method or SendLargeData gRPC API method.

replier block

Use the replier block in the privacy section to specify confidential data streaming parameters:

replier {

parallelism = 10

stream-timeout = 1 minute

stream-chunk-size = 1MiB

}

The block must contain the following parameters:

• parallelism – the maximum number of parallel tasks for processing privacy data requests;

• stream-timeout – the maximum time the read operation on the stream should perform;

1.5. Deployment of the platform in a private network 39

Technical description of the Waves Enterprise platform, Release 1.13.0

• stream-chunk-size – the size of one partition when transferring data as a stream.

inventory-handler block

Use the inventory-handler block in the privacy section to specify policies inventory data aggregation
parameters:

inventory-handler {

max-buffer-time = 500ms

max-buffer-size = 100

max-cache-size = 100000

expiration-time = 5m

replier-parallelism = 10

}

The block must contain the following parameters:

• max-buffer-time – the maximum time for buffer; when the specified time elapses, the node processes
all inventories in batch;

• max-buffer-size – the maximum number of inventories in buffer; when the limit is reached, the node
processes all inventories in batch;

• max-cache-size – the maximum size of inventories cache; using this cache the node selects only new
inventories;

• expiration-time – expiration time for cache items (inventories);

• replier-parallelism – the maximum parallel tasks for processing inventory requests.

cache block

Use the cache block in the privacy section to specify policy data responses cache parameters:

cache {

max-size = 100

expire-after = 10m

}

Note: Large files (files uploaded using POST /privacy/sendLargeData REST API method or SendLargeData
gRPC API method) are not cached.

The block must contain the following cache parameters:

• max-size – the maximum count of elements;

• expire-after – the time to expire for element if it hasn’t got access during this time.

1.5. Deployment of the platform in a private network 40

Technical description of the Waves Enterprise platform, Release 1.13.0

synchronizer block

Use the synchronizer block in the privacy section to specify private data synchronization parameters:

synchronizer {

request-timeout = 2 minute

init-retry-delay = 5 seconds

inventory-stream-timeout = 15 seconds

inventory-request-delay = 3 seconds

inventory-timestamp-threshold = 10 minutes

crawling-parallelism = 100

max-attempt-count = 24

lost-data-processing-delay = 10 minutes

network-stream-buffer-size = 10

}

The block must contain the following parameters:

• request-timeout – maximum response waiting time after a data request; the default value is 2 minute;

• init-retry-delay – first delay after an unsuccessful attempt; with each attempt, the delay increases
by 4/3; the default value is 5 seconds;

• inventory-stream-timeout – the maximum time the node waits for a network message with the
inventory information, i.e. confirmation from a particular node that it has certain data and can
provide it for downloading. When this timeout expires, the node sends inventory-request to all the
peers to see if they have the necessary data for downloading; the default value is 15 seconds;

• inventory-request-delay – delay after requesting peers data inventory (inventory-request); the de-
fault value is – 3 seconds;

• inventory-timestamp-threshold – time threshold for inventory broadcast; inventory broadcast is
used for new transactions to speed up the privacy subsystem; the parameter is used to decide whether
to send PrivacyInventory message when the data is synchronized (downloaded) successfully; the default
value is 10 minutes` ;

• crawling-parallelism – the maximum parallel crawling tasks count; the default value is 100;

• max-attempt-count – the number of attempts that the crawler will take before the data is marked as
lost; the default value is 24;

• lost-data-processing-delay – the delay between the attempts to process the lost items queue; the
default value is 10 minutes;

• network-stream-buffer-size – the maximum count of the data chunks in the buffer; when the limit
is reached, back pressure is activated; the default value is 10.

inventory-timestamp-threshold field

A node sends a PrivacyInventory message to peers after it has inserted data into its private storage by
a certain data hash. A cache is used to store the PrivacyInventory, which is limited by the number of
objects and their time in the cache. Depending on the value of the inventory-timestamp-threshold

parameter, the data insertion event handler decides whether the PrivacyInventory message should be
sent when the data is inserted. The handler compares the transaction timestamp, which corresponds
to the given data hash, and the current time on the node. If the difference exceeds the value of the
inventory-timestamp-threshold parameter, the PrivacyInventory messages are not sent. By adjusting
the value of the inventory-timestamp-threshold parameter, you can avoid the situation where a node

1.5. Deployment of the platform in a private network 41

Technical description of the Waves Enterprise platform, Release 1.13.0

which synchronizes the state with the network clogs the network with unnecessary PrivacyInventory mes-
sages.

service block

In the service block of the privacy section, specify the SendLargeData gRPC method and POST /pri-
vacy/sendLargeData REST method parameters to send a stream of confidential data.

service {

request-buffer-size = 10MiB

meta-data-accumulation-timeout = 3s

}

The block must contain the following parameters:

• request-buffer-size – the maximum request buffer size; when the specified size is reached, the back
pressure is activated;

• meta-data-accumulation-timeout – the maximum time of metadata entity accumulation when send-
ing data via POST /privacy/sendLargeData REST API method.

See also

Deployment of the platform in a private network

Precise platform configuration: gRPC and REST API authorization

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: TLS

Confidential data exchange

Precise platform configuration: logging

The total logging level in a node is set in the logging-level parameter in the node section of the node
configuration file. The specified value will be valid for all the loggers. You can override the logging level for
the loggers you list in the node.loggers configuration file section. For example:

node {

...

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default␣

→˓value is INFO.

logging-level = DEBUG

loggers {

"com.wavesplatform.mining": "TRACE"

}

}

You can set the following logging levels:

• ERROR – error logging;

• WARN – warning logging;

• INFO – node events logging; this is the default value;

1.5. Deployment of the platform in a private network 42

Technical description of the Waves Enterprise platform, Release 1.13.0

• DEBUG – extended information about the events for each running node module: a record of events that
occurred and actions performed;

• TRACE – detailed information about the events of the DEBUG level;

• ALL – displaying data from all logging levels.

Note: A very detailed logging level on a node can degrade performance, so it is recommended to use the
INFO level (at most the DEBUG level) for the node as a whole (logging-level parameter), and configure
more detailed logging only for individual loggers.

Log storage

All the node logs are written to the /node/data/log/we.log file on the node. To work with this
file, you need to enter the node container.

Logging management

The following REST API methods are provided to manage the logging levels of the node:

• GET /node/logging

• POST /node/logging

List of loggers

Below is a list of loggers available on the node.

List of loggers

• ROOT-DEBUG

• akka-DEBUG

• akka.actor-DEBUG

• akka.actor.LocalActorRef-DEBUG

• akka.event-DEBUG

• akka.event.slf4j-DEBUG

• akka.event.slf4j.Slf4jLogger-DEBUG

• com-DEBUG

• com.github-DEBUG

• com.github.dockerjava-DEBUG

• com.github.dockerjava.api-DEBUG

• com.github.dockerjava.api.async-DEBUG

• com.github.dockerjava.api.async.ResultCallbackTemplate-DEBUG

• com.github.dockerjava.api.command-DEBUG

1.5. Deployment of the platform in a private network 43

Technical description of the Waves Enterprise platform, Release 1.13.0

• com.github.dockerjava.api.command.PullImageResultCallback-DEBUG

• com.github.dockerjava.core-DEBUG

• com.github.dockerjava.core.command-DEBUG

• com.github.dockerjava.core.command.AbstrDockerCmd-DEBUG

• com.github.dockerjava.core.exec-DEBUG

• com.github.dockerjava.core.exec.AuthCmdExec-DEBUG

• com.github.dockerjava.core.exec.CreateContainerCmdExec-DEBUG

• com.github.dockerjava.core.exec.InspectImageCmdExec-DEBUG

• com.github.dockerjava.core.exec.PingCmdExec-DEBUG

• com.github.dockerjava.core.exec.PullImageCmdExec-DEBUG

• com.github.dockerjava.core.exec.RemoveContainerCmdExec-DEBUG

• com.github.dockerjava.core.exec.StartContainerCmdExec-DEBUG

• com.github.dockerjava.jaxrs-DEBUG

• com.github.dockerjava.jaxrs.JerseyDockerHttpClient-DEBUG

• com.github.dockerjava.jaxrs.JerseyDockerHttpClient$1-DEBUG

• com.github.dockerjava.jaxrs.filter-DEBUG

• com.github.dockerjava.jaxrs.filter.LoggingFilter-DEBUG

• com.github.dockerjava.jaxrs.filter.ResponseStatusExceptionFilter-DEBUG

• com.wavesenterprise-DEBUG

• com.wavesenterprise.AppSchedulers-DEBUG

• com.wavesenterprise.AppSchedulers$-DEBUG

• com.wavesenterprise.CorporateAppSchedulers-DEBUG

• com.wavesenterprise.CorporateApplication-DEBUG

• com.wavesenterprise.CorporateApplication$-DEBUG

• com.wavesenterprise.CorporateApplication$$anon-DEBUG

• com.wavesenterprise.CorporateApplication$$anon$1-DEBUG

• com.wavesenterprise.ResourceAvailability-DEBUG

• com.wavesenterprise.ResourceAvailability$-DEBUG

• com.wavesenterprise.api-DEBUG

• com.wavesenterprise.api.grpc-DEBUG

• com.wavesenterprise.api.grpc.CorporateCompositeGrpcService-DEBUG

• com.wavesenterprise.api.grpc.service-DEBUG

• com.wavesenterprise.api.grpc.service.BlockchainEventsServiceImpl-DEBUG

• com.wavesenterprise.api.http-DEBUG

• com.wavesenterprise.api.http.CorporateCompositeHttpService-DEBUG

• com.wavesenterprise.api.http.CorporateTransactionsApiRoute-DEBUG

1.5. Deployment of the platform in a private network 44

Technical description of the Waves Enterprise platform, Release 1.13.0

• com.wavesenterprise.api.http.service-DEBUG

• com.wavesenterprise.api.http.service.PrivacyApiService-DEBUG

• com.wavesenterprise.consensus-DEBUG

• com.wavesenterprise.consensus.MinerBanHistoryV2-DEBUG

• com.wavesenterprise.consensus.PoAConsensus-DEBUG

• com.wavesenterprise.consensus.WarnFaultyMiners-DEBUG

• com.wavesenterprise.crypto-DEBUG

• com.wavesenterprise.crypto.internals-DEBUG

• com.wavesenterprise.crypto.internals.gost-DEBUG

• com.wavesenterprise.crypto.internals.gost.GostAlgorithms-DEBUG

• com.wavesenterprise.crypto.internals.gost.GostCryptoContext-DEBUG

• com.wavesenterprise.crypto.internals.gost.GostCryptoContext$-DEBUG

• com.wavesenterprise.crypto.internals.gost.GostCryptoContext$$anon-DEBUG

• com.wavesenterprise.crypto.internals.gost.GostCryptoContext$$anon$1-DEBUG

• com.wavesenterprise.crypto.internals.gost.GostCryptoTools-DEBUG

• com.wavesenterprise.database-DEBUG

• com.wavesenterprise.database.migration-DEBUG

• com.wavesenterprise.database.migration.SchemaManager-DEBUG

• com.wavesenterprise.database.rocksdb-DEBUG

• com.wavesenterprise.database.rocksdb.Listeners-DEBUG

• com.wavesenterprise.database.rocksdb.Listeners$-DEBUG

• com.wavesenterprise.database.rocksdb.RocksDBStorage-DEBUG

• com.wavesenterprise.database.rocksdb.RocksDBStorage$-DEBUG

• com.wavesenterprise.database.rocksdb.RocksDBWriter-DEBUG

• com.wavesenterprise.docker-DEBUG

• com.wavesenterprise.docker.CorporateGrpcContractExecutor-DEBUG

• com.wavesenterprise.docker.DockerEngineImpl-DEBUG

• com.wavesenterprise.docker.MinerTransactionsExecutor-DEBUG

• com.wavesenterprise.docker.grpc-DEBUG

• com.wavesenterprise.docker.grpc.service-DEBUG

• com.wavesenterprise.docker.grpc.service.ContractServiceImpl-DEBUG

• com.wavesenterprise.docker.validator-DEBUG

• com.wavesenterprise.docker.validator.ExecutableTransactionsValidator-DEBUG

• com.wavesenterprise.http-DEBUG

• com.wavesenterprise.http.HealthCheckerStateful-DEBUG

• com.wavesenterprise.license-DEBUG

1.5. Deployment of the platform in a private network 45

Technical description of the Waves Enterprise platform, Release 1.13.0

• com.wavesenterprise.license.LicenseChecker-DEBUG

• com.wavesenterprise.metrics-DEBUG

• com.wavesenterprise.metrics.Metrics-DEBUG

• com.wavesenterprise.metrics.Metrics$-DEBUG

• com.wavesenterprise.mining-DEBUG

• com.wavesenterprise.mining.CorporateMiner-DEBUG

• com.wavesenterprise.mining.CorporateMiner$-DEBUG

• com.wavesenterprise.mining.CorporateMiner$$anon-DEBUG

• com.wavesenterprise.mining.CorporateMiner$$anon$2-DEBUG

• com.wavesenterprise.mining.CorporateMinerTransactionsConfirmatory-DEBUG

• com.wavesenterprise.mining.CorporateTransactionsAccumulator-DEBUG

• com.wavesenterprise.network-DEBUG

• com.wavesenterprise.network.Attributes-DEBUG

• com.wavesenterprise.network.Attributes$-DEBUG

• com.wavesenterprise.network.BlockLoader-DEBUG

• com.wavesenterprise.network.CorporateHistoryReplier-DEBUG

• com.wavesenterprise.network.CorporateInitialSyncNetworkClient-DEBUG

• com.wavesenterprise.network.CorporateMicroBlockLoader-DEBUG

• com.wavesenterprise.network.CorporateNetworkInitialSync-DEBUG

• com.wavesenterprise.network.CorporateNetworkServer-DEBUG

• com.wavesenterprise.network.EnabledTxBroadcaster-DEBUG

• com.wavesenterprise.network.FatalErrorHandler-DEBUG

• com.wavesenterprise.network.IdleConnectionDetector-DEBUG

• com.wavesenterprise.network.NodeAttributesHandler-DEBUG

• com.wavesenterprise.network.NodeAttributesSender-DEBUG

• com.waveenterprise.network.P2PNetwork-DEBUG

• com.wavesenterprise.network.P2PNetwork$-DEBUG

• com.wavesenterprise.network.ScoringSyncChannelSelector-DEBUG

• com.wavesenterprise.network.TrafficLogger-DEBUG

• com.wavesenterprise.network.WriteErrorHandler-DEBUG

• com.wavesenterprise.network.handshake-DEBUG

• com.wavesenterprise.network.handshake.CorporateHandshakeHandler-DEBUG

• com.wavesenterprise.network.handshake.CorporateHandshakeHandler$Client-DEBUG

• com.wavesenterprise.network.handshake.CorporateHandshakeHandler$Server-DEBUG

• com.wavesenterprise.network.handshake.HandshakeDecoder-DEBUG

• com.wavesenterprise.network.handshake.HandshakeTimeoutHandler-DEBUG

1.5. Deployment of the platform in a private network 46

Technical description of the Waves Enterprise platform, Release 1.13.0

• com.wavesenterprise.network.netty-DEBUG

• com.wavesenterprise.network.netty.handler-DEBUG

• com.wavesenterprise.network.netty.handler.stream-DEBUG

• com.wavesenterprise.network.netty.handler.stream.ChunkedWriteHandler-DEBUG

• com.wavesenterprise.network.package-DEBUG

• com.wavesenterprise.network.package$-DEBUG

• com.wavesenterprise.network.peers-DEBUG

• com.wavesenterprise.network.peers.PeerDatabaseImpl-DEBUG

• com.wavesenterprise.network.peers.PeerSynchronizer-DEBUG

• com.wavesenterprise.network.privacy-DEBUG

• com.wavesenterprise.network.privacy.EnablePolicyDataReplier-DEBUG

• com.wavesenterprise.network.privacy.EnablePolicyDataSynchronizer-DEBUG

• com.wavesenterprise.network.privacy.EnablePolicyDataSynchronizer$-DEBUG

• com.wavesenterprise.network.privacy.EnabledPrivacyMicroBlockHandler-DEBUG

• com.wavesenterprise.network.privacy.PrivacyInventoryHandler-DEBUG

• com.wavesenterprise.privacy-DEBUG

• com.wavesenterprise.privacy.PolicyStorage-DEBUG

• com.wavesenterprise.privacy.PolicyStorage$-DEBUG

• com.wavesenterprise.privacy.db-DEBUG

• com.wavesenterprise.privacy.db.PolicyPostgresStorageService-DEBUG

• com.wavesenterprise.privacy.db.PostgresPolicyDao-DEBUG

• com.wavesenterprise.privacy.db.SchemaMigration-DEBUG

• com.wavesenterprise.privacy.db.SchemaMigration$-DEBUG

• com.wavesenterprise.settings-DEBUG

• com.wavesenterprise.settings.Gost-DEBUG

• com.wavesenterprise.settings.Gost$-DEBUG

• com.wavesenterprise.settings.Gost$$anon-DEBUG

• com.wavesenterprise.settings.Gost$$anon$1-DEBUG

• com.wavesenterprise.state-DEBUG

• com.wavesenterprise.state.CorporateBlockchainUpdaterImpl-DEBUG

• com.wavesenterprise.state.appender-DEBUG

• com.wavesenterprise.state.appender.BaseAppender-DEBUG

• com.wavesenterprise.state.appender.BaseAppender$-DEBUG

• com.wavesenterprise.state.appender.CorporateBaseAppender-DEBUG

• com.wavesenterprise.state.appender.CorporateBlockAppender-DEBUG

• com.wavesenterprise.state.appender.MicroBlockAppender-DEBUG

1.5. Deployment of the platform in a private network 47

Technical description of the Waves Enterprise platform, Release 1.13.0

• com.wavesenterprise.transaction-DEBUG

• com.wavesenterprise.transaction.TransactionFactory-DEBUG

• com.wavesenterprise.transaction.TransactionFactory$-DEBUG

• com.wavesenterprise.transaction.smart-INFO

• com.wavesenterprise.utils-DEBUG

• com.wavesenterprise.utils.NTP-DEBUG

• com.wavesenterprise.utx-DEBUG

• com.wavesenterprise.utx.CorporateUtxPool-DEBUG

• com.wavesenterprise.wallet-DEBUG

• com.wavesenterprise.wallet.WalletImpl-DEBUG

• com.zaxxer-DEBUG

• com.zaxxer.hikari-DEBUG

• com.zaxxer.hikari.HikariConfig-DEBUG

• com.zaxxer.hikari.HikariDataSource-DEBUG

• com.zaxxer.hikari.pool-DEBUG

• com.zaxxer.hikari.pool.HikariPool-DEBUG

• com.zaxxer.hikari.pool.PoolBase-DEBUG

• com.zaxxer.hikari.pool.PoolEntry-DEBUG

• com.zaxxer.hikari.pool.ProxyConnection-DEBUG

• com.zaxxer.hikari.pool.ProxyLeakTask-DEBUG

• com.zaxxer.hikari.util-DEBUG

• com.zaxxer.hikari.util.ConcurrentBag-DEBUG

• com.zaxxer.hikari.util.DriverDataSource-DEBUG

• com.zaxxer.hikari.util.PropertyElf-DEBUG

• io-DEBUG

• io.netty-INFO

• io.netty.bootstrap-INFO

• io.netty.bootstrap.Bootstrap-INFO

• io.netty.bootstrap.ServerBootstrap-INFO

• io.netty.buffer-INFO

• io.netty.buffer.AbstractByteBuf-INFO

• io.netty.buffer.ByteBufUtil-INFO

• io.netty.buffer.PoolThreadCache-INFO

• io.netty.buffer.PooledByteBufAllocator-INFO

• io.netty.channel-INFO

• io.netty.channel.AbstractChannel-INFO

1.5. Deployment of the platform in a private network 48

Technical description of the Waves Enterprise platform, Release 1.13.0

• io.netty.channel.AbstractChannelHandlerContext-INFO

• io.netty.channel.ChannelHandlerMask-INFO

• io.netty.channel.ChannelInitializer-INFO

• io.netty.channel.ChannelOutboundBuffer-INFO

• io.netty.channel.DefaultChannelId-INFO

• io.netty.channel.DefaultChannelPipeline-INFO

• io.netty.channel.MultithreadEventLoopGroup-INFO

• io.netty.channel.nio-INFO

• io.netty.channel.nio.AbstractNioChannel-INFO

• io.netty.channel.nio.NioEventLoop-INFO

• io.netty.channel.socket-INFO

• io.netty.channel.socket.nio-INFO

• io.netty.channel.socket.nio.NioServerSocketChannel-INFO

• io.netty.channel.socket.nio.NioSocketChannel-INFO

• io.netty.handler-INFO

• .netty.handler.flow-INFO

• io.netty.handler.flow.FlowControlHandler-INFO

• io.netty.resolver-INFO

• io.netty.resolver.AddressResolverGroup-INFO

• io.netty.util-INFO

• io.netty.util.NetUtil-INFO

• io.netty.util.NetUtilInitializations-INFO

• io.netty.util.Recycler-INFO

• io.netty.util.ReferenceCountUtil-INFO

• io.netty.util.ResourceLeakDetector-INFO

• io.netty.util.ResourceLeakDetectorFactory-INFO

• io.netty.util.concurrent-INFO

• io.netty.util.concurrent.AbstractEventExecutor-INFO

• io.netty.util.concurrent.DefaultPromise-INFO

• io.netty.util.concurrent.DefaultPromise.rejectedExecution-INFO

• io.netty.util.concurrent.GlobalEventExecutor-INFO

• io.netty.util.concurrent.SingleThreadEventExecutor-INFO

• io.netty.util.internal-INFO

• io.netty.util.internal.CleanerJava9-INFO

• io.netty.util.internal.InternalThreadLocalMap-INFO

• io.netty.util.internal.MacAddressUtil-INFO

1.5. Deployment of the platform in a private network 49

Technical description of the Waves Enterprise platform, Release 1.13.0

• io.netty.util.internal.PlatformDependent-INFO

• io.netty.util.internal.PlatformDependent0-INFO

• io.netty.util.internal.SystemPropertyUtil-INFO

• io.netty.util.internal.logging-INFO

• io.netty.util.internal.logging.InternalLoggerFactory-INFO

• io.swagger-INFO

• javax-DEBUG

• javax.management-INFO

• kamon-DEBUG

• kamon.Kamon-DEBUG

• kamon.ReporterRegistry-DEBUG

• kamon.ReporterRegistry$Default-DEBUG

• kamon.ReporterRegistry$Default$MetricReporterTicker-DEBUG

• kamon.context-DEBUG

• kamon.context.Codecs-DEBUG

• kamon.context.Codecs$Binary-DEBUG

• kamon.context.Codecs$HttpHeaders-DEBUG

• kamon.influxdb-DEBUG

• kamon.influxdb.InfluxDBReporter-DEBUG

• kamon.metric-DEBUG

• kamon.metric.MetricRegistry-DEBUG

• kamon.metric.RangeSamplerMetric-DEBUG

• kamon.metrics-DEBUG

• kamon.metrics.SystemMetrics-DEBUG

• kamon.sigar-DEBUG

• kamon.sigar.SigarProvisioner-DEBUG

• kamon.trace-DEBUG

• kamon.trace.Tracer-DEBUG

• org-DEBUG

• org.apache-DEBUG

• org.apache.http-INFO

• org.aspectj-INFO

• org.asynchttpclient-INFO

• org.flywaydb-INFO

• org.flywaydb.core-INFO

• org.flywaydb.core.Flyway-INFO

1.5. Deployment of the platform in a private network 50

Technical description of the Waves Enterprise platform, Release 1.13.0

• org.flywaydb.core.api-INFO

• org.flywaydb.core.api.configuration-INFO

• org.flywaydb.core.api.configuration.ClassicConfiguration-INFO

• org.flywaydb.core.internal-INFO

• org.flywaydb.core.internal.callback-INFO

• org.flywaydb.core.internal.callback.SqlScriptCallbackFactory-INFO

• org.flywaydb.core.internal.command-INFO

• org.flywaydb.core.internal.command.DbMigrate-INFO

• org.flywaydb.core.internal.command.DbSchemas-INFO

• org.flywaydb.core.internal.command.DbValidate-INFO

• org.flywaydb.core.internal.database-INFO

• org.flywaydb.core.internal.database.DatabaseFactory-INFO

• org.flywaydb.core.internal.database.base-INFO

• org.flywaydb.core.internal.database.base.Database-INFO

• org.flywaydb.core.internal.database.base.Table-INFO

• org.flywaydb.core.internal.database.postgresql-INFO

• org.flywaydb.core.internal.database.postgresql.PostgreSQLAdvisoryLockTemplate-INFO

• org.flywaydb.core.internal.jdbc-INFO

• org.flywaydb.core.internal.jdbc.JdbcUtils-INFO

• org.flywaydb.core.internal.jdbc.TransactionTemplate-INFO

• org.flywaydb.core.internal.license-INFO

• org.flywaydb.core.internal.license.VersionPrinter-INFO

• org.flywaydb.core.internal.resolver-INFO

• org.flywaydb.core.internal.resolver.AbstractJavaMigrationResolver-INFO

• org.flywaydb.core.internal.scanner-INFO

• org.flywaydb.core.internal.scanner.Scanner-INFO

• org.flywaydb.core.internal.scanner.classpath-INFO

• org.flywaydb.core.internal.scanner.classpath.ClassPathScanner-INFO

• org.flywaydb.core.internal.scanner.classpath.JarFileClassPathLocationScanner-INFO

• org.flywaydb.core.internal.scanner.filesystem-INFO

• org.flywaydb.core.internal.scanner.filesystem.FileSystemScanner-INFO

• org.flywaydb.core.internal.schemahistory-INFO

• org.flywaydb.core.internal.schemahistory.JdbcTableSchemaHistory-INFO

• org.flywaydb.core.internal.sqlscript-INFO

• org.flywaydb.core.internal.sqlscript.SqlScript-INFO

• org.flywaydb.core.internal.util-INFO

1.5. Deployment of the platform in a private network 51

Technical description of the Waves Enterprise platform, Release 1.13.0

• org.flywaydb.core.internal.util.ClassUtils-INFO

• org.flywaydb.core.internal.util.FeatureDetector-INFO

• org.flywaydb.core.internal.util.Locations-INFO

• org.glassfish-DEBUG

• org.glassfish.jersey-DEBUG

• org.glassfish.jersey.client-DEBUG

• org.glassfish.jersey.client.ClientExecutorProvidersConfigurator-INFO

• org.glassfish.jersey.inject-DEBUG

• org.glassfish.jersey.inject.hk2-DEBUG

• org.glassfish.jersey.inject.hk2.AbstractHk2InjectionManager-DEBUG

• org.glassfish.jersey.internal-DEBUG

• org.glassfish.jersey.internal.ServiceFinder-DEBUG

• org.glassfish.jersey.internal.util-DEBUG

• org.glassfish.jersey.internal.util.ReflectionHelper-INFO

• org.glassfish.jersey.process-DEBUG

• org.glassfish.jersey.process.internal-DEBUG

• org.glassfish.jersey.process.internal.ExecutorProviders-DEBUG

• org.influxdb-DEBUG

• org.influxdb.impl-DEBUG

• org.influxdb.impl.BatchProcessor-DEBUG

• org.postgresql-DEBUG

• org.postgresql.Driver-INFO

• org.postgresql.core-DEBUG

• org.postgresql.core.v3-DEBUG

• org.postgresql.core.v3.ConnectionFactoryImpl-DEBUG

• org.postgresql.jdbc-DEBUG

• org.postgresql.jdbc.PgConnection-DEBUG

• org.postgresql.ssl-DEBUG

• org.postgresql.ssl.MakeSSL-DEBUG

• org.reflections-DEBUG

• org.reflections.Reflections-DEBUG

• ru-DEBUG

• ru.CryptoPro-INFO

• ru.CryptoPro.JCP-INFO

• ru.CryptoPro.JCP.tools-INFO

• ru.CryptoPro.JCP.tools.JCPLogger-INFO

1.5. Deployment of the platform in a private network 52

Technical description of the Waves Enterprise platform, Release 1.13.0

• ru.CryptoPro.JCSP-INFO

• ru.CryptoPro.JCSP.JCSPLogger-INFO

• slick-INFO

• slick.basic-INFO

• slick.basic.BasicBackend-INFO

• slick.basic.BasicBackend.action-INFO

• slick.compiler-INFO

• slick.compiler.AssignUniqueSymbols-INFO

• slick.compiler.CodeGen-INFO

• slick.compiler.CreateResultSetMapping-INFO

• slick.compiler.ExpandSums-INFO

• slick.compiler.ExpandTables-INFO

• slick.compiler.FlattenProjections-INFO

• slick.compiler.HoistClientOps-INFO

• slick.compiler.MergeToComprehensions-INFO

• slick.compiler.PruneProjections-INFO

• slick.compiler.QueryCompiler-INFO

• slick.compiler.QueryCompilerBenchmark-INFO

• slick.compiler.RemoveFieldNames-INFO

• slick.jdbc-INFO

• slick.jdbc.JdbcBackend-INFO

• slick.jdbc.JdbcBackend.benchmark-INFO

• slick.jdbc.JdbcBackend.parameter-INFO

• slick.jdbc.JdbcBackend.statement-INFO

• slick.jdbc.JdbcBackend.statementAndParameter-INFO

• slick.jdbc.StatementInvoker-INFO

• slick.jdbc.StatementInvoker.result-INFO

• slick.relational-INFO

• slick.relational.ResultConverterCompiler-INFO

• slick.util-INFO

• slick.util.ManagedArrayBlockingQueue-INFO

• sun-DEBUG

• sun.net-DEBUG

• sun.net.www-DEBUG

• sun.net.www.protocol-DEBUG

• sun.net.www.protocol.http-DEBUG

1.5. Deployment of the platform in a private network 53

Technical description of the Waves Enterprise platform, Release 1.13.0

• sun.net.www.protocol.http.HttpURLConnection-DEBUG

• sun.rmi-INFO

See also

Deployment of the platform in a private network

GET /node/logging

POST /node/logging

Precise platform configuration: anchoring

If you plan to use the data anchoring from your network to a larger network, configure the data transfer
settings in the anchoring block of the node’s configuration file. In the terminology of the configuration
file, targetnet is the blockchain to which your node will perform anchoring transactions from the current
network.

anchoring {

enable = yes

height-range = 30

height-above = 8

threshold = 20

tx-mining-check-delay = 5 seconds

tx-mining-check-count = 20

targetnet-authorization {

type = "oauth2" # "api-key" or "oauth2"

authorization-token = ""

authorization-service-url = "https://client.wavesenterprise.com/

→˓authServiceAddress/v1/auth/token"

token-update-interval = "60s"

api-key-hash = ""

privacy-api-key-hash = ""

}

targetnet-scheme-byte = "V"

targetnet-node-address = "https://client.wavesenterprise.com:6862/

→˓NodeAddress"

targetnet-node-recipient-address = ""

targetnet-private-key-password = ""

wallet {

file = "node-1_mainnet-wallet.dat"

password = "small"

}

targetnet-fee = 10000000

sidechain-fee = 5000000

}

1.5. Deployment of the platform in a private network 54

Technical description of the Waves Enterprise platform, Release 1.13.0

Anchoring parameters

• enable – enable or disable anchoring (yes / no);

• height-range – the block interval, after which the private blockchain node sends transactions to the
Targetnet for anchoring;

• height-above – the number of blocks in Targetnet, after which the private blockchain node creates
a confirmation anchoring transaction with the data of the first transaction. It is recommended to set
the value not exceeding the maximum value of rollback of blocks in Targetnet (max-rollback);

• threshold – the number of blocks that is subtracted from the current height of the private blockchain.
Anchoring transaction sent to Targetnet will receive information from the block at current-height –
threshold. If the value 0 is set, the block value at the current block height is written to the anchoring
transaction. It is recommended to set the value close to the maximum rollback value in the private
blockchain (max-rollback);

• tx-mining-check-delay – the wait time between checks of transaction availability for anchoring in
Targetnet;

• tx-mining-check-count – the maximum number of checks for transaction availability for anchoring
in the Targetnet, after completion of which the transaction is not considered to enter the network.

Depending on the mining settings on the Targetnet, the distance between anchoring transactions may vary.
The set value of height-range defines the approximate interval between anchoring transactions. The actual
time for anchoring transactions to hit a mined block on the Targetnet network may be longer than the time
it takes to mine the number of height-range blocks on the Targetnet network.

Authorization parameters for anchoring

• type – type of authorization when using anchoring:

– api-key – authorization by an api-key-hash;

– auth-service – authorization by a JWT-token through authorization service.

If you choose authorization by api-key-hash, it is sufficient to specify the key value in the api-key parame-
ter. If you choose authorization by a JWT-token, you must specify type = "auth-service" and uncomment
and fill in the parameters below:

• authorization-token – permanent authorization token;

• authorization-service-url – URL of the authorization service;

• token-update-interval – interval for authorization token update.

Targetnet access parameters

A separate keystore.dat file is generated for the node that will send anchoring transactions to the Targetnet
with the key pair for access to the Targetnet.

• targetnet-scheme-byte – Targetnet network (Waves Enterprise Mainnet - V);

• targetnet-node-address – full network address of the node together with the port number in the
Targetnet network to which transactions will be sent for anchoring. The address must be specified
together with the connection type (http/https), port number and parameter NodeAddress: http://

node.weservices.com:6862/NodeAddress;

1.5. Deployment of the platform in a private network 55

Technical description of the Waves Enterprise platform, Release 1.13.0

• targetnet-node-recipient-address – the address of the node in the Targetnet network, to which
the transactions for anchoring will be written, signed by the key pair of this address;

• targetnet-private-key-password – node private key password to sign anchoring transactions.

The network address and port for anchoring to the Targetnet network can be obtained from Waves Enter-
prise technical support specialists. If you use multiple private blockchains with mutual anchoring, use the
appropriate private network settings.

Key pair file parameters for signing anchoring transactions in Targetnet (wallet section)

• file – file name and path to the file storage directory with the key pair for signing anchoring trans-
actions in the Targetnet network. The file is located on the private network node;

• password – the password of the key pair file.

Fee parameters

• targetnet-fee – a fee for issuing a transaction for anchoring in the Targetnet network;

• sidechain-fee – a fee for issuing a transaction in the current private blockchain.

See also

Deployment of the platform in a private network

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: confidential data groups configuration

Precise platform configuration: TLS

Precise platform configuration: snapshot

The node.consensual-snapshot block of the node configuration file is used for the snapshot mechanism
configuration:

node.consensual-snapshot {

enable = yes

snapshot-directory = ${node.data-directory}"/snapshot"

snapshot-height = 12000000

wait-blocks-count = 10

back-off {

max-retries = 3

delay = 10m

}

consensus-type = CFT

}

This block includes following parameters:

• snapshot-directory – directory on a hard drive to save snapshot data. By default, it is the snapshot
subdirectory in the directory with node data;

• snapshot-height – height of the blockchain at which the data snapshot will be created;

1.5. Deployment of the platform in a private network 56

Technical description of the Waves Enterprise platform, Release 1.13.0

• wait-blocks-count – number of blocks after data snapshot creation is finished, after which the node
sends a message to its peers (addresses from the peers list in the node configuration file) that the data
snapshot is ready;

• back-off – settings section for retries to create a data snapshot in case of errors:

– max-retries – total number of retries;

– delay – interval between retries (in minutes);

• consensus-type – consensus type of the genesis block of the new network. Possible values: POA, CFT.

See also

Deployment of the platform in a private network

Snapshooting

Precise platform configuration: snapshot

Precise platform configuration: node in the watcher mode

The blockchain node can be configured for operation in the watcher mode.

In this mode, the node functions as follows:

• The watcher node does not obtain or send unconfirmed transactions.

• The watcher node does not create new blocks.

• The watcher node does not upload or execute smart contracts.

• The UTX pool of the watcher node does not synchronize with other nodes.

• The watcher node obtains data of microblocks, blocks and transactions for updating its state.

This mode allows to create nodes that are able to obtain the actual blockchain state, but do not participate
in mining and do not overflow the network with corresponding messages.

Configuration

To set the node in the watcher mode, change the mode parameter in the node.network section of the
configuration file:

node {

...

network {

ENUM: default or watcher

mode = default

...

}

}

• default - the standard operational mode;

• watcher - the watcher mode.

1.5. Deployment of the platform in a private network 57

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Deployment of the platform in a private network

Precise platform configuration: gRPC and REST API authorization

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: confidential data groups configuration

Precise platform configuration: setting the fee for the transactions sent to the blockchain

Waves Enterprise Mainnet users are charged Mainnet transaction fees for each transaction on the blockchain
network. On a private blockchain network, you can customize the amount of transaction fees.

In the node.blockchain.fees section of the node configuration file, you can set the minimum (base) and
additional fees for each type of transaction. The default fee settings are as follows:

blockchain {

...

...

fees {

base {

issue = 1 WEST

transfer = 0.01 WEST

reissue = 1 WEST

burn = 0.05 WEST

exchange = 0.005 WEST

lease = 0.01 WEST

lease-cancel = 0.01 WEST

create-alias = 1 WEST

mass-transfer = 0.05 WEST

data = 0.05 WEST

set-script = 0.5 WEST

sponsor-fee = 1 WEST

set-asset-script = 1 WEST

permit = 0.01 WEST

create-contract = 1 WEST

call-contract = 0.1 WEST

disable-contract = 0.01 WEST

update-contract = 1 WEST

register-node = 0.01 WEST

create-policy = 1 WEST

update-policy = 0.5 WEST

policy-data-hash = 0.05 WEST

}

additional {

mass-transfer = 0.01 WEST

data = 0.01 WEST

}

}

}

1.5. Deployment of the platform in a private network 58

Technical description of the Waves Enterprise platform, Release 1.13.0

Important: It is not recommended to change the fee while the network is running, especially to reduce
them, as this will cause transaction validation problems on the nodes that will validate the state when
synchronizing from 0 height (mined transactions will have unacceptably small fees).

Zero fee

If you want to build a network where no fees are charged for sending transactions, assign false to the
fees.enabled parameter in the node.blockchain section of the node configuration file.

If the fees.enabled parameter is set to false, the node will be able to send transactions for which the
fee is set to 0 to the blockchain. Also, when synchronizing the state the node will recognize as valid the
transactions of other nodes, in which the fee field is set to 0.

Note: If the fees.enabled parameter is set to false, then both zero fee and fee greater than zero are
allowed in transactions.

See also

Deployment of the platform in a private network

Transactions of the blockchain platform

Full examples of configuration files to configure each node are given by here.

1.5.3 Obtaining a private network license and associated files

To deploy the platform on a private network, you need to get the kind of license that suits your purposes:
trial, commercial or non-commercial .

Note: The opensource version of the Waves Enterprise blockchain platform does not require a license.

The license to run a node is tied to the node owner’s key. The license contains the address of the node for
which the license is issued.

To discuss the details of your license, contact Waves Enterprise Sales at sales@wavesenterprise.com.

After that, you will be sent the license file. Place the file into the folder whose path is specified in the
license-file parameter of the node configuration file.

Before deployment, read the blockchain platform system requirements.

1.5. Deployment of the platform in a private network 59

mailto:sales@wavesenterprise.com

Technical description of the Waves Enterprise platform, Release 1.13.0

1.5.4 Genesis block signing

After configuring your network’s nodes, you must create a genesis block, the first private blockchain block
which contains the transactions that determine a node’s initial balance and permissions.

A genesis block is signed by the GenesisBlockGenerator utility included in the generator package. It uses
the node.conf node configuration file that you set up as an argument:

java -jar generator-x.x.x.jar GenesisBlockGenerator node.conf

As a result, the utility fills the genesis-public-key-base-58 and signature fields located in the genesis
block of the blockchain section in the node configuration file with the generated values of the public key
and signature of the genesis block.

Example:

genesis-public-key-base-58: "4ozcAj...penxrm"

signature: "5QNVGF...7Bj4Pc"

1.5.5 Launching the network

After signing the genesis block, the platform is fully configured and ready to run the network.

You can launch the network using one of the following docker container administration tools:

• Docker Compose

• Kubernetes

If you plan to use Docker Compose to launch the network, follow the same process you use for the trial mode.

If you plan to use Kubernetes to launch the network, launch it according to the instructions received from
the Waves Enterprise Technical Support Team.

1.5.6 Attaching the Client application to the private network

Once the network is up and running, attach theWaves Enterprise Client application to it: with this, network
users can send transactions to the blockchain, as well as broadcast and call smart contracts.

1. Open your browser and enter the network address of your computer with the deployed node software
in the address bar.

2. Register to the web client using any valid email address and log in to the web client.

3. Open the Select address -> Create address page. To open the menu after the first login, you must
enter the password that you entered when you registered your account.

4. Select Add address from the node keystore and click Continue.

5. Fill in the fields below. The required values are given in the credentials.txt file for the first node
in the working directory.

• Address name – specify the name of the node;

• Node URL – specify the http://<computer network address>/<node address> value;

• Type of authorization on the node – select the authorization type you configured earlier: by JWT-token
or by api-key;

• Blockchain address – specify the address of your node;

1.5. Deployment of the platform in a private network 60

https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

• Key pair password – specify the password to the node key pair if you have set it up while generating
the account.

Client description is provided in the Client article.

See also

Examples of node configuration files

Generators

Licenses of the Waves Enterprise blockchain platform

Installation and usage of the platform

1.6 Examples of node configuration files

1.6.1 node.conf

This configuration example:

• uses the PoA consensus algorithm;

• uses the second genesis version;

• enables the sender permission for the network participants (see Permissions);

• enables mining for three nodes;

• disables TLS ;

• enables the gRPC and REST API tools without TLS, as well as execution of smart contracts;

• enables api-key hash authorization for gRPC and REST API;

• uses privacy methods with a PostgreSQL database for confidential data storage;

• the function of periodic deletion of invalid transactions from the UTX pool of a non-miner is configured.

• the delay of checking the UTX pool (whether there are transactions in the pool or it is empty) by the
miner is set.

Fields whose values you get when using the generators package or set yourself based on your hardware and
software configuration are marked as /FILL/.

Each section is provided with an additional comment.

node.conf:

node {

Type of cryptography. The field is deprecated since v1.9.0, use 'node.crypto.type =␣

→˓waves' instead.
waves-crypto = yes

crypto {

Possible values: [WAVES]

type = WAVES

(continues on next page)

1.6. Examples of node configuration files 61

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

}

Node owner address

owner-address = " /FILL/ "

NTP settings

ntp.fatal-timeout = 5 minutes

Node "home" and data directories to store the state

directory = "/node"

data-directory = "/node/data"

Location and name of a license file

license.file = ${node.directory}"/node.license"

wallet {

Path to keystore.

file = "/node/keystore.dat"

Access password

password = " /FILL/ "

}

Blockchain settings

blockchain {

type = CUSTOM

fees.enabled = false

consensus {

type = "poa"

round-duration = "17s"

sync-duration = "3s"

ban-duration-blocks = 100

warnings-for-ban = 3

max-bans-percentage = 40

}

custom {

address-scheme-character = "E"

functionality {

feature-check-blocks-period = 1500

blocks-for-feature-activation = 1000

pre-activated-features = { 2 = 0, 3 = 0, 4 = 0, 5 = 0, 6 = 0, 7 = 0, 9 = 0, 10 = 0,

→˓ 100 = 0, 101 = 0 }

}

Mainnet genesis settings

genesis {

version: 2

sender-role-enabled: true

average-block-delay: 60s

initial-base-target: 153722867

Filled by GenesisBlockGenerator

(continues on next page)

1.6. Examples of node configuration files 62

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

block-timestamp: 1573472578702

initial-balance: 16250000 WEST

Filled by GenesisBlockGenerator

genesis-public-key-base-58: ""

Filled by GenesisBlockGenerator

signature: ""

transactions = [

Initial token distribution:

- recipient: target's blockchain address (base58 string)

- amount: amount of tokens, multiplied by 10e8 (integer)

#

Example: { recipient: "3HQSr3VFCiE6JcWwV1yX8xttYbAGKTLV3Gz", amount:␣

→˓30000000 WEST }

#

Note:

Sum of amounts must be equal to initial-balance above.

#

{ recipient: " /FILL/ ", amount: 1000000 WEST },

{ recipient: " /FILL/ ", amount: 1500000 WEST },

{ recipient: " /FILL/ ", amount: 500000 WEST },

]

network-participants = [

Initial participants and role distribution

- public-key: participant's base58 encoded public key;

- roles: list of roles to be granted;

#

Example: {public-key: "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1Tt",␣

→˓roles: [permissioner, miner, connection_manager, contract_developer, issuer]}

#

Note:

There has to be at least one miner, one permissioner and one connection_

→˓manager for the network to start correctly.

Participants are granted access to the network via␣

→˓GenesisRegisterNodeTransaction.

Role list could be empty, then given public-key will only be granted␣

→˓access to the network.

#

{ public-key: " /FILL/ ", roles: [permissioner, sender, miner, connection_

→˓manager, contract_developer, issuer]},

{ public-key: " /FILL/ ", roles: [miner, sender]},

{ public-key: " /FILL/ ", roles: []},

]

}

}

}

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value is INFO.

logging-level = DEBUG

(continues on next page)

1.6. Examples of node configuration files 63

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

tls {

Supported TLS types:

• EMBEDDED: Certificate is signed by node's provider and packed into JKS Keystore.␣

→˓The same file is used as a Truststore.

Has to be manually imported into system by user to avoid certificate␣

→˓warnings.

• DISABLED: TLS is fully disabled

type = DISABLED

type = EMBEDDED

keystore-path = ${node.directory}"/we_tls.jks"

keystore-password = ${TLS_KEYSTORE_PASSWORD}

private-key-password = ${TLS_PRIVATE_KEY_PASSWORD}

}

P2P Network settings

network {

Network address

bind-address = "0.0.0.0"

Port number

port = 6864

Enable/disable network TLS

tls = no

ENUM: regular or watcher

mode = regular

Peers network addresses and ports

Example: known-peers = ["node-1.com:6864", "node-2.com:6864"]

known-peers = [/FILL/]

Node name to send during handshake. Comment this string out to set random node name.

Example: node-name = "your-we-node-name"

node-name = " /FILL/ "

How long the information about peer stays in database after the last communication␣

→˓with it

peers-data-residence-time = 2h

String with IP address and port to send as external address during handshake. Could␣

→˓be set automatically if uPnP is enabled.

Example: declared-address = "your-node-address.com:6864"

declared-address = "0.0.0.0:6864"

Delay between attempts to connect to a peer

attempt-connection-delay = 5s

}

New blocks generator settings

miner {

enable = yes

(continues on next page)

1.6. Examples of node configuration files 64

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

Important: use quorum = 0 only for testing purposes, while running a single-node␣

→˓network;

In other cases always set quorum > 0

quorum = 2

interval-after-last-block-then-generation-is-allowed = 10d

micro-block-interval = 5s

min-micro-block-age = 3s

max-transactions-in-micro-block = 500

minimal-block-generation-offset = 200ms

utx-check-delay = 100ms

}

Nodes REST API settings

api {

rest {

Enable/disable REST API

enable = yes

Network address to bind to

bind-address = "0.0.0.0"

Port to listen to REST API requests

port = 6862

Enable/disable TLS for REST

tls = no

}

grpc {

Enable/disable gRPC API

enable = yes

Network address to bind to

bind-address = "0.0.0.0"

Port to listen to gRPC API requests

port = 6865

Enable/disable TLS for gRPC

tls = no

}

}

auth {

type: "api-key"

Hash of API key string

You can obtain hashes by running ApiKeyHash generator

api-key-hash: " /FILL/ "

Hash of API key string for PrivacyApi routes

privacy-api-key-hash: " /FILL/ "

(continues on next page)

1.6. Examples of node configuration files 65

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

}

}

#Settings for Privacy Data Exchange

privacy {

replier {

parallelism = 10

stream-timeout = 1 minute

stream-chunk-size = 1MiB

}

Syncs private data.

synchronizer {

request-timeout = 2 minute

init-retry-delay = 5 seconds

inventory-stream-timeout = 15 seconds

inventory-request-delay = 3 seconds

inventory-timestamp-threshold = 10 minutes

crawling-parallelism = 100

max-attempt-count = 24

lost-data-processing-delay = 10 minutes

network-stream-buffer-size = 10

}

inventory-handler {

max-buffer-time = 500ms

max-buffer-size = 100

max-cache-size = 100000

expiration-time = 5m

replier-parallelism = 10

}

cache {

max-size = 100

expire-after = 10m

}

storage {

vendor = postgres

for postgres vendor:

schema = "public"

migration-dir = "db/migration"

profile = "slick.jdbc.PostgresProfile$"

upload-chunk-size = 1MiB

jdbc-config {

url = "jdbc:postgresql://postgres:5432/node-1"

driver = "org.postgresql.Driver"

user = postgres

password = wenterprise

connectionPool = HikariCP

(continues on next page)

1.6. Examples of node configuration files 66

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 20

}

for s3 vendor:

url = "http://localhost:9000/"

bucket = "privacy"

region = "aws-global"

access-key-id = "minio"

secret-access-key = "minio123"

path-style-access-enabled = true

connection-timeout = 30s

connection-acquisition-timeout = 10s

max-concurrency = 200

read-timeout = 0s

upload-chunk-size = 5MiB

}

service {

request-buffer-size = 10MiB

meta-data-accumulation-timeout = 3s

}

}

Docker smart contracts settings

docker-engine {

Docker smart contracts enabled flag

enable = yes

For starting contracts in a local docker

use-node-docker-host = yes

default-registry-domain = "registry.wavesenterprise.com/waves-enterprise-public"

Basic auth credentials for docker host

#docker-auth {

username = "some user"

password = "some password"

#}

Optional connection string to docker host

docker-host = "unix:///var/run/docker.sock"

Optional string to node REST API if we use remote docker host

node-rest-api = "node-0"

Execution settings

execution-limits {

Contract execution timeout

timeout = 10s

(continues on next page)

1.6. Examples of node configuration files 67

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

Memory limit in Megabytes

memory = 512

Memory swap value in Megabytes (see https://docs.docker.com/config/containers/

→˓resource_constraints/)

memory-swap = 0

}

Reuse once created container on subsequent executions

reuse-containers = yes

Remove container with contract after specified duration passed

remove-container-after = 10m

Remote registries auth information

remote-registries = []

Check registry auth on node startup

check-registry-auth-on-startup = yes

Contract execution messages cache settings

contract-execution-messages-cache {

Time to expire for messages in cache

expire-after = 60m

Max number of messages in buffer. When the limit is reached, the node processes␣

→˓all messages in batch

max-buffer-size = 10

Max time for buffer. When time is out, the node processes all messages in batch

max-buffer-time = 100ms

#The interval after which invalid transactions (with Error status) are removed from␣

→˓the UTX pool of a non-miner node

utx-cleanup-interval = 1m

#The minimum number of transaction Error statuses received from other nodes, after␣

→˓which the transaction is removed from the UTX pool of a non-miner node

contract-error-quorum = 2

}

}

}

1.6.2 accounts.conf

In this example, Waves Crypto encryption is enabled, the standard network identification byte is used and
the keystore node update option for generating 1 key pair is disabled.

Password which you have to enter by yourself is marked as /FILL/.

1.6. Examples of node configuration files 68

Technical description of the Waves Enterprise platform, Release 1.13.0

accounts.conf:

accounts-generator {

crypto {

type = WAVES

pki {

mode = OFF

required-oids = []

}

}

chain-id = T

amount = 5

wallet = ${ user.home} "/node/wallet/wallet1.dat"

wallet-password = "/FILL/"

reload-node-wallet {

enabled = false

url = "http://localhost:6869/utils/reload-wallet"

}

}

1.6.3 api-key-hash.conf

In this example, Waves encryption is enabled.

api-key-hash.conf:

apikeyhash-generator {

crypto {

type = Waves

}

api-key = "some string for api-key"

}

1.6.4 Additional examples

For more examples of configuration files with comments, see the official Waves Enterprise GitHub repository.

See also

Deployment of the platform in a private network

Generators

1.6. Examples of node configuration files 69

https://github.com/waves-enterprise/we-node/tree/release-1.12/configs

Technical description of the Waves Enterprise platform, Release 1.13.0

1.7 System errors

Below is a list of error codes for the Waves Enterprise blockchain platform.

0-10 ˘ Swagger/API Specific Errs

Table 2: 0-10 - Swagger and API Errors

Node

level

er-

rors

HTTP

code

API

level

code

Node

level

code

Message Context Condition

No No Trans-
action is
not in
blockchain

When querying a transaction by id The transac-
tion is not in
the blockchain

400 1 WrongJ-
son

Failed
to parse
json
message

Relevant for requests via Swagger

403 2 ApiKeyNot-
Valid

Provided
API key
is not
correct

Relevant only for signing transac-
tions
on the node, because the key is not
needed
when transmitting signed transac-
tions

An invalid or
empty key
was passed
in the request

TooBi-
gAr-
ray

400 10 TooBi-
gAr-
rayAl-
loca-
tion

Too
big se-
quences
re-
quested

When querying through Swagger The request
contains too
many values

1.7. System errors 70

Technical description of the Waves Enterprise platform, Release 1.13.0

101-111 ˘ TxValidation Errs

Table 3: 101-111 - Transaction validation errors

Node

level

errors

HTTP

code

API

level

code

Node

level

code

Message Context Condition

InvalidSig-
nature(_,
_)
In-
validRequestSig-
nature

400 101 InvalidSig-
nature

invalid sig-
nature

Blockchain
event during
blocks vali-
dation
(not dis-
played in
the Client)

Incorrect
transaction
identifier
Incorrect
block signa-
ture in the
request
An error is
displayed in
the Client
interface
when at-
tempting
to roll-
back the
blockchain
for the block
with the
specified
signature

InvalidAd-
dress

400 102 InvalidAd-
dress

invalid ad-
dress.
Logged as:
1. Bad pub-
lic key string
lenght.
2. Unable
to de-
code base58:
${ex.getMessage}”
3. “Unable
to create
public key:
${ex.getMessage}”

When vali-
dating any
field con-
taining the
address,
alias,
and private
key of
either sender
or recipient
on the node.
If the client
part does
not check
the validity
of the ad-
dress

An invalid
address,
alias, or
public key
was passed
in the re-
quest

400 106 Invalid-
Sender

invalid
sender

When form-
ing Diff from
Executed-
Contract
Transaction

If the cre-
ator of the
Executed
Contract
Transaction
is not the
block miner

400 108 InvalidPub-
licKey

invalid pub-
lic key

When
checking if
the passed
string is
a public key

GET /ad-
dresses/
publicKey/
{publicKey}

400 110 InvalidMes-
sage

invalid mes-
sage

When veri-
fying the sig-
nature of a
message on a
node.
The trans-
action
signature
does not
match the
public key.

POST /
addresses/
verify/ {ad-
dress}
POST /
addresses/
verifyText/
{address}

Nega-
tiveAmount(x,
of)

400 111 Nega-
tiveAmount
(s”$x of

$of”)

negative
amount:
$msg

When cre-
ating a
transfer,
mass trans-
fer, leasing,
issue and
reissue
transaction,
the user
the user
enters a
negative
number
in the
“Amount”
field

If a nega-
tive value is
passed
In the Client
interface,
when trying
to specify
a negative
number, the
input
field goes to
error state
and displays
the
“Enter a
positive
number”
error

1.7. System errors 71

Technical description of the Waves Enterprise platform, Release 1.13.0

112 - StateCheckFailed Errs

This section describes the TransactionValidationError node level error. It corresponds to the 400
HTTP code and the 112 API level code.

1.7. System errors 72

Technical description of the Waves Enterprise platform, Release 1.13.0

Table 4: 112 – State Check Failed Errors

API

level

errors

Message Context Con-

di-

tion

Stat-
e-
Check-
Failed(tx:
Trans-
ac-
tion,
err:
String)

State check failed. Reason:
$err (“error id”, “message”,
tx.json())

112 StateCheckFailed error is re-
turned with an attachment,
which contains the error code and de-
scription

Val-
i-
da-
tion
prior
to
UTX

“Script doesn’t exist and proof
doesn’t validate as signature
for $pt”

The sender’s public key does not
match the transaction signature

Transactions from non-
scripted accounts must have
exactly 1 proof

When sending a transaction with
more than one signature to an ac-
count without a script

${tx.getClass.getSimpleName}
transaction has not been ac-
tivated yet

If the option used in the transaction
is not enabled on the validator node

Transaction $tx is already in
the state on a height of $tx-
Height

If a transaction with this id already
exists in the blockchain

“Attempt to transfer unavail-
able funds: Transaction appli-
cation leads to “ +s”negative
WEST balance to (at least)
temporary negative state,
current balance equals $old-
WestBalance, “ +s”spends
equals $ {spendings.balance},
result is $newWestBalance”)

If there are insufficient funds in the
balance for transfer transactions to
one or more
recipients of the WEST token
The following message is displayed in
the Client interface:
“Failed to execute transaction
(%Transaction type%)”
Not enough tokens to pay the fee.
Refill the balance and try again.”

“Attempt to transfer unavail-
able funds: Transaction appli-
cation leads to negative asset “
+ s” ’$aid’ balance to (at least)
temporary negative state,
current balance is $available-
Balance, “ + s”spends equals
$delta, result is ${available-
Balance + delta}”

If there are insufficient funds in the
balance for transfer transactions to
one or more
asset recipients An error is displayed
in the Client interface:
“Failed to execute operation
(%Transaction type%)”
The calculated commission amount
is not enough to pay for the transac-
tion.
Edit the fee amount and try again.”

s”Fee in ${feeAssetId.fold
(“WEST”)(_.toString)} for
${tx.builder.classTag} does
not exceed minimal value
of $minimumFee WEST:
$feeAmount”

The fee for a standard transaction
(without scripts) is less than required

1.7. System errors 73

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

• Transfer transaction

• Mass-transfer transaction

• Tokens of the Waves Enterprise blockchain platform

1.7. System errors 74

Technical description of the Waves Enterprise platform, Release 1.13.0

113-117 - TxValidation Errs

Node

Node level

HTTP

code

API

level

code

Node

level

code

Message Context Condition

OverflowEr-
ror

400 113 OverflowEr-
ror

overflow er-
ror

If the sum
of transac-
tion and fee
exceeds the
permissible
value:
the total
amount in
the mass
transfer is
greater than
the long
(technically
unlikely)

Long over-
flow

NegativeM-
inFee(x, of)

400 114
Neg-
a-
tiveM-
in-
Fee

(s “$x per
$of”)

negative fee
per: $msg

Relevant
only for
Sponsorship
transactions

An error is
returned on
transaction
validation,
if a nega-
tive value is
passed

Miss-
ingSender-
PrivateKey

400 115 Miss-
ingSender
PrivateKey

no private
key for
sender ad-
dress
in wallet
or provided
password
is incorrect

When trying
to sign a
transaction
on a node
(not on the
Client),
the key for
this public
key is not
found in the
key store

No private
(for signing)
key was
found,
or the key
pair pass-
word is
incorrect.
A message is
displayed in
the Client:
“No match-
ing private
key was
found in the
keystore,
or the key
pair pass-
word is
entered in-
correctly

InvalidName 400 116 InvalidName invalid name Incorrect as-
set name in
transaction

the length
of the asset
name is out
of bounds
in an issue
transaction

117 “Trying to
revoke role
‘$role’ from
it’s last
owner: ‘$ad-
dress’ ”

There are
too few
participants
with the
given role
left in the
network

1.7. System errors 75

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

• Sponsorship Transaction

• Permissions (roles)

199 - CustomValidationError

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

Node

Node level

HTTP

code

API

level

code

Node

level

code

Message Context Condition

301-304 - TxValidation Errs

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

305-307, 309-310, 600-605 - RIDE and Docker Contract Errs

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

606-629, 636 - Privacy, Auth, PKI, Contracts

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

631-635 - License Errs

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

1.7. System errors 76

Technical description of the Waves Enterprise platform, Release 1.13.0

640 - Health check

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

641-643 gRPC specific

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

700-799 Snapshot

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

800 ForbiddenDuePkiModeError

Node level errors HTTP-code API level code API level errors Message Context Condition

node-0

See also

Deployment of the platform in a private network Deploying the platform in the trial mode (Sand-
box) Deploying a platform with connection to Mainnet

1.8 gRPC tools

The Waves Enterprise blockchain platform provides the ability to interact with the blockchain using a gRPC
interface.

gRPC is a high-performance Remote Procedure Call (RPC) framework developed by Google Corporation.
The framework works via the HTTP/2. The protobuf serialization format is used to transfer data between
the client and the server. The format describes the data types used.

Officially, gRPC supports 10 programming languages. A list of supported languages is available in the official
gRPC documentation.

Some services are available in two versions: for external integration (public services) and for smart contracts
(contract services). Use public services for WE integration. Contract services are not intended to be called
by an external user, they have a different authorization and behavior. The contract services are packaged in
protobuf files placed in the contract directory and are described in the gRPC services used by smart contracts
section. When used in smart contracts, these methods require authorization.

1.8. gRPC tools 77

https://grpc.io/docs/languages/
https://grpc.io/docs/languages/

Technical description of the Waves Enterprise platform, Release 1.13.0

1.8.1 Preconfiguring the gRPC interface

Before using the gRPC interface:

1. decide on the programming language you will use to interact with the node;

2. install the gRPC framework for your programming language according to the official gRPC documen-
tation;

3. download and unpack the protobuf package we-proto-x.x.x.zip for the platform version you are using
and the protoc plugin to compile the protobuf files;

4. make sure that the gRPC interface is started and configured in the configuration file of the node, with
which data will be exchanged.

To communicate with the node via the gRPC interface, the default port is 6865.

1.8.2 What the gRPC interface is for

You can use the gRPC interface of each node for the following tasks:

gRPC: monitoring of blockchain events

The gRPC interface provides the ability to track certain groups of events occurring in the blockchain.
Information about the selected groups of events is collected in streams, which are sent to the gRPC interface
of the node.

A set of fields for serializing and transmitting blockchain event data are given in the files that are located in
the messagebroker directory of the we-proto-x.x.x.zip package:

• messagebroker_blockchain_events_service.proto – main protobuf file;

• messagebroker_blockchain_event.proto – a file that contains response fields with event group data
and error messages.

To track a specific group of events on the blockchain, send the SubscribeOn(startFrom,

transactionTypeFilter) query that initializes a subscription to the selected event group.

Important: The field data types for the request and response are specified in the protobuf files.

Query parameters:

• startFrom – the moment when the event tracking starts; the following values are available:

• CurrentEvent – start tracking from the current event;

• GenesisBlock – getting all events of the selected group, starting from the genesis block;

• BlockSignature – the start of tracking from the specified block.

• transactionTypeFilter – filter output events by transactions that are produced during these events:

• Any – output events with all types of transactions;

• Filter – output events with transaction types specified as a list;

• FilterNot – display events with all transactions except those specified in this parameter as a list.

• connectionId – optional parameter which can be sent in order to alleviate identification of the request
in the node logs.

1.8. gRPC tools 78

https://grpc.io/docs/languages/
https://grpc.io/docs/languages/
https://github.com/waves-enterprise/WE-releases/releases
https://developers.google.com/protocol-buffers/docs/downloads

Technical description of the Waves Enterprise platform, Release 1.13.0

Together with the SubscribeOnRequest query, authorization data is sent: the JWT token or the api-key

passphrase, depending on the authorization method used.

Query examples:

SubscribeOn:

Send messages starting from the first block:

{"genesis_block": {}}

Send messages starting from the current moment:

{"current_event": {}}

Send messages starting from the block spacified:

{

"block_signature": {

"last_block_signature": {

"value": "G4gTl/

→˓5fA2g2YAFCjCGu+tXJVqvQCLNM8CxzT6Nfc3KSRg3egAY8Mb4df5tufIf9Tv2xfCPQQ5m7X4MoPBvnBg=="

}

}

}

Note: Various information about blocks can also be obtained using the REST methods of the blocks group.

Information about events

After a successful request is sent to the gRPC interface, the following groups of events will receive data:

1. MicroBlockAppended – successful microblock mining:

• transactions – full transaction bodies from the received microblock.

2. BlockAppended – successful completion of a mining round with a block formation:

• block_signature – signature of an obtained block;

• reference – signature of a previous block;

• tx_ids – list of transaction IDs from the received block;

• miner_address – miner address;

• height – height at which the resulting block is located;

• version – version of the block;

• timestamp – time of block formation;

• fee – total fee amount for transactions within the block;

• block_size – size of a block (in bytes);

• features – list of blockchain soft-forks that the miner voted for during the round.

1.8. gRPC tools 79

Technical description of the Waves Enterprise platform, Release 1.13.0

3. RollbackCompleted – block rollback:

• return_to_block_signature – signature of the block to which the rollback occurred;

• rollback_tx_ids – list of IDs of transactions that will be deleted from the blockchain.

4. AppendedBlockHistory – информация о транзакциях сформированного блока. Данный тип
событий поступает на gRPC-интерфейс до достижения текущей высоты блокчейна, если в запросе в
качестве отправной точки для получения событий указаны GenesisBlock или BlockSignature. После
достижения текущей высоты начинают выводиться текущие события по заданным фильтрам.

Response data:

• signature – block signature;

• reference – signature of a previous block;

• transactions – full transaction bodies from the microblock;

• miner_address – miner address;

• height – height at which the resulting block is located;

• version – version of the block;

• timestamp – time of block formation;

• fee – total fee amount for transactions within the block;

• block_size – size of a block (in bytes);

• features – list of blockchain soft-forks that the miner voted for during the round.

Information about errors

The ErrorEvent message with the following error options is provided to display information about errors
during blockchain event tracking:

• GenericError – a general or unknown error with the message text;

• MissingRequiredRequestField – the required field is not filled in when forming a SubscribeOnRequest
query;

• BlockSignatureNotFoundError – the signature of the requested block is missing in the blockchain;

• MissingAuthorizationMetadata – no authorization data was entered when forming the SubscribeOn
query;

• InvalidApiKey – wrong passphrase when authorizing by api-key;

• InvalidToken – wrong JWT-token when authorizing by OAuth.

See also

gRPC tools

1.8. gRPC tools 80

Technical description of the Waves Enterprise platform, Release 1.13.0

gRPC: obtaining node information

The NodeInfoService gRPC service is provided to obtain node configuration parameters and data about its
owner.

The NodeInfoService has the following methods described in the util_node_info_service.proto protobuf
file:

• NodeConfig;

• NodeOwner.

Important: The field data types for the request and response are specified in the protobuf files.

Note: The same data as the NodeConfig and NodeOwner gRPC methods return, can be obtained using
the REST methods of the node group.

gRPC: obtaining node configuration parameters

Use the NodeConfig method to retrieve node configuration parameters. The NodeConfig method does not
require any additional query parameters. The following configuration parameters for the node that was
queried are displayed in the response:

• version – version of the blockchain platform in use;

• crypto_type – cryptographic algorithm in use;

• chain_id – identifying byte of the network;

• consensus – consensus algorithm in use;

• minimum_fee – minimum transaction fee;

• minimum_fee – additional transaction fee;

• max-transactions-in-micro-block – the maximum number of transactions in a microblock;

• min_micro_block_age – the minimum time of microblock existence (in seconds);

• micro-block-interval – the interval between microblocks (in seconds);

• pos_round info– when using the PoS consensus algorithm, the value of the average_block_delay

parameter is displayed (the average block creation delay time, in seconds); this parameter is set in the
node configuration file;

• poa_round_info – when using the PoA consensus algorithm, the following parameters are displayed:

– round_duration – block mining round length, in seconds and

– sync_duration – block mining synchronization period, in seconds.

• crlChecksEnabled – the certificate revocation list (CRL) check mode during certificate validation.

Note: The same data as the NodeConfig gRPC method returns, can be obtained using the REST methods
of the node group.

1.8. gRPC tools 81

Technical description of the Waves Enterprise platform, Release 1.13.0

gRPC: retrieving data about the node owner

Use the NodeOwner method to get data about the owner of a node. The method NodeOwner does not require
any additional query parameters. The following information on the node that was queried is displayed in
the response:

• address – node address;

• public_key – node public key.

Note: The same data as the NodeOwner gRPC method returns, can be retrieved using the GET
/node/owner REST method.

See also

gRPC tools

gRPC: obtaining information on the results of the execution of a smart contract call

To obtain information on the results of a smart contract call use the ContractStatusService gRPC service.

The service has two methods described in the util_contract_status_service.proto protobuf file:

• ContractExecutionStatuses,

• ContractsExecutionEvents.

Important: The field data types for the request and response are specified in the protobuf file.

Use the ContractExecutionStatuses method to retrieve information on the execution results of a particular
smart contract call. The method accepts the ContractExecutionRequest query that requires the tx_id

parameter – the ID of the transaction that calls the smart contract whose status information you want to
retrieve.

Use the ContractsExecutionEventsmethod to subscribe to a stream with the results of all the smart contracts
calls execution. The method requires no input parameters.

Information on the results of the execution of a smart contract call

Both methods output the following smart contract data in the response to the query:

• senderAddress – the address of the participant who sent the smart contract to the blockchain;

• senderPublicKey – the public key of the participant who sent the smart contract to the blockchain;

• tx_id – smart contract call transaction ID;

• Status – smart contract state:

– 0 – successfully executed (SUCCESS);

– 1 – business error, the contract is not executed, the call is rejected (ERROR);

– 2 – system error during the execution of the smart contract (FAILURE).

• code – code of an error that occurred during the smart contract execution (if any);

1.8. gRPC tools 82

Technical description of the Waves Enterprise platform, Release 1.13.0

• message – transaction status message; contains additional information about the status specified in
the status field, for example,

"message": "Smart contract transaction successfully mined";

• timestamp – the Unix Timestamp (in milliseconds), marking the time of the smart contract call;

• signature – transaction signature.

Note: GET /contracts/status/{id} REST method returns the same information as ContractExecutionSta-
tuses gRPC method.

See also

gRPC tools

gRPC: obtaining information about UTX pool size

The UtxInfo query about the UTX pool size is sent as a subscription: after it is sent, the response from the
node comes once per second.

This request requires no additional parameters and is described in the transaction_public_service.proto file.

In response to the query the UtxSize message is returned, which contains two parameters:

• size – UTX pool size in kilobytes;

• size_in_bytes – UTX pool size in bytes.

Important: The field data types for the request and response are specified in the protobuf files.

Note: The number of transactions in UTX pool can be retrieved using the GET /transac-
tions/unconfirmed/size REST method.

See also

gRPC tools

gRPC: retrieving certificates

To request a certificate from a node certificate store use the PkiPublicService service methods. The methods
are described in the pki_public_service.proto file.

Note: PkiPublicService methods cannot be used in the opensource version of the platform.

With these methods you can retrieve a certificate by different fields:

• GetCertificateByDn(CertByDNRequest) – retrieve a certificate by its DN (distinguished name),

1.8. gRPC tools 83

Technical description of the Waves Enterprise platform, Release 1.13.0

• GetCertificateByDnHash(CertByDNHashRequest) – retrieve a certificate by its DN Hash,

• GetCertificateByPublicKey(CertByPublicKeyRequest) – retrieve a certificate by its publicKey,

• GetCertificateByFingerprint(CertByFingerprintRequest) – retrieve a certificate by its fingerprint.

In the request, these methods take the value of the corresponding certificate field and, optionally, the
plainText parameter, which determines the format of the response.

If the certificate exists, the node returns the certificate in DER format (as it is recorded in the node certificate
store) in the response of each of these methods. If the plainText parameter in the method request is set to
true, then the certificate is returned in plainText format.

If no such certificate exists, then each of these methods returns an error.

Note: The same data as the gRPC PkiPublicService methods return, can be retrieved using the REST
methods of the /pki/certificate group.

Authorization of methods for obtaining certificates

In case of API-KEY, authorization is not required.

In case of OAuth2 authorization, the user role in JWT token is required.

Retrieving a certificate by its DN

TheGetCertificateByDn(CertByDNRequest)method returns the certificate by its distinguished name stored
in the DN field.

Note: The same data as the GetCertificateByDn(CertByDNRequest) gRPC method returns, can be re-
trieved using the GET /pki/certificate/by-dn/%percent-encoded-DN% REST method.

Retrieving a certificate by its DN hash

The GetCertificateByDnHash(CertByDNHashRequest) method returns the certificate by SHA-1 hash (Kec-
cak) from the DN certificate field.

Note: The same data as the GetCertificateByDnHash(CertByDNHashRequest) gRPC method returns, can
be retrieved using the GET /pki/certificate/by-dn-hash/%DN-hash-string% REST method.

1.8. gRPC tools 84

Technical description of the Waves Enterprise platform, Release 1.13.0

Retrieving a certificate by its public key

The GetCertificateByPublicKey(CertByPublicKeyRequest) method returns the certificate by its public key
stored in the publicKey field.

Note: The same data as the GetCertificateByPublicKey(CertByPublicKeyRequest) gRPC method returns,
can be retrieved using the GET /pki/certificate/by-public-key/%public-key-base58% REST method.

Retrieving a certificate by its fingerprint

The GetCertificateByFingerprint(CertByFingerprintRequest) method returns the certificate by its SHA-1
fingerprint stored in its fingerprint field.

Note: The same data as the GetCertificateByFingerprint(CertByFingerprintRequest) gRPC method re-
turns, can be retrieved using the GET /pki/certificate/by-fingerprint/%fingerprint-base64% REST method.

See also

gRPC tools

REST API: retrieving certificates

gRPC: handling transactions

Use the TransactionPublicService gRPC service to handle transactions.

The TransactionPublicService service has the following methods, described in the transac-
tion_public_service.proto protobuf file:

• Broadcast ;

• BroadcastWithCerts;

• UtxInfo;

• TransactionInfo;

• UnconfirmedTransactionInfo.

Important: The field data types for the request and response are specified in the protobuf files.

1.8. gRPC tools 85

Technical description of the Waves Enterprise platform, Release 1.13.0

Sending transactions into the blockchain

Choose the appropriate method for your task to send transactions to the blockchain:

• BroadcastWithCerts – to send the RegisterNode transaction;

• Broadcast – to send all other transactions.

Note: You can also use the POST /transactions/broadcast and POST /transactions/signAndBroadcast
REST methods to send transactions to the blockchain.

Broadcast

The method requires the following query parameters:

• version – transaction version;

• transaction – the name of the transaction along with the set of parameters intended for it.

For each transaction, there is a separate protobuf file describing the request and response fields. These fields
are universal for gRPC and REST API queries and are given in the Transactions of the blockchain platform
article.

Note: You can also use the POST /transactions/broadcast and POST /transactions/signAndBroadcast
REST methods to send transactions to the blockchain.

BroadcastWithCerts

The method is used to broadcast the RegisterNode transaction and requires the same set of incoming pa-
rameters as the Broadcast method.

The certificates field is mandatory and must contain the certificates chain that corresponds to the public
key in the transaction target field.

Note: You can also use the POST /transactions/broadcast and POST /transactions/signAndBroadcast
REST methods to send transactions to the blockchain.

Retrieving data from a transaction

Use the TransactionInfo method to retrieve transaction data.

The method requires the following query parameter:

• tx_id – ID of the transaction on which information is being requested.

The TransactionInfo method response contains the following transaction data:

• height – the blockchain height on which the transaction was made;

• transaction – transaction name;

as well as the transaction data similar to that in the Broadcast method response.

1.8. gRPC tools 86

Technical description of the Waves Enterprise platform, Release 1.13.0

Retrieving data from a transaction that is in the UTX pool

Use the UnconfirmedTransactionInfo method to retrieve data of the transaction held in the UTX pool.
The method response contains transaction data similar to the Broadcast method response.

See also

gRPC tools

Description of transactions

Mainnet fees

gRPC: handling confidential data

Use the PrivacyEventsService and PrivacyPublicService gRPC services to handle confidential data (privacy).

Note: You can also use REST methods of the Privacy group to handle confidential data.

PrivacyEventsService and PrivacyPublicService methods authorization

:opticon:`report, size=24` PrivacyEventsService and PrivacyPublicService methods authorization:

To use the methods of gRPC API PrivacyEventsService and PrivacyPublicService services, au-
thorization by api-key or JWT-token is required. Authorization of the methods is implemented
as follows:

• in case of api-key authorization, PrivacyApiKey is required;

• in case of OAuth2 authorization, the Privacy role in the JWT token is required.

For each of the methods, you must provide the following data:

• Recipients — userAuth;

• Owners — userAuth;

• Hashes — userAuth;

• GetPolicyItemData — privacyAuth;

• GetPolicyItemInfo — privacyAuth;

• SendData — privacyAuth;

• SendLargeData — privacyAuth,

• forceSync — privacyAuth.

where

• userAuth — user api-key passed in the ‘X-Api-Key’ request header OR a JWT
token with the user role in the ‘Authorization’ header;

• privacyAuth — privacy user api-key in the ‘X-Api-Key’ request header OR a JWT
token with the privacy role in the ‘Authorization’ header.

1.8. gRPC tools 87

Technical description of the Waves Enterprise platform, Release 1.13.0

Оn top of that gRPC and REST API authorization is configured in the auth section
of the node configuration file.

PrivacyEventsService

The PrivacyEventsService has one method SubscribeOn, described in the privacy_events_service.proto
protobuf file. Use this method to get the stream of events related to receiving or deleting confidential data
that comes to the node gRPC interface. To do this, send a SubscribeOn (SubscribeOnRequest) request
that initializes the subscription to the stream.

Information on receiving or deleting confidential data

After a successful request is sent to the gRPC interface, the following data will be received:

• policy_id – confidential data group id;

• data_hash – confidential data identifying hash;

• event_type – event type; the following types are available:

– DATA_ACQUIRED – the data is saved in the database;

– DATA_INVALIDATED – the data is marked for deletion due to lack of activity on it or at
rollback.

PrivacyPublicService

The PrivacyPublicService service has the following methods, described in the protobuf file pri-
vacy_public_service.proto:

• GetPolicyItemData;

• GetDataLarge;

• GetPolicyItemInfo;

• PolicyItemDataExists;

• SendData;

• SendLargeData;

• Recipients;

• Owners;

• Hashes;

• forceSync.

Important: The field data types for the request and response are specified in the protobuf file.

Note: You can also use REST methods of the Privacy group to handle confidential data.

1.8. gRPC tools 88

Technical description of the Waves Enterprise platform, Release 1.13.0

Retrieving confidential data hash sum

Use the GetPolicyItemData method to retrieve the policy’s confidential data package by the identifying
hash. The method requires the following query parameters: policy_id (confidential data group id) and
data_hash (identifying hash). After the request is successfully sent to the gRPC-interface, the hash sum of
confidential data is returned.

Note: You can also use the REST GET /privacy/{policy-id}/hashes method to retrieve an array of identi-
fication hashes of data that are bound to the access group {policy-id}.

Downloading big data from a node

Use the GetDataLarge method to download big data uploaded using SendLargeData from a node. The
method requires the following query parameters: policy_id (confidential data group id) and data_hash

(identifying hash). After the successful request the PolicyItemDataResponse data stream is received by the
gRPC interface.

Retrieving metadata for a confidential data package

Use the GetPolicyItemInfo method to retrieve metadata for the policy’s confidential data package by iden-
tifying hash. The method requires the following query parameters: policy_id (confidential data group id)
and data_hash (identifying hash). After the successful request the following data will be sent to the gRPC
interface:

• sender – confidential data sender address;

• policy_id – a confidential data group identifier;

• type – confidential data type (file);

• info – file data array:

– filename – name of a file;

– size – file size;

– timestamp – the file placement Unix Timestamp (in milliseconds);

– author – file author;

– comment – optional comment to the file;

• hash – confidential data identifying hash.

Confidential data package existence verification

Use the PolicyItemDataExists method to get information about the presence of the policy’s confidential data
package packet by the identifying hash. The method requires the following query parameters: policy_id

(confidential data group id) and data_hash (identifying hash). After the successful request, true will be
sent to the gRPC interface in case the data exists, or false will be sent, if the data does not exist.

1.8. gRPC tools 89

Technical description of the Waves Enterprise platform, Release 1.13.0

Sending confidential data to the blockchain

Use the SendData method to send confidential data (that will be available only to the policy members defined
for that data) to the blockchain.

Note: Use the SendLargeData method to send data larger than 20 MB.

Note: Use the SendLargeData method to send sensitive data stream to the blockchain.

The method requires the following query parameters:

• sender_address – blockchain address from which the data should be sent (corresponds to the value
of the “privacy.owner-address” parameter in the node configuration file);

• policy_id – identifier of the confidential data access group that will have access to the data being
sent;

• data_hash – identifying sha256-hash of confidential data in base58 format;

• info – information about data being sent:

– filename – name of a file,

– size – file size,

– timestamp – data timestamp,

– author – email of the data author,

– comment – optional comment to the file.

• fee – transaction fees;

• fee_asset_id – optional field used for smart contracts only;

• atomic_badge – a label field indicating that the transaction is supported by the atomic transaction;

• password – password to access the private key in the node keystore;

• broadcast_tx – if true is passed, the created PolicyDataHash transaction is sent to the blockchain,
if false is passed, the transaction and Privacy Inventory are not sent; see below for details;

• data – string containing data in base64 format.

Note: When sending files via Amazon S3/Minio, the fields comment, author, filename must have ascii
characters. This is a Java SDK AWS limitation.

After a successful request is sent to the gRPC interface, the following data will be received:

• tx_version – transaction version;

• tx – the created PolicyDataHash transaction.

1.8. gRPC tools 90

Technical description of the Waves Enterprise platform, Release 1.13.0

broadcast˙tx parameter

To reduce the probability of data delivery errors, it is recommended to set the broadcast_tx parameter to
false if after sending data using SendData API method an atomic transaction which contains a CreatePolicy
and a PolicyDataHash is sent.

Note: You can also use the POST /privacy/sendData REST method to send confidential data to the
blockchain.

Sending confidential data stream to the blockchain

Use the SendLargeData method to send a stream of confidential data to the blockchain. The data will only
be available to the members of the confidential data access group defined for that data.

Note: Use the SendData method to send data smaller than 20 MB.

The method accepts a data stream in the following format as the request:

• metadata – metadata for the confidential data package, similar to the input data of the SendData
method;

• content – an array of bytes representing a confidential data package.

After a successful request is sent, the gRPC interface will receive the same data as from the SendData
method.

Note: You can also use the POST /privacy/sendDataV2 and POST /privacy/sendLargeData REST meth-
ods to send confidential data stream or data larger that 20 MB to the blockchain.

Obtaining the addresses of all the members of a confidential data access group

Use the Recipients method to get the addresses of all the members of a confidential data access group. The
method requires the policy_id query parameter – access group identifier. In response, the method returns
an array of strings with addresses of the access group members.

Note: You can also use the GET /privacy/{policy-id}/recipients REST method to retrieve the addresses
of the confidential data access group members.

1.8. gRPC tools 91

Technical description of the Waves Enterprise platform, Release 1.13.0

Obtaining the addresses of the owners of a confidential data access group

Use the Owners method to get the addresses of confidential data access group owners. The method requires
the policy_id query parameter (access group identifier). In response, the method returns an array of strings
with addresses of access group owners.

Note: You can also use the GET /privacy/{policy-id}/owners REST method to retrieve the addresses of
the confidential data access group owners.

Obtaining an array of identification hashes

Use the Hashes method to get an array of identification hashes of data that are bound to a confidential data
access group. The method requires entering the policy_id query parameter (access group identifier). In
response, the method returns an array of strings with identity hashes of access group data.

Synchronization of data on the specified confidential data access group

Use the forceSync method to synchronize data on the specified sensitive data access group. The method
requires the policy_id query parameter – access group identifier.

As a result of the method execution, the node starts the synchronization process and returns the size of
confidential data in MB. If synchronization fails to start, the node returns an error description.

Note: You can also use POST /privacy/forceSync and GET /privacy/forceSync/{policyId} REST methods
to force a confidential data package retrieval.

See also

gRPC tools

Precise platform configuration: gRPC and REST API authorization

gRPC: transfer of confidential smart contract data

The gRPC ContractPublicService is used to transfer confidential smart contracts data.

The service has a single method described in the confidential_contract_service.proto protobuf file:

• ConfidentialCall.

Important: The field data types for requests and responses are specified in the protobuf file.

Important: The ConfidentialCall method call is only available when you use an oAuth token with Confi-
dentialContractUser role or a special api-key.

The ConfidentialCall method accepts the ConfidentialCalRequest containing the following fields:

1.8. gRPC tools 92

Technical description of the Waves Enterprise platform, Release 1.13.0

• broadcast – the flag that marks the need to broadcast the generated CallContract transaction; the
field defaults to true; the false value is used to form an atomic container;

• commitmentVerification – the flag that marks the necessity of input data commitment reconciliation
and the need for the user to provide a key for commitment generation; the field defaults to false; if
false is set, the node generates the key randomly and calculates the commitment;

• sender – the address of the sender of the confidential smart contract data;

• contractId – the confidential smart contract identifier;

• contractVersion – the confidential smart contract version;

• params – when working with CallContract transaction, the field holds input data of the confidential
smart contract, represented as an array of objects; data is entered using the following fields:

– key – the parameter key;

– type – the parameter data type;

– value – the parameter value.

• timestamp – a timestamp in Unix Timestamp format (in milliseconds) marking the time when the
smart contract was invoked;

• atomicBadge – the flag that marks if the transaction can be included in an atomic transaction;

• fee – the transaction fee;

• feeAssetId – fee token identifier;

• commitment – commitment;

• commitmentKey – the commitment key.

The ConfidentialCall method takes all the data needed to send a CallContract transaction, sends it, and
returns a protobuf that includes the CallContract version 6 transaction and the confidentialInput of the
confidential smart contract in the response.

Note: The POST /confidential-contracts/call REST method is similar to the ConfidentialCall gRPC
method.

See also

gRPC tools

Confidential smart contracts

gRPC: retrieving auxiliary information

Use the UtilPublicService service to retrieve auxiliary information.

1.8. gRPC tools 93

Technical description of the Waves Enterprise platform, Release 1.13.0

Obtaining the current node time

The UtilPublicService has one method: GetNodeTime, described in the util_public_service.proto protobuf
file. Use this method to get the current node time. The method does not require any additional query
parameters.

Important: The field data types for the response are specified in the protobuf files.

The method returns the current node time in two formats:

• system – the system time of the node PC;

• ntp – network time.

See also

gRPC tools Auxiliary queries

gRPC: information about network participants

Use AddressPublicService and AliasPublicService gRPC services to obtain information about network par-
ticipants.

gRPC: information about the network members’ addresses

Use AddressPublicService service to obtain information about the network members’ addresses.

The AddressPublicService service has the following methods, described in the address_public_service.proto
protobuf file:

• GetAddresses;

• GetAddressData;

• GetAddressDataByKey.

Important: The field data types for the request and response are specified in the protobuf file.

Note: You can also use the REST methods of the addresses group to get information about the network
members’ addresses.

1.8. gRPC tools 94

Technical description of the Waves Enterprise platform, Release 1.13.0

Retrieving all participants’ addresses

Use the GetAddresses method to retrieve all the addresses of the participants whose key pairs are stored in
the node keystore. The method does not require additional query parameters.

The method returns an array of participants’ addresses.

Note: You can also use GET /addresses and GET /addresses/seq/{from}/{to} REST methods to retrieve
the addresses of the network members whose key pairs are stored in the node keystore.

Retrieving data from a specified address

Use the GetAddressData method to obtain data written to the specified address using the transaction 12 .
The method requires the following query parameters:

• address – address of a node;

• limit – the maximum number of records that the method will return;

• offset – the number of the records at the given address that the method will skip.

The method returns the data written to the specified address.

Note: You can also use the GET /addresses/data/{address} REST method to retrieve data recorded at
the specified address using Data Transaction.

Retrieving data from a specified address by a key

Use the GetAddressDataByKey method to retrieve data written to the specified address using the transaction
12 . This key is specified in transaction 12 in the data.key field. The method requires the following query
parameters:

• address – address of a node;

• key – key.

The method returns data recorded at the specified address with key {key}.

Note: You can also use the GET /addresses/data/{address}/{key} REST method to retrieve data recorded
at the specified address using Data Transaction with {key} key.

1.8. gRPC tools 95

Technical description of the Waves Enterprise platform, Release 1.13.0

gRPC: retrieving information about network participants by alias

Use the AliasPublicService service to obtain information about a network participant by his alias.

The AliasPublicService service has the following methods, described in the protobuf file
alias_public_service.proto:

• AddressByAlias;

• AliasesByAddress.

Note: You can also use the REST methods of the alias group to get information about network members
by alias.

Retrieving an address by alias

Use the AddressByAlias method to retrieve the address by alias. The method requires entering a single
query parameter:

• alias – network participant alias.

The method returns the participant’s address.

Note: You can also use the GET /alias/by-alias/{alias} REST method to get the address of a network
member by his alias.

Retrieving alias by address

Use the AliasesByAddress method to retrieve alias by address. The method requires the address of the
network participant in the query.

The method returns all the aliases of the network participant.

Note: You can also use the GET /alias/by-address/{address} REST method to get the alias of a network
member by his address.

See also

gRPC tools

GET /addresses

alias group

Each of these tasks has its own set of methods packed in the corresponding protobuf files. You can find a
detailed description of each set of methods in the articles referenced above.

The node gRPC methods authorization is configured in the auth section of the node configuration file.

1.8. gRPC tools 96

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

gRPC services used by smart contracts

1.9 REST API methods

The REST API allows users to remotely interact with a node via JSON requests and responses. The API is
accessed via the https protocol. The Swagger framework is used as an interface to the REST API.

1.9.1 REST API usage

All REST API method calls are HTTP GET, POST or DELETE requests to URL https://yournetwork.

com/node-N, containing the corresponding parameter sets.

The platform also provides access to the Swagger https://yournetwork.com/node-N/api-docs/index.

html interface, which allows you to make and send HTTP requests to the node through the web interface.
The desired groups of requests can be selected in the Swagger interface by selecting routes – the URLs to
individual REST API methods.

At the end of each route there is an endpoint – a reference to the method.

Example of a UTX pool size query:

The port for listening to the REST API requests is specified in the api.rest.port parameter of the node
configuration file; generally the 6862 port is used.

Almost all REST API methods require authorization by api-key or JWT token (oAuth2 authorization).
The authorization method is set in the auth section of the node configuration file.

When authorizing by api-key, specify the value of the selected key phrase, and when authorizing by
JWT-token specify the access-token value.

When JWT token authorization is used, the user is assigned a role (or several roles), which determines certain
REST API methods accessibility. For more details see Authorization service and OAuth2 authorization roles
sections.

1.9. REST API methods 97

Technical description of the Waves Enterprise platform, Release 1.13.0

1.9.2 What the platform REST API is for

You can use the REST API to perform the following tasks:

• REST API methods to work with data snapshots

Each article contains a table with the addresses of the methods as well as the query and response fields of
each method.

If the described REST API methods require authorization, there is an icon at the beginning of the article.

If authorization is not required, you will see an icon.

See also

Precise platform configuration: node gRPC and REST API configuration

1.10 Development and usage of smart contracts

The definition and general description of how smart contracts work on the Waves Enterprise blockchain
platform are provided in the article Smart contracts.

1.10.1 Preparing to work

Before you start developing a smart contract, make sure that you have the Docker containerization software
package installed on your machine. The principles of working with Docker are described in the official
documentation.

Also make sure that the node you are using is configured for smart contract execution . If your node is
running in the Mainnet, it is by default configured to install smart contacts from the open repository and
has the recommended settings to ensure optimal smart contact execution.

If you are developing a smart contract to run on a private network, deploy your own registry for Docker
images and specify its address and credentials on your server in the remote-registries block of the node
configuration file. You can specify multiple repositories in this block if you need to define multiple stor-
age locations for different smart contracts. Also you can configure repository authorization in the node
configuration file.

You can also load a Docker contract image from a repository not specified in the node configuration file using
103 CreateContract transaction, which initiates the creation of a smart contract. For more information, see
Development and installation of a smart contract and description of the 103 transaction.

When working in the Mainnet, the Waves Enterprise open registry is pre-installed in the configuration file.

1.10.2 Smart contract development

Waves Enterprise blockchain platform smart contracts can be developed in any programming language you
prefer and implement any algorithms. The finished smart contract code is packaged in a Docker image with
used protobuf files.

Examples of Python smart contract code using gRPC API methods to exchange data with a node, as well
as a step-by-step guide on how to create the corresponding Docker images are given in the following articles:

1.10. Development and usage of smart contracts 98

https://www.docker.com/get-started
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/registry/
https://docs.docker.com/registry/

Technical description of the Waves Enterprise platform, Release 1.13.0

Example of a smart contract with gRPC

This section describes an example of creating a simple smart contract in Python. The smart contract uses
a gRPC interface to exchange data with a node.

Before you start, make sure that the utilities from the grpcio package for Python are installed on your
machine:

pip3 install grpcio

To install and use the gRPC utilities for other available programming languages, see the official gRPC
website.

Program description and listing

When a smart contract is initialized using the 103 transaction, the sum integer parameter with a value of 0
is set for it.

Whenever a smart contract is called using transaction 104, it returns an increment of the sum parameter
(sum + 1).

Program listing:

import grpc
import os
import sys

from protobuf import common_pb2, contract_pb2, contract_pb2_grpc

CreateContractTransactionType = 103

CallContractTransactionType = 104

AUTH_METADATA_KEY = "authorization"

class ContractHandler:
def __init__(self, stub, connection_id):

self.client = stub

self.connection_id = connection_id

return

def start(self, connection_token):

self.__connect(connection_token)

def __connect(self, connection_token):

request = contract_pb2.ConnectionRequest(

connection_id=self.connection_id

)

metadata = [(AUTH_METADATA_KEY, connection_token)]

for contract_transaction_response in self.client.Connect(request=request,

→˓ metadata=metadata):

self.__process_connect_response(contract_transaction_response)

(continues on next page)

1.10. Development and usage of smart contracts 99

https://grpc.io/docs/languages/
https://grpc.io/docs/languages/

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

def __process_connect_response(self, contract_transaction_response):

print("receive: {} ".format(contract_transaction_response))

contract_transaction = contract_transaction_response.transaction

if contract_transaction.type == CreateContractTransactionType:

self.__handle_create_transaction(contract_transaction_response)

elif contract_transaction.type == CallContractTransactionType:

self.__handle_call_transaction(contract_transaction_response)

else:
print("Error: unknown transaction type '{} '".format(contract_

→˓transaction.type), file=sys.stderr)

def __handle_create_transaction(self, contract_transaction_response):

create_transaction = contract_transaction_response.transaction

request = contract_pb2.ExecutionSuccessRequest(

tx_id=create_transaction.id,

r esults=[common_pb2.DataEntry(

key="sum",

int_value=0)]

)

metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_

→˓token)]

response = self.client.CommitExecutionSuccess(request=request,␣

→˓metadata=metadata)

print("in create tx response '{} '".format(response))

def __handle_call_transaction(self, contract_transaction_response):

call_transaction = contract_transaction_response.transaction

metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_

→˓token)]

contract_key_request = contract_pb2.ContractKeyRequest(

contract_id=call_transaction.contract_id,

key="sum"

)

contract_key = self.client.GetContractKey(request=contract_key_request,

→˓ metadata=metadata)

old_value = contract_key.entry.int_value

request = contract_pb2.ExecutionSuccessRequest(

tx_id=call_transaction.id,

results=[common_pb2.DataEntry(

key="sum",

int_value=old_value + 1)]

)

response = self.client.CommitExecutionSuccess(request=request,␣

→˓metadata=metadata)

print("in call tx response '{} '".format(response))

def run(connection_id, node_host, node_port, connection_token):

NOTE(gRPC Python Team): .close() is possible on a channel and should be

used in circumstances in which the with statement does not fit the needs

(continues on next page)

1.10. Development and usage of smart contracts 100

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

of the code.

with grpc.insecure_channel('{} :{} '.format(node_host, node_port)) as␣
→˓channel:

stub = contract_pb2_grpc.ContractServiceStub(channel)

handler = ContractHandler(stub, connection_id)

handler.start(connection_token)

CONNECTION_ID_KEY = 'CONNECTION_ID'
CONNECTION_TOKEN_KEY = 'CONNECTION_TOKEN'
NODE_KEY = 'NODE'
NODE_PORT_KEY = 'NODE_PORT'

if __name__ == '__main__':
if CONNECTION_ID_KEY not in os.environ:

sys.exit("Connection id is not set")

if CONNECTION_TOKEN_KEY not in os.environ:

sys.exit("Connection token is not set")

if NODE_KEY not in os.environ:

sys.exit("Node host is not set")

if NODE_PORT_KEY not in os.environ:

sys.exit("Node port is not set")

connection_id = os.environ['CONNECTION_ID']
connection_token = os.environ['CONNECTION_TOKEN']
node_host = os.environ['NODE']
node_port = os.environ['NODE_PORT']

run(connection_id, node_host, node_port, connection_token)

If you want transactions calling your contract to be able to be processed simultaneously, you must pass the
async-factor parameter in the contract code itself. The contract passes the value of the async-factor

parameter as part of the ConnectionRequest gRPC message defined in the contract_contract_service.
proto file:

message ConnectionRequest {

string connection_id = 1;

int32 async_factor = 2;

}

Detailed information about parallel execution of smart contracts.

Authorization of a smart contract with gRPC

To work with gRPC , a smart contract needs authorization. For the smart contract to work correctly with
API methods, the following steps are performed:

1. The following parameters must be defined in the environment variables of the smart contract:

• CONNECTION_ID - connection identifier passed by the contract when connecting to a node;

• CONNECTION_TOKEN - authorization token passed by the contract when connecting to a node;

• NODE - IP address or domain name of the node;

1.10. Development and usage of smart contracts 101

Technical description of the Waves Enterprise platform, Release 1.13.0

• NODE_PORT - port of the gRPC service deployed on the node.

The values of the NODE and NODE_PORT variables are taken from the node configuration file of the docker-
engine.grpc-server section. The other variables are generated by the node and passed to the container when
the smart contract is created.

Development of a smart contract

1. In the directory that will contain your smart contract files, create an``src`` subdirectory and place the file
contract.py with the smart contract code in it.

2. In the src directory, create a protobuf directory and put the following protobuf files in it:

• contract_contract_service.proto

• data_entry.proto

These files are placed in the we-proto-x.x.x.zip archive, which can be downloaded from the official GitHub
repository of Waves Enterprise.

3. Generate the code of the gRPC methods in Python based on the contract_contract_service.proto

file:

python3 -m grpc.tools.protoc -I. --python_out=. --grpc_python_out=. contract_contract_

→˓service.proto

As a result, two files will be created:

• contract_contract_service_pb2.py

• contract_contract_service_pb2_grpc.py

In the contract_contract_service_pb2.py file, change the line import data_entry_pb2 as

data__entry__pb2 as follows:

import protobuf.data˙entry˙pb2 as data˙˙entry˙˙pb2

In the same way, change the line import contract_contract_service_pb2 as

contract__contract__service__pb2 in the file contract_contract_service_pb2_grpc.py:

import protobuf.contract˙contract˙service˙pb2 as contract˙˙contract˙˙service˙˙pb2

Then generate an auxiliary file data_entry_pb2.py based on the data_entry.proto:

python3 -m grpc.tools.protoc -I. --python_out=. data_entry.proto

All three resulting files must be in the protobuf directory along with the source files.

4. Create a run.sh shell script, which will run the smart contract code in the container:

#!/bin/sh

eval $SET_ENV_CMD

python contract.py

Place the run.sh file in the root directory of your smart contract.

5. Create a Dockerfile script file to build and control the startup of your smart contract. When developing
in Python, the basis for your smart contract image can be the official Python python:3.8-slim-buster''

1.10. Development and usage of smart contracts 102

https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

image. Note that the packages ``dnsutils and grpcio-tools must be installed in the Docker con-
tainer to make the smart contract work.

Dockerfile example:

FROM python:3.8-slim-buster

RUN apt update && apt install -yq dnsutils

RUN pip3 install grpcio-tools

ADD src/contract.py /

ADD src/protobuf/common_pb2.py /protobuf/

ADD src/protobuf/contract_pb2.py /protobuf/

ADD src/protobuf/contract_pb2_grpc.py /protobuf/

ADD run.sh /

RUN chmod +x run.sh

ENTRYPOINT ["/run.sh"]

Place the Dockerfile in the root directory of your smart contract.

6. In case you are working in the Waves Enterprise Mainnet, contact the Technical Support team to place
your smart contract in the public repository.

If you work on a private network, build your smart contract yourself and place it in your own registry .

How a smart contract with gRPC works

Once called, the smart contract with gRPC works as follows:

1. After the program starts, the presence of environment variables is checked.

2. Using the values of the NODE and NODE_PORT environment variables, the contract creates a gRPC
connection with a node.

3. Next, the Connect stream method of the gRPC ContractService is called. The method receives
a ConnectionRequest gRPC message, which specifies the connection identifier (obtained from the
CONNECTION_ID environment variable). The method metadata contains the authorization header
with the value of the authorization token (obtained from the CONNECTION_TOKEN environment variable).

4. If the method is called successfully, a gRPC stream is returned with objects of type
ContractTransactionResponse for execution. The object ContractTransactionResponse contains
two fields:

• transaction - a transaction to create or call a contract;

• auth_token - authorization token specified in the authorization metadata header of the called
method of gRPC services.

If transaction contains a 103 transaction, the initial state is initialized for the contract. If transaction
contains a call transaction (the 104 transaction), the following actions are performed:

• the value of sum key (GetContractKey method of the ContractService) is requested from the node;

• the key value is incremented by one, i.e. sum = sum + 1;

• The new key value is saved on the node (CommitExecutionSuccess method of the ContractService),
i.e. the contract state is updated.

1.10. Development and usage of smart contracts 103

https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Development and usage of smart contracts

gRPC tools

You can use JS Сontract SDK Toolkit and Java/Kotlin Сontract SDK Toolkit to develop, test and deploy
smart contracts in Waves Enterprise public blockchain networks. These toolkits are described in the following
sections:

Constructing smart contracts with JS Contract SDK

This section describes JS Сontract SDK Toolkit – a toolkit for development, testing and deploying smart
contracts in Waves Enterprise public blockchain networks. Use the toolkit to fast take off with the Waves
Enterprise ecosystem using programming languages such as JavaScript or TypeScript, since smart contracts
are deployed in a Docker container.

Smart contracts are often deployed into different environments and networks. For example, you can scaffold
local environment based on a sandbox node and deploy contracts to this network for test use-cases.

Deploy your smart contract to different environments using WE Contract Command line interface (CLI).

Requirements

Before you start, make sure that the following software is installed:

• Docker

• Node.js (LTS)

Quickstart

Run the following command in command line to scaffold your new project:

Using npm npx

npx create-we-contract YourContractName -t path-to-contract -n package-name

or

npm create we-contract YourContractName -t path-to-contract -n package-name

or using yarn

yarn create we-contract YourContractName -t path-to-contract -n package-name

This creates your first smart-contract that is ready for development and deployment to the Waves Enterprise
blockchain. Now you can run the following command to initialize dependencies and start to develop your
project:

npm i // or yarn

1.10. Development and usage of smart contracts 104

https://blog.npmjs.org/post/162869356040/introducing-npx-an-npm-package-runner
https://classic.yarnpkg.com/en/docs/cli/create/

Technical description of the Waves Enterprise platform, Release 1.13.0

Configuration

The configuration file is used to set up the image name and the contract name to be displayed in the explorer.
You can also set the image tag (the name property) which will be used to send the contract to the registry
in the configuration file.

Add the contract.config.js file to the root directory of your project to initialize your contract configura-
tion.

If you scaffolded the project with the create-we-contract command as described above in the Quickstart
section, the configuration is set by default.

Default configuration

An example of default configuration is given below:

module.exports = {

image: "my-contract",

name: 'My Contract Name',
version: '1.0.1',
networks: {

/// ...

}

}

Network configuration

In the networks section, provide specific configuration for your network:

module.exports = {

networks: {

"sandbox": {

seed: "#your secret seed phrase" // or get it from env process.env.MY_SECRET_SEED

// also you can provide

registry: 'localhost:5000',
nodeAddress: 'http://localhost:6862',
params: {

init: () => ({

paramName: 'paramValue'
})

}

}

}

}

• seed – if you are going to deploy a contract to the sandbox network, provide the contract initiator
seed phrase;

• registry – if you used a specific Docker registry, provide the registry name;

• nodeAddress – provide specific nodeAddress to deploy to.

• params.init – to specify initialization parameters, set a function.

1.10. Development and usage of smart contracts 105

Technical description of the Waves Enterprise platform, Release 1.13.0

Caution: DO NOT publish your secret phrases in public repositories.

Deploy contract

Smart contracts are executed once they are deployed in the blockchain. To deploy a contract run the deploy
command in WE Contract CLI:

we-toolkit deploy -n testnet

where testnet is the name of the network specified in the configuration file. For example, to deploy a contract
to the sandbox network run the following command:

we-toolkit deploy -n sandbox

Contract SDK Toolkit

Core concepts

The basics of making a contract class is to specify class annotations per method. The most important
annotations are:

• Contract – register a class as a contract;

• Action – register action handler of the contract;

• State – decorate the class property to access the contract state;

• Param – decorator that maps transaction parameters to the contract class action parameters.

The SDK provides contract templates to which you can add your business logic:

@Contract

export class ExampleContract {

@State state: ContractState;

@Action

greeting(@Param('name') name: string) {

this.state.set('Greeting', `Hello, ${name}`);
}

}

Methods

Methods to manage smart contract state

ContractState class exposes useful methods to write to contract state. You can find the list of data types
currently available in contract state in the node documentation. Contract SDK supports all the data types
currently available in the contract state.

1.10. Development and usage of smart contracts 106

Technical description of the Waves Enterprise platform, Release 1.13.0

Write

The easiest way to write the state is to use set method. This method automatically casts data type.

this.state.set('key', 'value')

For explicit type casting use the methods in the examples below:

// for binary

this.state.setBinary('binary', Buffer.from('example', 'base64'));

// for boolean

this.state.setBool('boolean', true);

// for integer

this.state.setInt('integer', 102);

// for string

this.state.setString('string', 'example');

Read

Reading the state is currently asynchronous, and reading behavior depends on the contract configuration.

@Contract
export class ExampleContract {

@State state: ContractState;

@Action
async exampleAction(@Param('name') name: string) {

const stateValue: string = await this.state.get('value', 'default-value');
}

}

Caution: state.get `` method has no information about the internal state type in

runtime. To explicitly cast types use the following methods: ``getBinary, getString,
getBoo`l, getNum.

Write Actions

The key decorators are Action and Param.

1.10. Development and usage of smart contracts 107

Technical description of the Waves Enterprise platform, Release 1.13.0

Init Actions

To describe create contract action set the onInit action decorator parameter to true.

@Contract
export class ExampleContract {

@State state: ContractState;

@Action({onInit: true})

exampleAction(@Param('name') name: string) {

this.state.set('state-initial-value', 'initialized')
}

}

By default action is used as the name of contract method. To set a different action name, assign it to the
name parameter of the decorator.

@Contract
export class ExampleContract {

@State state: ContractState;

@Action({name: 'specificActionName'})
exampleAction() {

// Your code

}

}

ontract version update

Use the update method to update contract version. The method updates the last deployed contract version.
If no contract is deployed, the method performs no updates.

we-cli update -n, --network <char>

1.10. Development and usage of smart contracts 108

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Development and usage of smart contracts

Constructing smart contracts with Java/Kotlin Contract SDK

Smart contracts

Constructing smart contracts with Java/Kotlin Contract SDK

This section describes Java/Kotlin Сontract SDK Toolkit – a toolkit for development, testing and deploying
Docker smart contracts in Waves Enterprise public blockchain networks. Use the toolkit to fast take off with
the Waves Enterprise ecosystem using any of the JVM programming languages, since smart contracts are
deployed in a Docker container. You can create a smart contract using any of the JVM languages, such as
Java.

Smart contracts are often deployed into different environments and networks. For example, you can scaffold
local environment based on a sandbox node and deploy contracts to this network for test use-cases.

All the transaction handling is done via methods of a single class marked with @ContractHandler annotation.
The methods which implement handling logic are marked with @ContractInit (for CreateContractTx) and
@ContractAction (for CallContractTx).

To deploy your contract, issue 103 и 104 transactions.

Requirements

Before you start developing your smart contracts, make sure that the following software is installed:

• Docker

• JDK 8 or higher

To deploy your smart contracts, the following software should be installed:

• Docker

• JRE 8 or higher

Dependencies

Quickstart

Take the following steps to create your new contract:

Note: All examples below are taken from the Samples .

1.10. Development and usage of smart contracts 109

https://github.com/waves-enterprise/we-contract-sdk/blob/master/samples

Technical description of the Waves Enterprise platform, Release 1.13.0

1. Create contract handler

@ContractHandler
public class SampleContractHandler {

private final ContractState contractState;

private final ContractTransaction tx;

private final Mapping<List<MySampleContractDto>> mapping;

public SampleContractHandler(ContractState contractState, ContractTransaction tx) {

this.contractState = contractState;

mapping = contractState.getMapping(

new TypeReference<List<MySampleContractDto>>() {

}, "SOME_PREFIX");

this.tx = tx;

}

}

2. Add @ContractInit and @ContractAction methods to handle contract transactions

public class SampleContractHandler {

// ...

@ContractInit
public void createContract(String initialParam) {

contractState.put("INITIAL_PARAM", initialParam);

}

@ContractAction
public void doSomeAction(String dtoId) {

contractState.put("INITIAL_PARAM", Instant.ofEpochMilli(tx.getTimestamp().

→˓getUtcTimestampMillis()));

if (mapping.has(dtoId)) {

throw new IllegalArgumentException("Already has " + dtoId + " on state");

}

mapping.put(dtoId,

Arrays.asList(

new MySampleContractDto("john", 18),

new MySampleContractDto("harry", 54)

));

}

}

1.10. Development and usage of smart contracts 110

Technical description of the Waves Enterprise platform, Release 1.13.0

3. Dispatch the contract with the specified contract handler and settings

public class MainDispatch {

public static void main(String[] args) {

ContractDispatcher contractDispatcher = GrpcJacksonContractDispatcherBuilder.

→˓builder()

.contractHandlerType(SampleContractHandler.class)

.objectMapper(getObjectMapper())

.build();

contractDispatcher.dispatch();

}

private static ObjectMapper getObjectMapper() {

ObjectMapper objectMapper = new ObjectMapper();

objectMapper.registerModule(new JavaTimeModule());

return objectMapper;

}

}

4. Create Docker image

FROM openjdk:8-alpine

MAINTAINER Waves Enterprise <>

ENV JAVA_MEM="-Xmx256M"

ENV JAVA_OPTS=""

ADD build/libs/*-all.jar app.jar

RUN chmod +x app.jar

RUN eval $SET_ENV_CMD

CMD ["/bin/sh", "-c", "eval ${SET_ENV_CMD} ; java $JAVA_MEM $JAVA_OPTS -jar app.jar"]

5. Push the image to the Docker repository used by WE node mining contract transactions

Publish the image to the registry used by the Waves Enterprise blockchain node. For convenience, you can
use the build_and_push_to_docker.sh bash script which builds your smart contract image, pushes it to
the specified registry and displays image and imageHash.

./build_and_push_to_docker.sh my.registry.com/contracts/my-awesome-docker-contract:1.0.0

1.10. Development and usage of smart contracts 111

https://github.com/waves-enterprise/we-contract-sdk/blob/master/samples/java8-sample-contract/build_and_push_to_docker.sh

Technical description of the Waves Enterprise platform, Release 1.13.0

6. Sign and broadcast transactions for creating and invoking the published contract

You will need image and imageHash of the published contract to create it.

CreateContractTx example:

{

"image": "my.registry.com/contracts/my-awesome-docker-contract:1.0.0",

"fee": 0,

"imageHash": "d17f6c1823176aa56e0e8184f9c45bc852ee9b076b06a586e40c23abde4d7dfa",

"type": 103,

"params": [

{

"type": "string",

"value": "createContract",

"key": "action"

},

{

"type": "string",

"value": "initialValue",

"key": "createContract"

}

],

"version": 2,

"sender": "3M3ybNZvLG7o7rnM4F7ViRPnDTfVggdfmRX",

"feeAssetId": null,

"contractName": "myAwesomeContract"

}

To call contract you will need contractId = CreateContractTx.id.

CallContractTx example:

{

"contractId": "7sVc6ybnqZr523xWK5Sg7xADsX597qga8iQNAS9f1D3c",

"fee": 0,

"type": 104,

"params": [

{

"type": "string",

"value": "doSomeAction",

"key": "action"

},

{

"type": "string",

"value": "someValue",

"key": "createContract"

}

],

"version": 2,

"sender": "3M3ybNZvLG7o7rnM4F7ViRPnDTfVggdfmRX",

"feeAssetId": null,

"contractVersion": 1

}

1.10. Development and usage of smart contracts 112

Technical description of the Waves Enterprise platform, Release 1.13.0

Notes on usage

Usage with Java 11 and higher

The library has been tested against Java 8, 11 and 17. When using with Java 11 and higher, additional Java
options should be specified for the io.grpc to enable optimizations:

--add-opens java.base/jdk.internal.misc=ALL-UNNAMED --add-opens=java.base/java.nio=ALL-

→˓UNNAMED -Dio.netty.tryReflectionSetAccessible=true

A complete example can be found in Dockerfile for Java 17.

See also

Development and usage of smart contracts-

Constructing smart contracts with JS Contract SDK

Smart contracts

WE Contract SDK (Java/Kotlin Contract SDK) Client

This section describes the WE Contract SDK Client.The client is used to interact with the contract from
the backend code of Java/Kotlin applications.

Main abstractions

• ContractBlockingClientFactory – Factory to create a contract client.

• NodeBlockingServiceFactory – A factory that creates services for interacting with a node.

• TxService – Interface for working with transactions on the node.

• TxSigner – Interface for signing transactions on the node.

• ConverterFactory – Factory for creating services for converting values when working with a state.

• ContractToDataValueConverter – Interface for converting values to DataValue objects.

• ContractFromDataEntryConverter – Interface for converting Data Entry values from a state.

• ContractClientParams – Class intended for the settings of the client being created.

• ContractSignRequestBuilder – The SignRequest(transaction) builder that creates a contract creation
object (103rd transaction) or a contract invocation object (104th transaction).

1.10. Development and usage of smart contracts 113

https://github.com/waves-enterprise/we-contract-sdk/blob/master/samples/java17-sample-contract/Dockerfile

Technical description of the Waves Enterprise platform, Release 1.13.0

Quickstart

Follow these steps to create WE contract SDK client.

Note: All the examples below are taken from the Waves Enterprise GitHub. In addition, the
Waves Enterprise `GitHub repository <https://github.com/waves-enterprise/we-contract-sdk/tree/master/
we-contract-sdk-client>_ provides more examples.

1. Create and configure services to work with the node:

val objectMapper = ObjectMapper()

.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)

.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, false)

.registerModule(JavaTimeModule())

.registerModule(

KotlinModule.Builder()

.configure(KotlinFeature.NullIsSameAsDefault, true)

.build()

)

val converterFactory = JacksonConverterFactory(objectMapper)

val feignNodeClientParams = FeignNodeClientParams(

url = "{node.url} ",

decode404 = true,

connectTimeout = 5000L,

readTimeout = 3000L,

loggerLevel = Logger.Level.FULL,

)

val feignTxService = FeignTxService(

weTxApiFeign = FeignWeApiFactory.createClient(

clientClass = WeTxApiFeign::class.java,

feignProperties = feignNodeClientParams,

)

)

val feignNodeServiceFactory = FeignNodeServiceFactory(

params = feignNodeClientParams

)

val contractProperties = ContractProperties(

senderAddress = "",

fee = 0L,

contractId = "contractId",

contractVersion = 1,

version = 1,

image = "image",

imageHash = "imageHash",

contractName = "contractName",

)

val contractClientParams = ContractClientParams(localValidationEnabled = true)

val contractSignRequestBuilder = ContractSignRequestBuilder()

.senderAddress(Address.fromBase58(contractProperties.senderAddress))

.fee(Fee(0L))

(continues on next page)

1.10. Development and usage of smart contracts 114

https://github.com/waves-enterprise/we-contract-sdk/tree/master/we-contract-sdk-client/README.md
https://github.com/waves-enterprise/we-contract-sdk/tree/master/we-contract-sdk-client
https://github.com/waves-enterprise/we-contract-sdk/tree/master/we-contract-sdk-client

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

.contractId(ContractId.fromBase58(contractProperties.contractId))

.contractVersion(ContractVersion(contractProperties.contractVersion))

.version(TxVersion(contractProperties.version))

.image(ContractImage(contractProperties.image))

.imageHash(Hash.fromHexString(contractProperties.imageHash))

.contractName(ContractName(contractProperties.contractName))

val contractClientParams = ContractClientParams(localValidationEnabled = true)

2. Form transaction data:

val contractSignRequestBuilder = ContractSignRequestBuilder()

.senderAddress(Address.fromBase58(contractProperties.senderAddress))

.fee(Fee(0L))

.contractId(ContractId.fromBase58(contractProperties.contractId))

.contractVersion(ContractVersion(contractProperties.contractVersion))

.version(TxVersion(contractProperties.version))

.image(ContractImage(contractProperties.image))

.imageHash(Hash.fromHexString(contractProperties.imageHash))

.contractName(ContractName(contractProperties.contractName))

3. Create a client contract factory and configure it:

val contractFactory = ContractBlockingClientFactory(

contractClass = TestContractImpl::class.java,

contractInterface = TestContract::class.java,

converterFactory = converterFactory,

contractClientProperties = contractClientParams,

contractSignRequestBuilder = contractSignRequestBuilder,

nodeBlockingServiceFactory = nodeBlockingServiceFactory,

)

4. Create TxSigner:

val txServiceTxSigner = TxServiceTxSignerFactory(

txService = feignTxService,

)

1.10. Development and usage of smart contracts 115

Technical description of the Waves Enterprise platform, Release 1.13.0

5. Create and invoke client methods:

val executionContext: ExecutionContext = contractFactory.executeContract(

txSigner = txSigner) { contract ->

contract.create()

}

See also

Constructing smart contracts with Java/Kotlin Contract SDK

Development and usage of smart contracts

Constructing smart contracts with JS Contract SDK

Smart contracts

1.10.3 Uploading a smart contract into a registry

If you work in the Waves Enterprise Mainnet, contact the Waves Enterprise Technical Support team to place
your smart contract into the open repository.

When working on a private network, upload the Docker image of the smart contract into your own Docker
registry as described below.

Uploading a smart contract into a registry on a private network

1. Start your registry in a container:

docker run -d -p 5000:5000 --name my-registry-container my-registry:2

2. Navigate to the directory containing the smart contract files and the Dockerfile script file with
commands for building the image.

3. Build the image of your smart contract:

docker build -t my-contract .

4. Specify the image name and its location address in the repository:

docker image tag my-contract my-registry:5000/my-contract

5. Run the repository container you created:

docker start my-registry-container

6. Upload your smart contract to the repository:

docker push my-registry:5000/my-contract

7. Get information about the smart contract. To do this, display the information about the
container:

1.10. Development and usage of smart contracts 116

https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

docker image ls|grep 'my-node:5000/my-contract'

This will give you the ID of the container. Output the information about it with the docker

inspect command:

docker inspect my-contract-id

Response example:

{

"Id": "sha256:57c2c2d2643da042ef8dd80010632ffdd11e3d2e3f85c20c31dce838073614dd

→˓",

"RepoTags": [

"wenode:latest"

],

"RepoDigests": [],

"Parent":

→˓"sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3b58edf2686e1944bcc7133f07913",

"Comment": "",

"Created": "2019-10-25T14:15:03.856072509Z",

"Container": "",

"ContainerConfig": {

"Hostname": "",

"Domainname": "",

"User": "",

"AttachStdin": false,

"AttachStdout": false,

"AttachStderr": false,

The Id field is the identifier of the Docker image of the smart contract, which is entered in the
ImageHash field of the 103 transaction when creating the smart contract.

1.10.4 Installing a smart contract into the blockchain

After uploading the smart contract to the repository, publish the contract on the network using the 103.
CreateContract transaction.

To do this, sign the transaction via the blockchain platform client , the sign REST API method or the
JavaScript SDK method.

The data returned in the method’s response is fed into transaction 103 when it is published.

Below, you will see the examples of signing and sending a transaction using the sign and broadcastmethods.
In the examples, the transactions are signed with the key stored in the keystore of the node.

1.10. Development and usage of smart contracts 117

Technical description of the Waves Enterprise platform, Release 1.13.0

Curl-query to sign transaction 103:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:␣
→˓application/json' --header 'X-Contract-Api-Token' -d ' { “

"fee": 100000000, “
"image": "my-contract:latest", “
"imageHash":

→˓"7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65", “
"contractName": "my-contract", “
"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2", “
"password": "", “
"params": [], “
"type": 103, “
"version": 1 “

}' 'http://my-node:6862/transactions/sign'

The response of the sign method, which is passed to the broadcast method:

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 100000000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv

→˓"],

"version": 1,

"image": "my-contract:latest",

"imageHash":

→˓"7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "my-contract",

"params": [],

"height": 1619

}

Curl-response to sign transaction 103:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:␣
→˓application/json' --header 'X-Contract-Api-Token' -d '{ “
{

"type": 103, \

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", \

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew", \

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \

"fee": 500000, \

"timestamp": 1550591678479, \

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv

→˓"], \

"version": 1, \

(continues on next page)

1.10. Development and usage of smart contracts 118

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"image": "my-contract:latest", \

"imageHash":

→˓"7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65", \

"contractName": "my-contract", \

"params": [], \

"height": 1619 \

}

}' 'http://my-node:6862/transactions/broadcast'

After the 103. CreateContract transaction, which specifies a reference to the smart contract in the repository,
is published, i.e., written to a block of the blockchain during a mining round, network users will be able to
invoke that smart contract.

Note: If the smart contract code is updated in the future, the contract will need to be republished. To do
this, use the 107. UpdateContract Transaction.

Important: The smart contract itself is not placed into the blockchain; the blockchain receives the trans-
action with the hash of the Docker image in which the smart contract code is packaged. Thus the smart
contract Docker image hash is stored on all the nodes of the blockchain, but the smart contract itself is in
the Docker registry outside the blockchain network.

1.10.5 Smart contract execution

Once a smart contract is installed in the blockchain, it can be invoked with a 104 CallContract Transaction.

This transaction can also be signed and sent to the blockchain via the blockchain platform client, the sign
REST API method or the JavaScript SDK method. When signing a transaction 104, specify the ID of
the 103 transaction for the called smart contract in the contractId field (the id field of the sign method
response).

Examples of signing and sending a transaction using the sign and broadcast methods using a key stored
in the keystore of a node:

Curl-query to sign transaction 104:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:␣
→˓application/json' --header 'X-Contract-Api-Token' -d '{ “
"contractId": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", “
"fee": 10, “
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew", “
"password": "", “
"type": 104, “
"version": 1, “
"params": [“

{ “
"type": "integer", “

(continues on next page)

1.10. Development and usage of smart contracts 119

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"key": "a", “
"value": 1 “

} “
] “
}' 'http://my-node:6862/transactions/sign'

The response of the sign method, which is passed to the broadcast method:

{

"type": 104,

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 10,

"timestamp": 1549365736923,

"proofs": [

→˓"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v

→˓"

],

"version": 1,

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"params": [

{

"key": "a",

"type": "integer",

"value": 1

}

]

}

Curl-query to broadcast the transaction 104:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:␣
→˓application/json' --header 'X-Contract-Api-Token' -d '{ “
"type": 104, “
"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP", “
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", “
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq", “
"fee": 10, “
"timestamp": 1549365736923, “
"proofs": [“

→˓"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v

→˓" “
], “
"version": 1, “
"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2", “
"params": [“

{ “
"key": "a", “
"type": "integer", “

(continues on next page)

1.10. Development and usage of smart contracts 120

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"value": 1 “
} “

] “
}' 'http://my-node:6862/transactions/broadcast'

See also

Smart contracts

General platform configuration: execution of smart contracts

gRPC services used by smart contracts

1.11 JavaScript SDK

JavaScript SDK is an application integration library for the Waves Enterprise platform. It solves a wide
range of tasks related to signing and sending transactions to the blockchain.

JavaScript SDK supports:

• operation in a browser, as well as in the Node.js environment;

• signing all types of Waves Enterprise platform transactions;

• operations with seed phrases: creating a new phrase, creating from an existing phrase, encryption;

• client implementation of the node crypto/encryptCommon, crypto/encryptSeparate, crypto/

decrypt methods.

The JavaScript SDK uses the node REST API methods to work with the blockchain. However, applications
written with this library do not interact with the blockchain directly, but sign transactions locally – in a
browser or in the Node.js environment. After local signing, the transactions are sent to the network. This
way of interaction allows the development of multilayer applications and services that interact with the
blockchain.

Data from the application is transmitted and received in json format over the HTTPS protocol.

The general chart of JavaScript SDK operation:

The JavaScript SDK package, as well as the instructions for installing it, are available at the Waves Enterprise
GitHub repository.

JavaScript SDK installation and operation are described in more detail in the following sections:

1.11. JavaScript SDK 121

https://github.com/waves-enterprise/we-node/releases
https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

1.11.1 How the JavaScript SDK works

Authorization in the blockchain

In order for an application user to interact with the blockchain, the user must be authorized on the network.
To do this, the JavaScript SDK provides authorization service REST API methods that allow you to make
a multi-level algorithm with all possible types of queries related to user authorization in the blockchain.

Authorization can be done both in the browser and in the Node.js environment.

When authorizing in a browser, the Fetch API interface is used.

For authorization via Node.js, the Axios HTTP client is used.

If the blockchain node used by the application uses the oAuth authorization method, it is recommended to use
the api-token-refresher library for its authorization. This library automatically updates access tokens when
their usage time expires. For more information about the oAuth authorization and the api-token-refresher
library, see the Using the JS SDK in a node with oAuth authorization section.

Seed phrase generation

The JS SDK-based application can work with seed phrases in the following variants:

• create a new randomized seed phrase;

• create a seed phrase from an existing phrase;

• encrypt the seed phrase with a password or decrypt it.

Examples of how the JS SDK works with seed phrases are given in the Variants of generation of a seed
phrase and work with it in the JS SDK section.

Signing and sending transactions

For JS SDK-based applications, any platform transactions can be signed and sent to the blockchain. A list
of all transactions is given in the Description of transactions.

The process of signing and sending transactions to the network is as follows:

1. The application initiates generation of a transaction.

2. All transaction fields are serialized into bytecode using the transactions-factory auxiliary component
of the JS SDK.

3. The transaction is then signed using the signature-generator component with the user’s private key
in the browser or in the Node.js environment. The transaction is signed using a POST request /

transactions/sign.

4. The JavaScript SDK sends a transaction to the blockchain using the POST request /transactions/
broadcast.

5. The application gets a response in the form of a transaction hash to a POST request.

Examples of signing and sending different types of transactions are given in the Creating and sending trans-
actions with the use of the JS SDK section.

1.11. JavaScript SDK 122

Technical description of the Waves Enterprise platform, Release 1.13.0

Cryptographic node methods used by the JavaScript SDK

Three cryptographic methods are available for the JavaScript SDK:

• crypto/encryptCommon – data encryption with a single CEK key for all recipients, which in turn is
wrapped by unique KEK keys for each recipient;

• crypto/encryptSeparate – separate text encryption with a unique key for each recipient;

• crypto/decrypt – data decryption, provided that the key of the message recipient is in the keystore
of the node.

See also

JavaScript SDK

Description of transactions

REST API: encryption and decryption methods

1.11.2 JS SDK installation and initialization

If you are going to use the JS SDK in a Node.js environment, install the Node.js package from the official
website.

Install the js-sdk package using npm:

npm install @wavesenterprise/js-sdk --save

In the selected development environment, import the package containing the JS SDK library:

import WeSdk from '@wavesenterprise/js-sdk'

In addition to importing a package, you can use the require function:

const WeSdk = require('@wavesenterprise/js-sdk');

Then initialize the library:

const config = {

...WeSdk.MAINNET_CONFIG,

nodeAddress: 'https://hoover.welocal.dev/node-0',
crypto: 'waves',
networkByte: 'V'.charCodeAt(0)

}

const Waves = WeSdk.create({

initialConfiguration: config,

fetchInstance: window.fetch // Browser feature. For Node.js use node-fetch

});

When working in a browser, use the window.fetch function as fetchInstance. If you work in Node.js, use
the module node-fetch.

Once the JavaScript SDK is initialized, you can start creating and sending transactions.

Below is a complete listing with the creation of a typical transaction:

1.11. JavaScript SDK 123

https://www.npmjs.com/package/node-fetch

Technical description of the Waves Enterprise platform, Release 1.13.0

import WeSdk from '@wavesenterprise/js-sdk'

const config = {

...WeSdk.MAINNET_CONFIG,

nodeAddress: 'https://hoover.welocal.dev/node-0',
crypto: 'waves',
networkByte: 'V'.charCodeAt(0)

}

const Waves = WeSdk.create({

initialConfiguration: config,

fetchInstance: window.fetch

});

// Create a seed phrase from an existing one

const seed = Waves.Seed.fromExistingPhrase('examples seed phrase');

const txBody = {

recipient: seed.address, // Send tokens to the same address

assetId: '',
amount: '10000',
fee: '1000000',
attachment: 'Examples transfer attachment',
timestamp: Date.now()

};

const tx = Waves.API.Transactions.Transfer.V3(txBody);

await tx.broadcast(seed.keyPair)

A description of the transaction parameters, as well as examples, is available in the “Creating and sending
transactions” section.

See also

JavaScript SDK

1.11.3 Creating and sending transactions with the use of the JS SDK

Principles of transaction creation

Any transaction is called using the function Waves.API.Transactions.<TRANSACTION_Name>.

<TRANSACTION_VERSION>.

For example, a transaction call for a version 3 token transfer transaction can be done as follows:

const tx = Waves.API.Transactions.Transfer.V3(txBody);

txBody – transaction body, which contains the necessary parameters. For example, for the above Transfer
transaction it may look like this:

1.11. JavaScript SDK 124

Technical description of the Waves Enterprise platform, Release 1.13.0

const tx = Waves.API.Transactions.Transfer.V3(txBody);

{

"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"password": "",

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"amount": 40000000000,

"fee": 100000

}

You can leave the transaction body blank and fill in the necessary parameters later by accessing the variable
where the result of the transaction call function is returned (in the example, the tx variable):

const tx = Waves.API.Transactions.Transfer.V3({});

tx.recipient = '12afdsdga243134';
tx.amount = 10000;

//...

tx.sender = "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX";

//...

tx.amount = 40000000000;

tx.fee = 10000;

This way of calling a transaction allows more flexibility in making numerical operations in the code and
using separate functions to define certain parameters.

3 , 13 , 14 and 112 transactions use the description text field, and 4 and 6 transactions use the attachment
text field. Messages sent in these transaction fields need to be converted into base58 format before being
sent. There are two functions in the JS SDK for that:

• ``base58.encode” – translates the text string into base58 format;
• base58.decode – reverse decode the base58 format string into text.

An example of a transaction body using base58.encode:

const txBody = {

recipient: seed.address,

assetId: '',
amount: 10000,

fee: minimumFee[4],

attachment: Waves.tools.base58.encode('Examples transfer attachment'),
timestamp: Date.now()

}

const tx = Waves.API.Transactions.Transfer.V3(txBody);

Attention: When calling transactions with the use of JS SDK, you need to fill all necessary parameters
of transaction body except type, version, id, proofs and senderPublicKey. These parameters are
filled in automatically when the key pair is generated.

For a description of the parameters included in the body of each transaction, see Transaction Description.

1.11. JavaScript SDK 125

Technical description of the Waves Enterprise platform, Release 1.13.0

Broadcasting a transaction

The broadcast method is used to broadcast a transaction to the network via the JS SDK:

await tx.broadcast(seed.keyPair);

This method is called after creating a transaction and filling its parameters. The result of its execution can
be assigned to a variable to display the result of sending the transaction to the network (in the example, the
result variable):

try {

const result = await tx.broadcast(seed.keyPair);

console.log('Broadcast PolicyCreate result: ', result)

} catch (err) {

console.log('Broadcast error:', err)

}

Below is the full listing of the token transfer transaction call and its broadcasting:

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'wavesenterprise
→˓'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

const txBody = {

(continues on next page)

1.11. JavaScript SDK 126

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

recipient: seed.address,

assetId: '',
amount: 10000,

fee: minimumFee[4],

attachment: Waves.tools.base58.encode('Examples transfer attachment'),
timestamp: Date.now()

}

const tx = Waves.API.Transactions.Transfer.V3(txBody);

try {

const result = await tx.broadcast(seed.keyPair);

console.log('Broadcast transfer result: ', result)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

For examples of calling and sending other transactions, see “Examples of JavaScript SDK usage” Additional
methods available when creating and sending a transaction

In addition to the broadcast method, the following methods are available for debugging and defining trans-
action parameters:

• isValid – transaction body check, returns 0 or 1;

• getErrors – returns a string array containing the description of errors made when filling the fields;

• getSignature – returns a string with the key with which the transaction was signed;

• getId – returns a string with the ID of the transaction to be sent;

• getBytes – an internal method that returns an array of bytes to sign.

See also

JavaScript SDK

Description of transactions

Mainnet fees

1.11.4 Examples of JavaScript SDK usage

Token transfer (4)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

(continues on next page)

1.11. JavaScript SDK 127

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'wavesenterprise
→˓'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

// see docs: https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-

→˓structures/transactions-structure.html#transfertransaction

const txBody = {

recipient: seed.address,

assetId: '',
amount: 10000,

fee: minimumFee[4],

attachment: Waves.tools.base58.encode('Examples transfer attachment'),
timestamp: Date.now()

}

const tx = Waves.API.Transactions.Transfer.V3(txBody);

try {

const result = await tx.broadcast(seed.keyPair);

console.log('Broadcast transfer result: ', result)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

1.11. JavaScript SDK 128

Technical description of the Waves Enterprise platform, Release 1.13.0

Creation of a confidential data group (112)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key':
→˓'wavesenterprise'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

// Transaction data

// https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/

→˓transactions-structure.html#createpolicytransaction

const txBody = {

sender: seed.address,

policyName: 'Example policy',
description: 'Description for example policy',
owners: [seed.address],

recipients: [],

fee: minimumFee[112],

timestamp: Date.now(),

}

const tx = Waves.API.Transactions.CreatePolicy.V3(txBody);

try {

const result = await tx.broadcast(seed.keyPair);

console.log('Broadcast PolicyCreate result: ', result)
(continues on next page)

1.11. JavaScript SDK 129

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

Permission adding and removing (102)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key':
→˓'wavesenterprise'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

const targetSeed = Waves.Seed.create(15);

// https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/

→˓transactions-structure.html#permittransaction

const txBody = {

target: targetSeed.address,

opType: 'add',
role: 'issuer',
fee: minimumFee[102],

timestamp: Date.now(),

(continues on next page)

1.11. JavaScript SDK 130

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

}

const permTx = Waves.API.Transactions.Permit.V2(txBody);

try {

const result = await permTx.broadcast(seed.keyPair);

console.log('Broadcast ADD PERMIT: ', result)

const waitTimeout = 30

console.log(`Wait ${waitTimeout} seconds while tx is mining...`)

await new Promise(resolve => {

setTimeout(resolve, waitTimeout * 1000)

})

const removePermitBody = {

...txBody,

opType: 'remove',
timestamp: Date.now()

}

const removePermitTx = Waves.API.Transactions.Permit.V2(removePermitBody);

const removePermitResult = await removePermitTx.broadcast(seed.keyPair);

console.log('Broadcast REMOVE PERMIT: ', removePermitResult)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

Smart contract creation (103)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key':
→˓'wavesenterprise'} });

}

(async () => {

(continues on next page)

1.11. JavaScript SDK 131

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

const timestamp = Date.now();

//body description: https://docs.wavesenterprise.com/en/latest/how-the-platform-

→˓works/data-structures/transactions-structure.html#createcontracttransaction

const txBody = {

senderPublicKey: seed.keyPair.publicKey,

image: 'we-sc/grpc-contract-example:2.1',
imageHash: '9fddd69022f6a47f39d692dfb19cf2bdb793d8af7b28b3d03e4d5d81f0aa9058',
contractName: 'Sample GRPC contract',
timestamp,

params: [],

fee: minimumFee[103]

};

const tx = Waves.API.Transactions.CreateContract.V3(txBody)

try {

const result = await tx.broadcast(seed.keyPair);

console.log('Broadcast docker create result: ', result)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

1.11. JavaScript SDK 132

Technical description of the Waves Enterprise platform, Release 1.13.0

Smart contract call (104)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key':
→˓'wavesenterprise'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

const timestamp = Date.now()

//body description: https://docs.wavesenterprise.com/en/latest/how-the-platform-

→˓works/data-structures/transactions-structure.html#callcontracttransaction

const txBody = {

authorPublicKey: seed.keyPair.publicKey,

contractId: '4pSJoWsaYvT8iCSAxUYdc7LwznFexnBGPRoUJX7Lw3sh', // Predefined␣

→˓contract

contractVersion: 1,

timestamp,

params: [],

fee: minimumFee[104]

};

const tx = Waves.API.Transactions.CallContract.V4(txBody)

try {

const result = await tx.broadcast(seed.keyPair);
(continues on next page)

1.11. JavaScript SDK 133

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

console.log('Broadcast docker call result: ', result)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

Atomic transaction (120)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'wavesenterprise
→˓'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

const transfer1Body = {

recipient: seed.address,

amount: 10000,

fee: minimumFee[4],

attachment: Waves.tools.base58.encode('Its beautiful!'),
timestamp: Date.now(),

atomicBadge: {

trustedSender: seed.address

(continues on next page)

1.11. JavaScript SDK 134

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

}

}

const transfer1 = Waves.API.Transactions.Transfer.V3(transfer1Body);

const transfer2Body = {

recipient: seed.address,

amount: 100000,

fee: minimumFee[4],

attachment: Waves.tools.base58.encode('Its beautiful!'),
timestamp: Date.now(),

atomicBadge: {

trustedSender: seed.address

}

}

const transfer2 = Waves.API.Transactions.Transfer.V3(transfer2Body);

const dockerCall1Body = {

authorPublicKey: seed.keyPair.publicKey,

contractId: '4pSJoWsaYvT8iCSAxUYdc7LwznFexnBGPRoUJX7Lw3sh', // Predefined contract

contractVersion: 1,

timestamp: Date.now(),

params: [],

fee: minimumFee[104],

atomicBadge: {

trustedSender: seed.address

}

}

const dockerCall1 = Waves.API.Transactions.CallContract.V4(dockerCall1Body);

const dockerCall2Body = {

authorPublicKey: seed.keyPair.publicKey,

contractId: '4pSJoWsaYvT8iCSAxUYdc7LwznFexnBGPRoUJX7Lw3sh',
contractVersion: 1,

timestamp: Date.now() + 1,

params: [],

fee: minimumFee[104],

atomicBadge: {

trustedSender: seed.address

}

}

const dockerCall2 = Waves.API.Transactions.CallContract.V4(dockerCall1Body);

const policyDataText = `Some random text ${Date.now()}`
const uint8array = Waves.tools.convert.stringToByteArray(policyDataText);

const { base64Text, hash } = Waves.tools.encodePolicyData(uint8array)

const policyDataHashBody = {

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

(continues on next page)

1.11. JavaScript SDK 135

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"policyId": "9QUUuQ5XetCe2wEyrSX95NEVzPw2bscfcFfAzVZL5ZJN",

"type": "file",

"data": base64Text,

"hash": hash,

"info": {

"filename":"test-send1.txt",

"size":1,

"timestamp": Date.now(),

"author":"temakolodko@gmail.com",

"comment":""

},

"fee": 5000000,

"password": "sfgKYBFCF@#$fsdf()*%",

"timestamp": Date.now(),

"version": 3,

"apiKey": 'wavesenterprise',
}

const policyDataHashTxBody = {

...policyDataHashBody,

atomicBadge: {

trustedSender: seed.address

}

}

const policyDataHashTx = Waves.API.Transactions.PolicyDataHash.

→˓V3(policyDataHashTxBody);

try {

const transactions = [transfer1, transfer2, policyDataHashTx]

const broadcast = await Waves.API.Transactions.broadcastAtomic(

Waves.API.Transactions.Atomic.V1({transactions}),

seed.keyPair

);

console.log('Atomic broadcast successful, tx id:', broadcast.id)

} catch (err) {

console.log('Create atomic error:', err)

}

})();

Token issue/burning (3 / 6)

const { create: createApiInstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0';
const seedPhrase = 'examples seed phrase';

(continues on next page)

1.11. JavaScript SDK 136

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

const fetch = (url, options = {}) => {

const headers = options.headers || {}

return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key':
→˓'wavesenterprise'} });

}

(async () => {

const { chainId, minimumFee, gostCrypto } = await (await fetch(`${nodeAddress}/node/
→˓config`)).json();

const wavesApiConfig = {

...MAINNET_CONFIG,

nodeAddress,

crypto: gostCrypto ? 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApiInstance({

initialConfiguration: wavesApiConfig,

fetchInstance: fetch

});

// Create Seed object from phrase

const seed = Waves.Seed.fromExistingPhrase(seedPhrase);

const quantity = 1000000

//https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/

→˓transactions-structure.html#issuetransaction

const issueBody = {

name: 'Sample token',
description: 'The best token ever made',
quantity,

decimals: 8,

reissuable: false,

chainId: Waves.config.getNetworkByte(),

fee: minimumFee[3],

timestamp: Date.now(),

script: null

}

const issueTx = Waves.API.Transactions.Issue.V2(issueBody)

try {

const result = await issueTx.broadcast(seed.keyPair);

console.log('Broadcast ISSUE result: ', result)

const waitTimeout = 30

console.log(`Wait ${waitTimeout} seconds while tx is mining...`)

await new Promise(resolve => {

setTimeout(resolve, waitTimeout * 1000)

})

(continues on next page)

1.11. JavaScript SDK 137

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

const burnBody = {

assetId: result.assetId,

amount: quantity,

fee: minimumFee[6],

chainId: Waves.config.getNetworkByte(),

timestamp: Date.now()

}

const burnTx = Waves.API.Transactions.Burn.V2(burnBody)

const burnResult = await burnTx.broadcast(seed.keyPair);

console.log('Broadcast BURN result: ', burnResult)

} catch (err) {

console.log('Broadcast error:', err)

}

})();

See also

JavaScript SDK

1.11.5 Using the JS SDK in a node with oAuth authorization

If the node uses the oAuth authorization, it is necessary to initialize the Waves API with the authorization
headers for the call.

To automatically update tokens when developing applications with the JS SDK, we recommend using the
external module api-token-refresher. However, you can use your solution instead.

To work with api-token-refresher, install dependencies using npm:

npm i @wavesenterprise/api-token-refresher@3.1.0 --save, axios --save-dev, cross-fetch --

→˓save-dev, @wavesenterprise/js-sdk@3.1.1 --save

Initialize api-token-refresher as follows:

import { init: initRefresher } from '@wavesenterprise/api-token-refresher/dist/fetch'

const { fetch } = initRefresher({

authorization: {

access_token,

refresh_token

}

});

const Waves = WeSdk.create({

initialConfiguration: config,

fetchInstance: fetch

});

1.11. JavaScript SDK 138

Technical description of the Waves Enterprise platform, Release 1.13.0

The access_token and refresh_token parameters are given in the authorization response to the
loginSecure request, which is available in the browser.

The following listing contains the initialization of the library followed by the first block check:

const WeSdk = require('@wavesenterprise/js-sdk');
const { ApiTokenRefresher } = require('@wavesenterprise/api-token-refresher');

const apiTokenRefresher = new ApiTokenRefresher({

authorization: {

access_token: 'access_token',
refresh_token: 'refresh_token'

}

})

const { fetch } = apiTokenRefresher.init()

const Waves = WeSdk.create({

initialConfiguration: {

...WeSdk.MAINNET_CONFIG,

nodeAddress: 'https://hoover.welocal.dev/node-1',
crypto: 'waves',
networkByte: 'V'.charCodeAt(0)

},

fetchInstance: fetch

});

const testFirstBlock = async () => {

const data = await Waves.API.Node.blocks.first()

console.log('First block:', data)

}

testFirstBlock()

See also

JavaScript SDK

Authorization and data services

1.11.6 Variants of generation of a seed phrase and work with it in the JS SDK

1. Creating a new randomized seed phrase

const seed = Waves.Seed.create();

console.log(seed.phrase); // 'hole law front bottom then mobile fabric under horse drink␣

→˓other member work twenty boss'
console.log(seed.address); // '3Mr5af3Y7r7gQej3tRtugYbKaPr5qYps2ei'

(continues on next page)

1.11. JavaScript SDK 139

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

console.log(seed.keyPair); // { privateKey: 'HkFCbtBHX1ZUF42aNE4av52JvdDPWth2jbP88HPTDyp4
→˓', publicKey: 'AF9HLq2Rsv2fVfLPtsWxT7Y3S9ZTv6Mw4ZTp8K8LNdEp' }

2. Creating a seed phrase from an existing one

const anotherSeed = Waves.Seed.fromExistingPhrase('a seed which was backed up some time␣

→˓ago');

console.log(seed.phrase); // 'newly created seed'
console.log(seed.address); // '3N3dy1P8Dccup5WnYsrC6VmaGHF6wMxdLn4'
console.log(seed.keyPair); // { privateKey: '2gSboTPsiQfi1i3zNtFppVJVgjoCA9P4HE9K95y8yCMm
→˓', publicKey: 'CFr94paUnDSTRk8jz6Ep3bzhXb9LKarNmLYXW6gqw6Y3' }

3. Encrypting the seed phrase with a password and decrypting it

Example of password encryption of a seed phrase:

const password = '0123456789';
const encrypted = seed.encrypt(password);

console.log(encrypted); // 'U2FsdGVkX1+5TpaxcK/
→˓eJyjht7bSpjLYlSU8gVXNapU3MG8xgWm3uavW37aPz/

→˓KTcROK7OjOA3dpCLXfZ4YjCV3OW2r1CCaUhOMPBCX64QA/iAlgPJNtfMvjLKTHZko/

→˓JDgrxBHgQkz76apORWdKEQ=='

Example of seed phrase decryption with the use of a password:

const restoredPhrase = Waves.Seed.decryptSeedPhrase(encrypted, password);

console.log(restoredPhrase); // 'hole law front bottom then mobile fabric under horse␣

→˓drink other member work twenty boss'

See also

JavaScript SDK

See also

Cryptography

REST API: encryption and decryption methods

Transactions of the blockchain platform

1.11. JavaScript SDK 140

Technical description of the Waves Enterprise platform, Release 1.13.0

1.12 Confidential data exchange

The Waves Enterprise blockchain platform allows you to restrict access to certain data placed on the
blockchain.

To do this, users are combined into groups that have access to sensitive data. One user can be a member
of more than one such group. Any member of the group can distribute data to other members of the same
group without the data being disclosed to the rest of the blockchain.

Confidential data is transmitted within a group on a peer-to-peer basis. It is not the data itself that is sent
to the blockchain, but only the hash of the data. Confidential data is not stored in the blockchain state.

Important: If you are transferring confidential data on your private blockchain network, in order to upgrade
from versions older than 1.7.2, you must first upgrade to version 1.7.2 and then to version 1.8 or higher.
This requirement is related to the private data exchange protocol modification.

1.12.1 Creating a confidential data group

Any member of the network can create a confidential data access group (policy).

There are two roles in the group:

• recipient – is a member of the data exchange; he can read data from the group and send data to other
members of the group;

• owner – the administrator of the group; in addition to accessing confidential data, he can change the
composition of the group members.

Before you create an access group, decide on the list of members that will be part of it.

Then sign and submit the 112 CreatePolicy transaction:

1. In the recipients field, enter the comma-separated addresses of participants who will have access to
confidential data.

2. In the owners field, specify the addresses of the owners (administrators) of the access group, separated
by commas.

For example:

policyName: "Private data exchange 1"

description: "This group is made to share private data..."

recipients: [

"3AqTkL47j..."

"5GdYrt9fD...."

]

owners: [

"8FhBlR12g..."

]

fee: ...

timestamp: ...

When you send the transaction, you will receive the transaction ID of the signed CreatePolicy transaction;
the same ID is the ID of the created access group (policyId). You will need it later to change the composition
of the group members.

1.12. Confidential data exchange 141

Technical description of the Waves Enterprise platform, Release 1.13.0

Once a transaction is sent to the blockchain, all participants registered in the created access group will have
access to the confidential data sent to the network.

As the creator of the transaction, you will be able to change the composition of the group, as will the
participants added to the owners field.

1.12.2 Updating a confidential data group

To change the membership of an access group, the group owner signs and submits the 113 UpdatePolicy
transaction:

1. In the policyId field, enter the identifier of the access group to be changed.

2. In the opType field, enter the action to be performed on the group:

• add – add members;

• remove – delete members.

3. If you want to add or remove members of an access group, type their public keys in the recipients

field.

4. To add or remove access group owners, type their public keys in the owners field.

Access group information is updated after a transaction is sent to the blockchain.

Only the members of a confidential data group added to the owners field during the group creation, as well
as its creator himself (group owners) can change the composition of the confidential data access group. If
there is more than one owner in a group, each owner can change the group independently. That means one
signature in the 113 UpdatePolicy transaction is enough.

When a new member is added to an access group, he can request access to all of the confidential data sent
to that group earlier.

1.12.3 Confidential data storage

To receive and send confidential data, you must configure the confidential data storage. Use the privacy
section of the node configuration file for this purpose.

On the Waves Enterprise blockchain platform you can use the following types of storage for confidential data:

• PostgreSQL (version 8.2and higer)

• Amazon S3/MinIO

Note: Regardless of which storage type is selected, a single data format is used. Thus, members of the
same group can use different types of storage.

Once the storage is set up and the group is created, you can send confidential data.

1.12. Confidential data exchange 142

https://www.postgresqltutorial.com
https://aws.amazon.com/s3/getting-started/?nc=sn&loc=6&dn=1

Technical description of the Waves Enterprise platform, Release 1.13.0

1.12.4 Sending confidential data into the network

Use the following methods to send confidential data into the network:

• gRPC methods

– SendData,

– SendLargeData.

• REST API methods

– POST /privacy/sendData,

– POST /privacy/sendDataV2 ,

– POST /privacy/sendLargeData.

With the POST /privacy/sendData and POST /privacy/sendDataV2 methods, you can send
data up to 20 megabytes. Use the POST /privacy/sendLargeDatamethod to send data larger
than 20 megabytes.

When confidential data is sent, its hash is sent to the blockchain network in a separate transaction. Group
members can poll other members of the same group after receiving such a transaction.

These methods require authorization.

See also

Description of transactions

PrivacyPublicService

REST API: confidential data exchange and obtaining of information about confidential data
groups

Precise platform configuration: confidential data groups configuration

1.13 Role management

All the permissions (roles) of the blockchain platform are described in the Permissions article. Permissions
can be arbitrarily combined for any address; individual permissions can be revoked at any time.

102 Permission Transaction is provided to manage the participants’ roles. The transaction can be signed
using the REST API sign method , and broadcasted using the corresponding gRPC or REST API method.
The response received from the sign method is sent to the broadcast method of gRPC or REST node API.

Only a participant with the permissioner role can send 102 transactions to the blockchain.

Regardless of the sending method used, the transaction includes the following fields:

• type – type of transaction for managing the participants’ permissions (type = 102);

• sender – the address of the participant with authority to send transaction 102 (permissioner role);

• password – key pair password in the node keystore, optional field;

• proofs – transaction signature;

• target – the address of the participant whom you want to assign or remove permissions;

1.13. Role management 143

Technical description of the Waves Enterprise platform, Release 1.13.0

• role – the member’s permission which you want to assign or remove; when sending the transaction
via broadcast gRPC method, the field specifies the identifying byte of the role; valid values are listed
in the Roles Ids table below;

• opType – type of operation:

– add – add a permission or

– remove – remove a permission;

• dueTimestamp – the date of the permission validity in the Unix Timestamp format (in milliseconds),
optional field.

The following role IDs are used when broadcasting the 102 transaction via broadcast gRPC method:

Roles ids

Role Byte id prefixS

Miner 1 miner
Issuer 2 issuer
Permissioner 4 permissioner
Blacklister 5 blacklister
Banned 6 banned
ContractDeveloper 7 contract_developer
ConnectionManager 8 connection_manager
Sender 9 sender
ContractValidator 10 contract_validator

See also

Description of transactions

REST API: information about permissions of participants

1.14 Connection and removing of nodes

When working in Waves Enterprise Mainnet, member nodes are connected to the network and removed from
it with the help of Waves Enterprise specialists.

In a private network, the connection and removal of new members is performed after manual configuration
and the start of the first node.

1.14.1 Connecting a new node to a private network

To connect a new node, do the following:

1. Configure the node according to the instructions given in the article Deploying the platform in a private
network .

2. Send the public key of the new node and its description to administrator of your network.

1.14. Connection and removing of nodes 144

Technical description of the Waves Enterprise platform, Release 1.13.0

3. The network administrator (node with the connection-manager permission) uses the received public
key and node description when creating a transaction 111 RegisterNode. To register a node, the opType
parameter, which defines the type of action to be performed, should be specified as add (add a new
node).

4. The 111 transaction enters the block and then enters the network participants’ node state. Thereafter,
each member of the network must store the public key and the address of the new node.

5. If necessary, the network administrator can add additional roles to the new node with the 102 transac-
tion. For more information about assigning member roles, see the Participant role assignment article.

6. Start the new node.

1.14.2 Removing node from a private network

To remove a node from the network, the network administrator sends a 111 RegisterNode transaction to the
blockchain. In this transaction, he specifies the public key of the node to be removed and the parameter
opType: ``remove” (remove the node from the network).

After a transaction is published to the blockchain, the node data is removed from the states of all participants.

See also

Description of transactions

Role management

Architecture

1.15 Node start with a snapshot

In order to change the parameters of a private blockchain without losing the data stored in it, the Waves
Enterprise blockchain platform has a snapshot mechanism. For example, the consensus algorithm used in
the network can be changed using this mechanism. At the same time, addresses and current balances in
the network remain unchanged. Also, when the network is restarted using the created data snapshot, the
transaction history is reduced to the current state and, accordingly, the size of the state is reduced.

The snapshot mechanism is configured in the configuration file of the node (see the Precise platform config-
uration: snapshot).

After creating a snapshot in the private blockchain, you, as the network administrator, can change its
parameters and restart it using the data stored in the snapshot.

To do this, carry out the following:

1. Use the GET /snapshot/status method to make sure that the data snapshot was received by your node
and successfully verified;

2. Use the GET /snapshot/genesis-config method to request the configuration of the new genesis block
and save it;

3. Use the POST /snapshot/swap-state method to replace the current network state with the data snap-
shot and wait for a successful response;

4. Prepare the node configuration files to restart:

• change the genesis block parameters to those obtained in step 2;

1.15. Node start with a snapshot 145

Technical description of the Waves Enterprise platform, Release 1.13.0

• disable the snapshot mechanism (node.consensual-snapshot.enable = no);

• if necessary, change the parameters of the blockchain.consensus section of the node configuration
file;

5. Restart the node.

After the node is restarted, a new genesis block of the network will be generated. The network is started
with updated parameters and data recorded in the data snapshot.

See also

Snapshooting

Precise platform configuration: snapshot

REST API: information about configuration and state of the node, stopping the node

1.16 Architecture

1.16.1 Platform arrangement

The Waves Enterprise platform is based in the distributed ledger technology and built as a fractal network
that consists of two elements:

• Master blockchain (Waves Enterprise Mainnet), which provides functioning of the overall network and
acts as a global moderator for the basic network, as well as for many user networks;

• individual sidechains created for definite business tasks.

Interaction between the master blockchain and sidechains is provided by the anchoring mechanism which
broadcasts cryptographic proofs of transaction into the basic blockchain network. The anchoring mechanism
allows to freely configure sidechains and use any consensus algorithm without loss of connection with the
master blockchain. For instance, the Waves Enterprise master blockchain is based on the Proof-of-Stake
consensus algorithm, because it is supported by independent participants. At the same time, corporate
sidechains that do not have to stimulate miners with transaction fees can use the Proof-of-Authority or
Crash-Fault-Tolerance algorithms.

This two-part arrangement allows to optimize the network for high processing loads, increase information
transmission rate, as well as to enhance concurrence and availability of data. Usage of the anchoring mech-
anism increases trust to data in sidechains, because they are validated in the master blockchain.

Platform architecture scheme:

1.16.2 Arrangement of nodes and auxiliary services

Each blockchain node is an independent network participant which has the software required for work with
the network. Every node consists of the following components:

• Consensus services and cryptolibraries – components that are responsible for achievement of consensus
between nodes and cryptographic algorithms.

• Node API – gRPC and REST API interfaces of the node that allow to receive data from the blockchain,
sign and broadcast transactions, send confidential data, create and call smart contracts, etc.

• Unconfirmed transaction pool (UTX pool) – the component providing storage of unconfirmed trans-
actions before their validation and broadcasting into the blockchain.

1.16. Architecture 146

Technical description of the Waves Enterprise platform, Release 1.13.0

• Miner – the component responsible for creation of transaction blocks for adding into the blockchain,
as well as for interaction with smart contracts.

• Key store – storage for key pairs of a node and users. All the keys are protected with the password.

• Network layer – the logic layer that provides interaction of nodes at the applied level via the network
protocol over the TCP.

• Node storage – the system component based on RocksDB that provides storage of ‘key-value’ pairs for
the entire set of confirmed transactions and blocks, as well as for the current blockchain state.

• Validation logic – the logic layer containing the rules of transaction validation, for instance, basic
signature check and advanced check according to the script.

• Configuration – node configuration parameters that are set in the node-name.conf file.

Every node also contains a set of additional services:

• Authorization service – the service providing authorization of all components.

• Data crawler – the service for data extraction from a node and uploading of extracted data into the
data service.

• Generator – the service for generation of key pairs for new accounts and creating of the api-key-hash.

• Monitoring service – the external service using the InfluxDB database for storage of time sequences
with application data and metrics.

Installation of auxiliary services is not required, but they alleviate interaction of users with the blockchain
network. Apart of ready-made services and depending on tasks, integration adapters can be developed for
transit of transactions from client applications into the blockchain network, as well as for data exchange
between a node and applied services of a customer.

Scheme of node and auxiliary services arrangement:

1.16. Architecture 147

Technical description of the Waves Enterprise platform, Release 1.13.0

1.16. Architecture 148

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Waves-NG blockchain protocol

Consensus algorithms

Cryptography

Examples of node configuration files

Authorization and data services

Generators

1.17 Waves-NG blockchain protocol

Waves-NG is a blockchain protocol developed by Waves Enterprise on the basis of the Bitcoin-NG. The main
concept of the protocol is a continuous generation of microblocks instead of one big block in each mining
round. This approach allows to increase the blockchain operating speed, because microblocks are validated
and transferred into the network much faster.

1.17.1 Description of a mining round

Each mining round consists of the following stages:

1. A used consensus algorithm defines a round miner and the time for generation of a key block which
does not contain transactions.

2. The round miner generates a key block which contains only service information:

• public key of the miner for validation of microblock signatures;

• a miner fee for a previous block;

• the miner signature;

• a reference to a previous block.

3. After generating of a key block, the round miner generates a liquid block: each 5 seconds the miner gen-
erates microblocks with transactions and broadcasts them in the network . At this stage, microblocks
are not validated by a consensus algorithm, which increases their generation speed. A first microblock
refers to the key block, each subsequent microblock refers to a previous one.

4. The process of generation of microblocks within the liquid block continues up to generation of a next
valid key block, which finishes the mining round. At the moment of generation of the next key block,
the liquid block with all microblocks generated by the round miner is finalized as a next block of the
blockchain.

1.17. Waves-NG blockchain protocol 149

Technical description of the Waves Enterprise platform, Release 1.13.0

1.17.2 Miner fee mechanism

The Waves-NG protocol supports financial motivation for miners. Each transaction in the Waves Enterprise
blockchain requires a fee in WEST tokens. All fees for transactions in microblocks are summed up during a
mining round. A total fee is distributed in the following way:

• a miner of the current round receives 40% of the total fee for generation of the current block;

• a miner of the next round receives 60% of the total fee.

The fee charging transaction is carried out for each 100 blocks in order to provide an additional checking
interval:

1.17.3 Smart contract validators fee mechanism

The Waves-NG protocol supports financial motivation for smart contract validators. Each validated smart
contract execution transaction in the Waves Enterprise blockchain requires a fee in WEST tokens that
is then transferred to miners and validators. A smart contract is validated if it uses the Majority or
MajorityWithOneOf validation policy. The fee is distributed in the following way:

• 25% of the smart contract execution transaction fee goes to validators. Remuneration is distributed
among the validators in equal shares.

• 75% of the smart contract execution transaction fee goes to the miners. This amount is distributed
among the miners in the following way:

– a miner of the current round receives 40% of 75%, i.e. 30% of the total fee for the current
block generation;

– a miner of the next round receives 60% of 75%, i.e. 45% of the total fee.

1.17.4 Conflict resolution while generating blocks

If a miner continues a previously created blockchain by generating two microblocks with the same parent
block, an inconsistency of transaction occurs. It is detected by a blockchain node at the moment of generating
of a next microblock, when a node accepts the received changes for its network state copy and synchronizes
them with other nodes.

The Waves-NG protocol defines such situation as a fraud. A miner who has continued a foreign chain, is
deprived of round transaction fees. A node that has detected an inconsistency receives a miner fee.

Generation and broadcasting of invalid blockchain blocks are also detected by the consensus algorithms.

1.17. Waves-NG blockchain protocol 150

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Architecture

Consensus algorithms

1.18 Data immutability in a blockchain

The blockchain process ensures that data cannot be deleted from the blockchain.

A user generates a transaction. Before sending the transaction, the user generates a digital signature for
it using his account private key. This key is known only to the user. After signing, the transaction has a
proofs field with an electronic signature. Now the body of the transaction is certified, its immutability and
belonging to the author (public key) is confirmed.

The user uses POST /transactions/broadcast and POST /transactions/signAndbroadcast requests to send
the signed transaction to the API of the node to which he has access.

The node checks the signature, transaction structure, contract, etc. If all checks are correct, the node accepts
(validates) the transaction.

The validated transaction goes to the node’s UTX pool. This node will then send information about the
transaction to all other nodes with which it has a connection. Thus, every network node will have this
transaction.

There are two options for a transaction in the UTX pool:

1. the transaction will be added to the block during the mining process, or

2. the transaction will be removed from the UTX pool and will not hit the block.

Each node on the blockchain knows the consensus parameters according to which it should release blocks.
The node that is determined to be the leader (the round’s miner) selects those transactions from the UTX
pool that it is ready to release in a block, checks them again and releases the block.

When releasing a block, the node links the previous block, which is stored in its database, and the new
block, including the transactions it contains. To do this, the node specifies in the body of the new released
block the signatures of the previous block. Thus the signature of the new block is calculated from the data
containing all the transactions of the current block and the signature of the previous block.

If an attacker tries to delete or modify the data of any transaction, the signature of the block it is part of will
change. During node synchronization, the block will be sent out to other network members, fail verification
and be rejected as invalid.

See also

Architecture

Connection and removing of nodes

1.18. Data immutability in a blockchain 151

Technical description of the Waves Enterprise platform, Release 1.13.0

1.19 Tokens of the Waves Enterprise blockchain platform

When you use the platform connected to Mainnet the WEST system token is used:

1. Each transaction in the Waves Enterprise Mainnet blockchain is charged a fee in WEST .

2. Miners and smart contract validators receive a fee in WEST for a block creation or a smart contract
execution transaction, respectively.

In addition to the system token, you can create and use other tokens – so-called native tokens.

Unlike blockchain platforms where you need to publish a ERC-20 standard smart contact to create a new
token, the Waves Enterprise blockchain network provides the native way to issue tokens via a token issue
transaction.

After a token issue transaction is accepted by the blockchain network, the issued token can be transferred
to another network member or mass transferred) to multiple network members within a single transaction.

In addition, native tokens can be reissued after creation, if the reissuable parameter was set to true when
they were released, and burned , which cannot be done with the WEST system token.

A native token can be sponsored , that is, provided with the system token. This allows you to pay fees for
transactions on the network in native tokens, for example, for marketing purposes to attract new users.

Not only users can manage tokens, but also smart contracts.

See also

Description of transactions

1.20 Connection of a new node to blockchain network

TheWaves Enterprise blockchain platform gives an opportunity to connect new nodes to a blockchain network
at any moment.

Practical steps of node connection are stated in the article Connection and removing of nodes.

The general chart for connection of a new node is provided below:

1. A user of a new node passes the public key of the new node to the network administrator (node with
the connection-manager permission).

2. The node with the connection-manager permission uses the received public key for creation of the 111
RegisterNode transaction with the “opType”: “add” parameter.

3. The 111 transaction gets to the block.

4. Further, information from the 111 transaction (sender address, new node name and public key) is
transferred to states of participant nodes.

5. In case a new node key is absent in the list of nodes that have been registered in the network genesis
block (Network Participants), a new node is initially synchronized. A new node sends the PeerIden-
tityRequest with its signature to all addresses from the peer list in its configuration file. Peers make
sure that a node that has sent the PeerIdentityRequest has been registered in the network.

6. If the check is successful, peers send their public keys to the new node in response to the PeerI-
dentityRequest. The new node saves these public keys in its temporary address storage for primary
connection with peers. After saving the addresses, the new node has an opportunity to validate network
handshakes from its peers.

1.19. Tokens of the Waves Enterprise blockchain platform 152

Technical description of the Waves Enterprise platform, Release 1.13.0

1.20. Connection of a new node to blockchain network 153

Technical description of the Waves Enterprise platform, Release 1.13.0

7. The new node sends handshake messages with its public key to network participants from the peer
lists in its configuration file.

8. Peers compare the public key in the handshake message and the new node public key from the 111
transaction which has been sent by the node with the connection-manager permission. If the check is
successful, peers send handshake responses with their signatures to the new node and send the Peers
Messages to the network.

9. After successful connection, the new node performs synchronization with the network and receives the
table with network participant addresses.

See also

Architecture

Connection and removing of nodes

Permissions

1.21 Activation of blockchain features

The Waves Enterprise blockchain platform supports activation of additional blockchain features by voting of
nodes – in other words, the soft fork mechanism. Soft fork is an irreversible action, because the blockchain
does not support a soft fork rollback.

Only nodes with the miner role can take part in the voting, because votes of each node are attached to a
block created by this node.

1.21.1 Voting parameters

Identifiers of features supported by a node are stated in the supported string of the features block in the
node section of the node configuration file:

features {

supported = [100]

}

Voting parameters are defined in the functionality block of the node configuration file:

• feature-check-blocks-period – voting period (in blocks);

• blocks-for-feature-activation – number of blocks with a feature identifier required for activation
of this feature.

By default, each node is set in a way that it votes for all supported features.

Attention: Voting parameters of a node cannot be changed during blockchain operation: these parame-
ters should be unified for the entire network in order to provide full synchronization of nodes.

1.21. Activation of blockchain features 154

Technical description of the Waves Enterprise platform, Release 1.13.0

1.21.2 Voting procedure

1. During a mining round, a miner node votes for features included in the features.supported block,
if they have not been activated in the blockchain before: feature identifiers are put into the features
field of each block during its creation. After that, created blocks are published in the blockchain. So,
all the nodes with the miner role vote for their features during the feature-check-blocks-period.

2. After the feature-check-blocks-period elapses, the system counts the votes-identifiers of each fea-
ture in the created blocks.

3. If a voted feature collects a number of votes that is greater or equal to the
blocks-for-feature-activation it gets an APPROVED status.

4. The approved feature is activated after the feature-check-blocks-period interval starting from a
current blockchain height.

1.21.3 Usage of activated features

When activated, a new feature can be used by all blockchain nodes that support it. If any node does not
support an activated feature, it will be disconnected from the blockchain in a moment of a first transaction
using this unsupported feature.

When a new node is connected to the blockchain, it will automatically activate all previously voted and
activated features. Activation is performed during synchronization of the node, if the node itself supports
activated features.

1.21.4 Preliminary activation of features

All the features available for voting can also be forcibly activated while starting a new blockchain. Use the
pre-activated-features block of the blockchain section in the node configuration file for this purpose:

pre-activated-features = {

...

101 = 0

}

Blockchain height for activation of a certain feature is stated after an equal mark in front of every feature.

1.21.5 List of available feature identifiers

1.21. Activation of blockchain features 155

Technical description of the Waves Enterprise platform, Release 1.13.0

Identi-

fier

Description

100 Activation of the LPoS consensus algorithm
101 Support of gRPC by Docker smart contracts
119 Optimization of performance for the PoA consensus algorithm
120 Support of sponsored fees
130 Optimization of performance for miner ban history
140 Support of atomic transactions
160 Support of parallel creation of liquid blocks and microblocks
162 Validation of smart contracts in the blockchain
173 Support of micro-block inventory v2
180 Support of privacy large object subsystem
190 PKI support v1
1120 Support of token operations for smart contracts, PKI support v1 and REST-based

smart contracts deprecation
1122 Atomic support for other transactions; see the Atomic transactions page for a com-

plete list of transactions
1123 Support of Lease/CancelLease operations for smart-contracts
1130 Support of operating over confidential data in smart contracts

See also

REST API: information about activation of the platform features

1.22 Anchoring

In a private blockchain, transactions are processed by a definite list of participants, each of participants is
familiar for the network in advance. In comparison with the public network, private blockchains contain less
participants, blocks and transactions, that can cause a threat of information replacement. This situation, in
turn, creates a risk of blockchain override, especially in case the PoS consensus algorithm is used – because
this algorithm is not protected from such occurrences.

In order to increase trust of private blockchain participants to the data broadcasted in it, the anchoring
mechanism has been developed. Anchoring allows to check consistency of data. Consistency of data is guar-
anteed through broadcasting of data from a private blockchain into a larger network where data replacement
is less possible because of larger number of participants and blocks. Block signatures and blockchain height
are published from the private network. The mutual connectivity of two or more networks increases their
resilience, since all connected networks must be attacked to forge or change data as a result of a long-range
attack.

1.22. Anchoring 156

https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/
https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/

Technical description of the Waves Enterprise platform, Release 1.13.0

1.22.1 How the Waves Enterprise anchoring works

1. Anchoring configuration is performed in the private blockchain configuration file (set the corresponding
parameters in accordance with the recommendations listed in the article in order to exclude complexities
while working with anchoring);

2. After each configured number of blocks height-range the node saves information about the block at
the current-height - threshold in the form of a transaction into the Targetnet. To do this, the Data
Transaction 12 containing the ‘key-value’ pairs is used. This pairs are described below ;

3. After transaction broadcast, the node receives its height in the Targetnet;

4. The node checks the Targetnet blockchain each 30 seconds, until the height achieves the value height
of a created transaction + height-above.

5. Upon achieving this Targetnet blockchain height and acknowledgement of presence of the first transac-
tion in the blockchain, the node in the Targetnet creates a second transaction with data for anchoring
in the private blockchain.

1.22.2 Anchoring data transaction structure

Transaction for broadcasting in a Targetnet contains following fields:

• height – height of a private blockchain block to be saved;

• signature – signature of a private blockchain block to be saved.

Transaction for a private blockchain contains following fields:

• height – height of a private blockchain block to be saved;

• signature – signature of a private blockchain block to be saved;

• targetnet-tx-id – identifier of a transaction for anchoring into the Targetnet;

• targetnet-tx-timestamp – date and time of creation of the Targetnet anchoring transaction.

1.22. Anchoring 157

Technical description of the Waves Enterprise platform, Release 1.13.0

1.22.3 Errors that can occur during anchoring

Anchoring errors can occur at any stage. In case of errors in a private blockchain, a Data Transaction 12
with an error code and description is published. This transaction contains following fields:

• height – height of a private blockchain block to be saved;

• signature – signature of a private blockchain block to be saved;

• error-code – code of an error;

• error-message – description of an error.

Table 5: Anchoring error types

Code Error message Possible reason

0 Unknown error Unknown error has occurred while broadcasting
a transaction into a Targetnet

1 failed to create a data transaction for

targetnet

Creating of a transaction for broadcasting into a
Targetnet has not been completed and returned
an error

2 failed to send the transaction to

targetnet

Broadcasting of a transaction into a Targetnet
has not been completed and returned an error
(that can occur due to a JSON query error)

3 invalid http status of response from

targetnet transaction broadcast:

$responseStatus

Broadcasting of a transaction into the Targetnet
returned a code other than 200

4 failed to parse http body of response

from targetnet transaction broadcast

Broadcasting of a transaction into a Targetnet
returned an unrecognizable JSON query

5 targetnet returned transaction with

id='$targetnetTxId', but it differs

from the transaction that was sent

(id='$sentTxId')

Broadcasting of a transaction into a Targetnet
returned an identifier that differs from the first
transaction

6 targetnet didn't respond to the

transaction info request

A Targetnet has not responded to a query on
transaction information

7 failed to get current height in

targetnet

The current height of a Targetnet has not been
obtained

8 anchoring transaction in targetnet

disappeared after the height rose

enough

Anchoring transaction has not been found in
a Targetnet after increase of height to the
height-above value

9 failed to create sidechain anchoring

transaction

Failed to broadcast an anchoring transaction in a
private blockchain

10 anchored block in sidechain was

changed while waiting for targetnet

height rise, looks like a rollback has

happened

While waiting for acknowledgement of a transac-
tion in a Targetnet, a rollback occurred in a pri-
vate blockchain, a transaction identifier has been
changed

1.22. Anchoring 158

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Precise platform configuration: anchoring

1.23 Snapshooting

Snapshooting is an auxiliary mechanism of the blockchain platform which allows to save the data of the
working blockchain for a subsequent change of network configuration and starting of the network with the
saved data.

The snapshooting mechanism allows to change the blockchain configuration parameters without loss of its
data. The process of changing of the network configuration parameters with the use of a snapshot is called
migration.

A snapshot includes the following data:

• states of network addresses: balances, permissions, keys;

• states of smart contracts created in the network: data received as a result of smart contract calls and
attached to them with the use of 105 transactions;

• data of miners of the previous rounds;

• information of confidential data access groups.

A snapshot does not include history of transactions, bans and network blocks.

In the process of migration, a snapshot becomes an initial state of the blockchain network with new param-
eters, and the network itself is restarted with generation of the new genesis block.

Snapshooting is enabled and configured in the section node.consensual-snapshot of the node configuration
file.

1.23.1 Components of the snapshooting mechanism

SnapshotBroadcaster – the component for broadcasting of the SnapshotNotification messages, processing
of requests for snapshot generation (SnapshotRequest) and subsequent transfer of a ready snapshot. As
snapshots can have a large size, the SnapshotBroadcaster process not more than 2 requests simultaneously.

SnapshotLoader – the component that registrates incoming SnapshotNotification messages at a node,
sends SnapshotRequest messages and loads snapshots. If a node receives the SnapshotNotification mes-
sage, the sender address is added to the array of addresses that have the snapshot. After that, the notification
is sent to other node peers.

The SnapshotLoader repeatedly checks the address array for presence of an address with a ready snapshot.
If such address exists, as well as an open network channel with it, the node sends the SnapshotRequest

message to this address for download of the snapshot. The response timeout for this message is 10 seconds.
If a node with the snapshot does not respond within this timeout, it is excluded from the address array. In
this case, the node picks a next address with a ready snapshot and sends a SnapshotRequest message to
this address.

If the snapshot has been downloaded successfully, it is unpacked and verified with the node state. In case of a
successful verification, the node which has received the snapshot sends the SnapshotNotification messages
to its peers.

SnapshotApiRoute – the REST API interface for snapshot operations.

1.23. Snapshooting 159

Technical description of the Waves Enterprise platform, Release 1.13.0

1.23.2 Generation and broadcasting of a snapshot in an operating blockchain

1. The node appointed for mining at the snapshot-height is also appointed for snapshot genera-
tion. Snapshot generation starts at the snapshot-height + 1, the generated snapshot is saved in the
snapshot-directory. During the snapshot generation, entering of new transactions into the blockchain
UTX pool is blocked. After successful generation of snapshot, the node creates an empty genesis block with
the consensus algorithm of a new network (consensus-type) and saves it in the snapshot.

2. Upon achievement of the snapshot-height + wait-blocks-count, the node which has created the
snapshot, archives it and sends the SnapshotNotification messages about readiness of the snapshot to its
peers.

3. Upon receipt of the SnapshotNotification, the nodes initiate the SnapshotRequest messages to down-
load a ready snapshot. In case of expiration of snapshot receiving timeout or an error while downloading it,
the node picks another peer and requests a snapshot from it.

4. Each node that has received an archive with a snapshot, saves it in the snapshot-directory, unpacks it
and checks its correctness: compares address balances and keys, checks smart contracts integrity, members
and parameters of confidential data access groups, participants’ permissions. If the snapshot verification is
successful, the node sends the messages about availability of the snapshot (SnapshotNotification) to its
peers. After this, peers of the node can send it a request for snapshot download.

As a result, the snapshot is downloaded by each node of the network, and verification on the level of each
node excludes a possibility of snapshot data spoofing.

After generating of the snapshot, you can start your node with changed configuration parameters and the
generated snapshot. Learn more about this in the article Node start with a snapshot .

If you connect to the node with an empty state (new node) to the network started from the snapshot, the
process of snapshot download will be performed automatically: node automatically connects with peers for
snapshot downloading and validation of its own configuration file. See the Connection of a new node to
blockchain network section for description of the connection process.

1.23.3 Snapshot REST API methods

GET /snapshot/status – returns an actual snapshot status at the current node:

• Exists – the snapshot exists/has been downloaded;

• NotExists – the snapshot does not exists/has not been downloaded yet;

• Failed – failed to unpack or verify a snapshot;

• Verified – the snapshot has been verified successfully.

GET /snapshot/genesis-config – returns a configuration of a new network genesis block;

POST /snapshot/swap-state – freezes operation of the mode and switches its state with the snapshot. The
query contains a backupOldState parameter, that defines if the current state should be saved or removed:

• true – save the current state in the``PreSnapshotBackup`` directory of the node;

• false – remove the current state.

1.23. Snapshooting 160

Technical description of the Waves Enterprise platform, Release 1.13.0

1.23.4 Network messages

• SnapshotNotification(sender) – the message of a node about availability of a snapshot, is sent with
a node public key;

• SnapshotRequest(sender) – request of a node for downloading of a snapshot, is also sent with a node
public key.

See also

Node start with a snapshot

Precise platform configuration: snapshot

REST API methods

1.24 Smart contracts

Smart contract is a separate application which saves its entry data in the blockchain, as well as the output
results of its algorithm. The Waves Enterprise blockchain platform supports development and usage of
Turing complete smart contracts for creation of high-level business applications.

When a smart contract starts in a blockchain network, nobody can change, spoof it or restrict its operation
without interference with the entire network. This aspect allows to provide security of business applications.

Smart contracts can be developed in any programming language and do not have any restrictions for their
internal logic. In order to split startup and performance of a smart contract and the blockchain platform
itself, smart contracts start and work in Docker containers.

Smart contracts use gRPC API interface to access the node state for data exchange.

Each smart contract has its own balance, which can hold WEST system tokens as well as other tokens. For
more details about managing tokens from a smart contract see below .

Each network participant can create and call smart contracts. If you need to restrict access to a smart
contract, create a confidential smart contract . Only the nodes you list when creating the contract will be
able to call it and receive its result. You will be able to modify this list of nodes in the future. Learn more
about confidential smart contracts:

1.24.1 Confidential smart contracts

In some business cases there is a requirement to restrict the use of a certain smart contract and make it
available only to some nodes.

For example, an organization collaborates with multiple counterparties. The business logic of this cooperation
is implemented as transactions within a single smart contract. However, some details of the smart contract
call and its execution result should only be available to the organization and the selected counter-agents.
That is, the data transmitted by such a smart contract should be available only to some participants of the
network. Confidential smart contracts (CSCs) satisfy this requirement.

When you create a confidential smart contract, you define a group of nodes (policy) that will be able to
call the smart contract and receive its results. All the rest network participants will not be able to call the
contract and receive its results. The policy administrator can change the list of its members.

1.24. Smart contracts 161

Technical description of the Waves Enterprise platform, Release 1.13.0

When included in an existing policy, a node synchronizes its state with other participants and receives
preceding contract performance results. If a node is excluded from the policy, it stops receiving contract
performance results.

Note: A node can be a member of any number of policies.

The creation and use of confidential smart contracts is possible starting with release 1.13 after the 1130
feature activation.

Note:

The same smart contract can be executed either confidentially or publicly. The confidentiality of
the call is determined by the method by which the contract call transaction was sent – signAnd-
Broadcast (for public smart contracts) or POST /confidential-contracts/call or ConfidentialCall
(for confidential smart contracts).

Confidential smart contract data

Confidential smart contracts receive and transmit the following data that require protection:

• ConfidentialInput – an object that describes the confidential input data to run the contract, as well as
the key to generate the commitment. ConfidentialInput includes the following fields:

– txId – identifier of the version 6 104. CallContract transaction to which the input data refers;

– commitmentKey – the key to form commitment;

– param – input data of the confidential smart contract, represented as an array of objects; entered
using the following fields:

∗ key – the parameter key;

∗ type – the parameter data type;

∗ value– the parameter value.

• ConfidentialOutput – object describing confidential contract execution results. ConfidentialOutput
includes the following fields:

– txId – identifier of the executable transaction to which the output data refers;

– entries – output data of the confidential smart contract, represented as an array of objects, each
of which includes the following fields:

∗ key – the key;

∗ type – data type;

∗ value– the entry value.

1.24. Smart contracts 162

Technical description of the Waves Enterprise platform, Release 1.13.0

Storage of confidential smart contract data

Confidential smart contract data is stored off-blockchain in a separate database.

Control of confidential smart contract data integrity and its protection

To ensure the integrity and protection of the confidential smart contracts input and output data, an additional
security mechanism – cryptographic commitment, or commitment scheme – is implemented. This mechanism
includes hidden data transmission and data disclosure phases, and guarantees data consistency.

In addition, there is another mechanism to protect the confidential smart contracts data – non-disclosure to
the miners. The node that mines in the current round creates a new block and, accordingly, learns about
all new data, including smart contract transactions, before others. In order for a block containing a smart
contract transaction to enter the blockchain, a quorum for that transaction must be assembled. In the case
of a confidential smart contract, the validation of such transactions takes place within the policy. For this
purpose, the policy must have at least three nodes with the contract-validator :ref:` role <permissions>`.
Due to this requirement, the miner can make sure that the quorum for the transaction has been collected
and the consensus is reached, but the data itself remains hidden from the miner.

Creation of a confidential smart contract

To register a confidential smart contract in the blockchain, version 6 of the 103. CreateContract transaction
is used.

When registering a confidential smart contract, you need to set its key parameters:

• set the isConfidential field to true, thus marking the new contract as confidential;

• define the policy, that is, the set of node addresses that will have access to sensitive data, in the
groupParticipants field;

• define the policy administrators, that is, the set of node addresses that can modify the lists of partici-
pants and policy administrators (groupParticipants and groupOwners), in the groupOwners field.

When creating a confidential smart contract, the following conditions must be met:

• To create a confidential smart contract (isConfidential is set to true), you must specify three or
more nodes with the contract-validator role in the groupParticipants field.

• A confidential smart contract (isConfidential is set to true) cannot work with native tokens, so the
payments field cannot be used when creating such a contract.

• You cannot pass parameters in the params field for a confidential smart contract (isConfidential is
set to true).

• If the groupParticipants or groupOwners field contains any nodes, the contract is confidential and
the isConfidential field must be set to true.

• The size of the groupParticipants and groupOwners lists must not exceed 1024 participants.

Once the JSON representation of a CreateContract version 6 transaction has been generated, it must be
signed and published in the same way as for a regular (public) smart contract, using one of the following
methods:

• POST /transactions/sign and POST /transactions/broadcast , or

• POST /transactions/signAndBroadcast .

1.24. Smart contracts 163

Technical description of the Waves Enterprise platform, Release 1.13.0

Confidential smart contract call

After a confidential smart contract is created and registered on the blockchain using transaction 103. Cre-
ateContract as described above, the member of the corresponding policy (node whose address is specified in
the CreateContract transaction groupParticipants field) can call this smart contract using the 104. Call
Contact transaction and one of the following methods:

• POST /confidential-contracts/call REST method

• ConfidentialCall gRPC method

Updating confidential smart contracts

Use version 5 of the 107. UpdateContract transaction to update confidential smart contracts.

When updating a confidential smart contract, a node whose address is specified in the groupOwners field
can override the policy as follows:

• change the list of node addresses that will have access to confidential data in the groupParticipants
field; after the list is updated, the groupParticipants field must contain at least three participants
with the contract-validator role.

• change the list of policy administrators, that is, the nodes that will be able to modify the lists of
participants and policy administrators (groupParticipants and groupOwners), in the groupOwners

field.

Obtaining confidential smart contract result

You can get information about the confidential smart contract creation or update transaction by the trans-
action identifier {id} using the GET /transactions/info/{id} method. The transaction identifier is specified
in the response of the POST /transactions/sign or POST /transactions/signAndBroadcast methods.

A policy member can retrieve the result of a confidential smart contract execution using the GET
/confidential-contracts/tx/{executable-tx-id} method.

Note: If a user who is not a member of the policy, tries to get contract data after a confidential smart
contract call transaction is mined using the /contracts/executed-tx-for/$txId method, the method response
will be missing results. Thus, the result of a confidential smart contract execution is hidden from nodes
that are not included in the policy.

See also

Smart contracts

REST API: working with confidential smart contracts

gRPC: transfer of confidential smart contract data

Development and usage of smart contracts

General platform configuration: execution of smart contracts

A developed smart contract is packed in a Docker image which is stored in the open Waves Enterprise
registry. This repository is based on the Docker Registry technology, every smart contract developer has an
access to it. In order to upload your smart contract into the registry, contact the Waves Enterprise technical
support service. After the approval of your request, your smart contract will be uploaded into the registry,

1.24. Smart contracts 164

https://registry.wavesenterprise.com/
https://registry.wavesenterprise.com/
https://docs.docker.com/registry/
https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.13.0

and you will be able to call the smart contract in the platform Client or using a REST API query to your
node.

If you are going to use smart contracts in your own private blockchain network, you have to create your own
registry for smart contract uploading and calling.

The node implements MVCC (Multiversion concurrency control) mechanism – control of concurrent access
to smart contracts state through multiversion. This allows the node to execute multiple transactions of any
smart contracts in parallel. Data consistency is guaranteed.

1.24.2 Smart contract operation chart

The general chart of smart contract operation is provided below:

1.24.3 Handling tokens from a smart contract

As of version 1.12, after the 1120 feature activation, Waves Enterprise blockchain platform smart contracts
have their own balance, which can store WEST system tokens as well as other tokens. For the smart contracts
created on the previous versions, the balance of the WEST system tokens is set to zero.

Also, smart contracts can now perform basic operations with tokens:

• issue tokens,

• reissue tokens,

• burn the tokens on the smart contract balance,

• transfer tokens from the smart contract balance to a user’s (users’) balance by the user’s (users’)
address.

1.24. Smart contracts 165

Technical description of the Waves Enterprise platform, Release 1.13.0

These functions are implemented by the CommitExecutionSuccess gRPC API method.

With this functionality, smart contracts can change the states of assets and users (their balances). Users
can also send tokens to a smart contract balance.

1.24.4 Development and installation of smart contracts

Practical instructions on development of smart contracts, as well as an example of a smart contract in Python
are listed in the article Development and usage of smart contracts.

A participant developing smart contracts should have the contract_developer permission in the network.
This permission allows a participant to upload and call smart contracts, as well as to restrict operation of
his own smart contracts and change their code.

Development of a smart contract starts with preparation of a Docker image which contains a ready smart
contract code, its Dockerfile and, in case of usage of a smart contract with the gRPC interface for data
exchange with the node, all required protobuf files.

The prepared image is built with the use of the build utility of the Docker package, and after this is upload
into the registry.

In order to install and work with smart contracts, you have to set up the docker-engine section of the node
configuration file. If your node works in the Waves Enterprise Mainnet, it already has the pre-set parameters
for smart contracts installation from the open repository, as well as the recommended parameters for optimal
operation of smart contracts.

Installation of smart contracts in the blockchain is performed with the use of the 103 CreateContract Trans-
action. This transaction should contain a link to the image of the smart contract in the registry. It is
recommended to send the last versions of transactions while working with smart contracts.

In private networks, the 103 transaction allows to install Docker images of smart contracts not only from
repositories stated in the docker-engine section of the node configuration file. If you need to install a
smart contract from a registry not included in the list of the configuration file, type the full address of a
smart contract in the registry you have created in the name field of the 103 transaction. An example of 103
transaction fields is provided in its description.

Upon receiving the 103 transaction, the node downloads the smart contract image specified in the image

field. After that, the downloaded image is verified by the node and started in the Docker container.

1.24.5 Calling a smart contract and saving the results of its operation

A smart contract is called for operation by a network participant using the 104 CallContract Transaction.

This transaction transfers the smart contract Docker container id, as well as its input and output parameters
in the form of key-value pairs.

The container is started if it has not been started before.

The smart contract is executed and sends the result via the gRPC API interface to the node that initiated
the start of the smart contract. The node, in turn, generates a 105 ExecutedContract Transaction with the
result of the smart-contract execution. This way the result of the smart contract execution is fixed in its
state using the 105 ExecutedContract transaction.

Validator nodes verify that everyone who executed that smart contract with that data got the same result.
If the verification is successful, the miner node places the transactions into the block, and the result of the
smart contract execution goes into the blockchain.

1.24. Smart contracts 166

Technical description of the Waves Enterprise platform, Release 1.13.0

1.24.6 Restriction of smart contract calls

In order to disable calls of a definite smart contract in the blockchain, send the 106 DisableContract Transac-
tion with the ID of the smart contract Docker container. This transaction can be sent only by the developer
of this smart contract with the non-expired contract_developer permission.

When disabled, a smart contract becomes unavailable for further calls. The data of disabled smart contracts
is stored in the blockchain and can be obtained with the use of gRPC and REST API methods.

1.24.7 Updating of smart contracts

If you have changed the code of your smart contract, update it. To do this, upload your smart contract
into the Waves Enterprise registry by sending a request for updating of your smart contract to the Waves
Enterprise technical support service.

Then send the 107 UpdateContract Transaction to your node. The contract to be updated should not be
disabled with a 106 transaction.

After updating of the smart contract, mining nodes of the blockchain download it and check correctness of
its operation. After that, information about update of the smart contract is included into its state with the
use of the 105 transaction containing data of the corresponding 107 transaction.

Hint: A certain smart contract can be updated only by a participant who has sent a 103 transaction for
this smart contract and has the contract_developer permission.

1.24.8 Validation of smart contracts

The WE blockchain platform supports three smart contract validation policies to provide its additional
integrity control. This opportunity is available under following conditions:

• The 162 soft fork is activated in the network;

• The network includes one or more participants with the contract_validator permission;

• The version 4 103 and 107 transactions are used to create and update smart contracts.

The validation policy is configured with the use of the validationPolicy.type field of corresponding
transaction.

Available validation policies:

• any - the general validation policy is kept in the network: to mine the updated smart contract, the
miner signs the corresponding 105 transaction. Also, this parameter is set if there are no registered
validators in the network.

• majority - a transaction is considered valid if it is confirmed by the majority of validators: 2/3 of the
total number of registered addresses with the contract_validator permission.

• majorityWithOneOf(List[Address]) - the transaction is considered valid if the majority of validators
is collected, among which there is at least one of the addresses included in the parameter list. The
addresses included in the list must have a valid contract_validator permission.

Warning: If the validation policy majorityWithOneOf(List[Address]) is selected, the address list
must contain at least one address; passing an empty list is not allowed.

1.24. Smart contracts 167

Technical description of the Waves Enterprise platform, Release 1.13.0

1.24.9 Parallel operation of smart contracts

The Waves Enterprise platform allows to run multiple smart contracts simultaneously. For this purpose, the
node implements the MVCC (Multiversion concurrency control) mechanism – parallel access control through
multiversion. The mechanism allows multiple transactions of containerized smart contracts to run in parallel
and maintain data consistency.

All transactions are divided into two groups:

1. non-executable transactions – atomic containers and all the classic transactions: transfer transaction,
data transaction, etc.;

2. executable transactions – transactions of all containerized smart contracts.

Transactions of the first group are always executed sequentially (the level of parallelism is 1). For the second
group of transactions, the execution parallelism is determined by the value of the node.docker-engine.

contracts-parallelism parameter in the node configuration:

node.docker-engine.contracts-parallelism = 8

The default value is 8. In this way, all smart contracts are executed in parallel, independently of the Docker
image.

Note: There is competition between the two groups of transactions: if heterogeneous transactions accumu-
late in the UTX pool, concurrency may decrease. This behavior can be smoothed by increasing the pulling
buffer size, but it cannot be completely eliminated.

The code logic of a smart contract, as well as its programming language, should take into account the
peculiarities of parallel operation of smart contracts. For instance, if a smart contract containing a function
of increment of a variable upon every smart contract call transaction operates simultaneously, its result will
be incorrect, because a common authorization key is used for each smart contract call.

1.24.10 API methods available for smart contracts

The platform provides the gRPC API methods to exchange data between a smart contract and a node. Use
these methods to perform a wide range of operations with the blockchain.

Learn more:

gRPC services used by smart contracts

The contract gRPC services described in this section are designed to exchange data between a smart contract
and a node. These services are only available to smart contracts. An external user cannot call the contract
services and use their functions.

General instructions on gRPC usage for smart contracts development are provided in the Example of a smart
contract with gRPC article.

1.24. Smart contracts 168

Technical description of the Waves Enterprise platform, Release 1.13.0

Versions of smart contract API

The gRPC methods (including those used by smart contracts) form the API defined by the protobuf files.
To clearly define new methods and make changes to existing ones, API versioning is provided. Thanks to
the version number assigned, a node determines the appropriate set of methods to use when executing a
smart contract.

The actual version of the gRPC API for the blockchain platform version is contained in the api_version.proto
file. Smart contracts that require an API version higher than that of the mining node are ignored during
mining.

The apiVersion fields in the version 4 103 CreateContract Transaction and 107 UpdateContract Transaction
transactions are provided for creating and updating smart contracts. These fields point to the version of the
API used by the smart contract for the mining node.

The table below provides API versions corresponding with the versions of the blockchain platform:

API version Platform version

1.0 1.6.0 и 1.6.1
1.1 1.6.2
1.4 1.7.0
1.6 1.11.0
1.7 1.12.0
1.8 1.12.1
1.9 1.12.2
1.10 1.12.3 и 1.13.0

Protobuf files of the methods

Smart contracts that use the gRPC for data exchange with the node can use the services that are listed in
the protobuf files with names starting with contract:

1.24. Smart contracts 169

Technical description of the Waves Enterprise platform, Release 1.13.0

protobuf Methods

con-
tract_address_service.proto

GetAddresses
GetAddressData
GetAssetBalance

con-
tract_block_service.proto

GetBlockHeader

con-
tract_contract_service.proto

Connect
CommitExecutionSuccess
CommitExecutionError
GetContractKeys
GetContractKey
GetContractBalances
CalculateAssetId

con-
tract_permission_service.proto

GetPermissions
GetPermissionsForAddresses

con-
tract_privacy_service.proto

GetPolicyRecipientss
GetPolicyOwners

con-
tract_transaction_service.proto

TransactionExists
TransactionInfo

con-
tract_util_service.proto

GetNodeTime

contract˙address˙service.proto

A set of methods for obtaining participants’ addresses from the node keystore and data stored in addresses.

GetAddresses – the method for obtaining all the addresses of participants, whose key pairs are stored in the
node keystore. The method returns the addresses string array.

GetAddressData – the method for obtaining all the data stored at a definite address with the use of the
transaction 12 . The method query contains the following parameters:

• address – the address containing the data to be obtained;

• limit – the limit of number of data blocks to be obtained;

• offset – number of data blocks to be missed in the method response.

The method returns the DataEntry array containing the address data.

GetAssetBalance – the method for obtaining the current asset balance for a definite user. The method
request includes the following parameters:

• address – the address the balance of which is to be displayed;

• assetId – asset identifier. This parameter is left blank for WEST.

1.24. Smart contracts 170

Technical description of the Waves Enterprise platform, Release 1.13.0

contract˙block˙service.proto

A set of methods that allow contracts to query a node for information about a block.

GetBlockHeader – method to get the block header by its signature (block ID) or by its height.

One of the following parameters is entered in the method request:

• signature – the signature of the requested block as a Base58-encoded string;

• key – height of the requested block.

The method returns the following information about the block header:

• version — block version;

• height – block height;

• block_signature — block signature (identifier) as a Base58-encoded string;

• reference — the signature of the previous block, to which the current block is referring, as a Base58-
encoded string;

• miner_address — miner address, as a Base58-encoded string;

• tx_count — the number of transactions in the block;

• timestamp — block time.

If the block is not found, the method returns the BlockDoesNotExist error.

contract˙contract˙service.proto

A set of methods designed to work with smart contracts: service methods for contract execution as well as
methods for reading smart contract status information and for actions with assets.

Connect – the method for connecting a smart contract to a node.

The method query should contain the following parameters:

• connection_id – the identifier of the smart contract connection (see Authorization of smart
contracts with gRPC);

• async_factor – the maximum number of simultaneously processed transactions of the smart
contract (see Parallel operation of smart contracts).

The method returns the following information about the transaction and the block:

• transaction — contract call transaction;

• auth_token — authorization token;

• current_block_info — information on the current block:

– height – current height;

– timestamp — block time;

– miner_address — miner address, as a Base58-encoded string;

– reference — the signature (identifier) of the previous block, to which the current block
is referring, as a Base58-encoded string.

CommitExecutionSuccess – the method for transferring the result of successful execution of a smart contract
to the node. With this method a smart contract can send a sequence of operations on assets.

1.24. Smart contracts 171

Technical description of the Waves Enterprise platform, Release 1.13.0

The following data is passed in the method request:

• tx_id — the identifier of the contract call transaction to which the smart contract sends the
result;

• results — an array of key-value values that the smart contract will write to its state as
the execution result. If a key is returned that is already present in the state, its value is
overwritten;

• asset_operations — an array of actions a smart contract performs on assets available to
it, including issuing new asset, reissuing an asset, burning an asset or transferring an asset
available to the contract to another user (issue, reissue, burn, transfer).

The method response is not provided.

CommitExecutionError – the method for sending a smart contract execution error to the node.

GetContractKeys – the method for requesting values from the smart contract state by the key filter.

The following data is passed in the method request:

• contract_id – smart contract identifier;

• limit – the limit of number of data blocks to be obtained;

• offset – number of data blocks to be missed in the method response;

• matches – an optional parameter for a regular expression for keys sorting.

The method returns a DataEntry array containing the requested keys with values from the current
smart contract state.

GetContractKey – the method to get the value of a certain key from the smart contract state.

The following data is passed in the method request:

• contract_id – smart contract identifier;

• key – the required key.

The method returns DataEntry from the current smart contract state which matches the passed
key.

GetContractBalances – the method for obtaining the smart contract balance(s) (system token or other
tokens).

The list of asset identifiers is passed in the request (assets_ids); to get the balance of the WEST
system token, an empty string should be passed in the list.

The method response displays the list of the balances for each of the requested assets.

CalculateAssetId – the method to calculate assetId when a new token is issued by a smart contract based
on the passed parameter:

• nonce — a one-time code that can only be used once; also, several assets with the same nonce cannot
be released within the same contract call.

1.24. Smart contracts 172

Technical description of the Waves Enterprise platform, Release 1.13.0

contract˙permission˙service.proto

A set of methods for obtaining of information about permissions of participants.

GetPermissions – the method returns a list of all the permissions of the participant whose address was
specified, valid at the moment specified. The method query should contain the following parameters:

• address – the participant’s address;

• timestamp – the Unix Timestamp (in milliseconds) for the moment of time when the active permissions
were requested.

The response of the method returns the roles array containing permissions for the required address and the
entered timestamp.

GetPermissionsForAddresses – the method returns a list of all the permissions of multiple participants whose
addresses were specified, valid at the moment specified. The method query should contain the following
parameters:

• addresses – a string array containing required addresses;

• timestamp – the Unix Timestamp (in milliseconds) for the moment of time when the active permissions
were requested.

The method response returns an address_to_roles array containing permissions for each required address,
as well as the entered timestamp.

contract˙pki˙service.proto

contract˙privacy˙service.proto

A set of methods designed to get information about groups for sharing confidential data and working with
confidential data.

Learn more about confidential data exchange and access groups in the article Confidential data exchange.

GetPolicyRecipients – the method for obtaining addresses of the confidential data group participants by
the group policy_id. The method response returns a recipients string array which contains addresses of
confidential data group participants.

GetPolicyOwners – the method to obtain the addresses of owners of a confidential data group by its
policy_id. The method returns the owners string array in the response, which contains addresses of
confidential data group owners.

contract˙transaction˙service.proto

A set of methods for obtaining information about transactions that have been sent to the blockchain. Similar
gRPC methods available to an external user are described in the gRPC: handling transactions article.

Unlike the TransactionExists and TransactionInfo methods available for external integration, contract meth-
ods return information not only about the transactions that have already been written to the block, but also
about the transactions that are just getting ready to be packed into the block.

TransactionExists – the method for verifying if the transaction with the specified ID exists. The method
returns true if a transaction with the specified ID exists, or false if it does not.

1.24. Smart contracts 173

Technical description of the Waves Enterprise platform, Release 1.13.0

TransactionInfo – the method for obtaining the data on the transaction with the specified identifier: transac-
tion name, transaction version, the blockchain height on which this transaction was made, other data about
the transaction, depending on the type of this transaction.

contract˙util˙service.proto

This protobuf file contains the GetNodeTime method, which is used for obtaining a node current time. The
method returns the current node time in two formats:

• system – the system time of the node PC;

• ntp – network time.

See also

Smart contracts

Handling tokens from a smart contract

Development and usage of smart contracts

General platform configuration: execution of smart contracts

See also

Development and usage of smart contracts

General platform configuration: execution of smart contracts

1.25 Transactions of the blockchain platform

Transaction is a separate operation in the blockchain changing the network state and performed on behalf
of a participant. By sending a transaction, the participant sends a request to the network with the set of
data needed for the corresponding change of the state.

1.25.1 Signing and sending of transactions

Prior to signing and sending of transactions, a participant generates a digital signature for it. To do this, he
uses a private key of his account. Transaction signing can be done in three ways:

• with the use of the blockchain platform client;

• with the use of the REST API method (see REST API: transactions);

• with the use of the JavaScript SDK .

The transaction signature is inserted into the proofs field while sending the transaction into the blockchain.
As a rule, this field contains one signature of the participant who sent the transaction. But this field supports
up to 8 signatures: in case of transaction signing by a smart account, filling of an atomic transaction or
smart contract broadcasting.

After signing, the transaction is sent into the blockchain. This can be done in three aforementioned ways,
as well as with the use of the gRPC interface (see gRPC: sending of transactions into the blockchain)

1.25. Transactions of the blockchain platform 174

Technical description of the Waves Enterprise platform, Release 1.13.0

1.25.2 Processing of transactions in the blockchain

After obtaining of a transaction, the node validates it in the following way:

1. Timestamp correspondence check: a transaction timestamp should derive from the current block times-
tamp for not more than 2 hours before or 1,5 hours after it.

2. Transaction type and version check: if support of such transactions type and versions has been activated
in the blockchain (see Activation of blockchain features).

3. Correspondence of transaction fields with a defined data type;

4. Sender balance check: if balance is sufficient for fee payment;

5. Transaction signature check.

If a transaction is not validated, the node declines it. In case of successful validation, a transaction is added
to the unconfirmed transaction (UTX) pool, where it is awaiting the next mining round for broadcasting in
the blockchain. Together with transfer of this transaction into the UTX pool, the node sends it to other
nodes of the network.

Each microblock has a limit of incoming transactions, each separate transaction can be transferred from the
UTX pool not at once. During existence of a transaction in the UTX pool, a transaction can become invalid.
For instance, its timestamp is not more corresponding with the current block timestamp, or a transaction
transferred into the blockchain has decreased a sender balance and made it insufficient for payment of a
transaction fee. In this case, a transactions will be declined and removed from the UTX pool.

After adding of a transaction into a block, the transaction changes the blockchain state. After this, transac-
tion is considered executed.

Detailed information about transactions of the Waves Enterprise blockchain platform:

Description of transactions

The Waves Enterprise blockchain platform supports 28 types of transactions. Each of them contains its own
set of data to be sent into the blockchain.

Requests and responses passed via the node REST API interface within the framework of each transaction,
have JSON format. Requests and responses passed via the node gRPC interface, are defined by corresponding
proto schemes. JSON models of transaction requests and responses are stated below.

Hint: In case you have protected the keypair of your node with a password while generating the account ,
set the password of your keypair in the password field of a transaction.

1. Genesis Transaction

First transaction of a new blockchain which performs first attachment of balance to addresses of created
nodes.

This transaction does not require signing, that is why it is only broadcasted. Transaction has the only
version.

1.25. Transactions of the blockchain platform 175

Technical description of the Waves Enterprise platform, Release 1.13.0

Transaction data structure

Field Data type Description

type Byte Transaction number (1)
id Byte Transaction identifier
fee Long WE Mainnet transaction fee Mainnet
timestamp Long The Unix Timestamp of a transaction – in milliseconds
signature ByteStr Genesis block signature
recipient ByteStr Address of recipient of distributed tokens
amount Long Amount of tokens
height Int Height of transaction execution. For the first transaction – 1

3. Issue Transaction

A transaction initiating the issue of tokens.

Transaction data structures

Signing:

Field Data type Description

type Byte Transaction number (3)
version Byte Transaction version
name Array[byte] An arbitrary name of transaction
quantity Long Number of tokens to be issued
description Array[byte] An arbitrary description of a transaction (in base58 format)
sender ByteStr Address of sender of distributed tokens
password String Keypair password in the node keystore – optional field
decimals Byte Digit capacity of a token in use (WEST – 8)
reissuable Boolean Re-issuability of a token
fee Long WE Mainnet transaction fee

Broadcasting:

1.25. Transactions of the blockchain platform 176

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number
id Byte Transaction identifier
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds) –

optional field
proofs List(ByteStr) Array of transaction proofs
version Byte Transaction version
assetId Byte Identifier of an asset to be issued
name Array[byte] An arbitrary name of transaction
quantity Long Number of tokens to be issued
reissuable Boolean Re-issuability of a token
decimals Byte Digit capacity of a token in use (WAVES – 8)
description Array[byte] An arbitrary description of a transaction
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
script Array[Byte] Script for validation of a transaction (an optional field)
height Int Height of transaction execution

Important: If the reissuable field is set to False, i.e. tokens are not allowed to be reissued, then it will
be impossible to change this value in the future.

JSON:

Version 2

Signing:

{

"type": 3,

"version":2,

"name": "Test Asset 1",

"quantity": 100000000000,

"description": "Some description",

"sender": "3FSCKyfFo3566zwiJjSFLBwKvd826KXUaqR",

"password": "",

"decimals": 8,

"reissuable": true,

"fee": 100000000

}

Broadcasting:

{

"type": 3,

"id": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"sender": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

(continues on next page)

1.25. Transactions of the blockchain platform 177

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": 100000000,

"timestamp": 1549378509516,

"proofs": [

→˓"NqZGcbcQ82FZrPh6aCEjuo9nNnkPTvyhrNq329YWydaYcZTywXUwDxFAknTMEGuFrEndCjXBtrueLWaqbJhpeiG

→˓"],

"version": 2,

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"name": "Token Name",

"quantity": 10000,

"reissuable": true,

"decimals": 2,

"description": "SmarToken",

"chainId": 84,

"script": "base64:AQa3b8tH",

"height": 60719

}

Version 3

Signing:

{

"type": 3,

"version":3,

"name": "Test Asset 1",

"quantity": 100000000000,

"description": "Some description",

"sender": "3FSCKyfFo3566zwiJjSFLBwKvd826KXUaqR",

"password": "",

"decimals": 8,

"reissuable": true,

"fee": 100000000

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"type": 3,

"id": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"sender": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": 100000000,

"timestamp": 1549378509516,

"proofs": [

→˓"NqZGcbcQ82FZrPh6aCEjuo9nNnkPTvyhrNq329YWydaYcZTywXUwDxFAknTMEGuFrEndCjXBtrueLWaqbJhpeiG

→˓"],

"version": 3,

(continues on next page)

1.25. Transactions of the blockchain platform 178

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"name": "Token Name",

"quantity": 10000,

"reissuable": true,

"decimals": 2,

"description": "SmarToken",

"chainId": 84,

"script": "base64:AQa3b8tH",

"height": 60719

}

4. Transfer Transaction

A transaction of tokens transfer from one address to another.

Transaction data structures

Signing:

Field Data type Description

type Byte Transaction number (4)
version Byte Transaction version
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore – optional field
recipient ByteStr Address of recipient of tokens
amount Long Amount of tokens
fee Long WE Mainnet transaction fee

Broadcasting:

Field Data type Description

senderPub-
licKey

PublicKey-
Account

Transaction sender public key

amount Long Amount of tokens
fee Long WE Mainnet transaction fee
type Byte Transaction number (4)
version Byte Transaction version
attachment Byte Comment to a transaction (in base58 format) – op-

tional field
sender ByteStr Address of a transaction sender
feeAssetId Byte Identifier of a token for fee payment (optional field)
proofs List(ByteStr) Array of transaction proofs (in base58 format)
assetId Byte ID of a token to be transferred (optional field)
recipient ByteStr Tokens recipient address
id Byte Transaction identifier
timestamp Long The Unix Timestamp of a transaction in millisec-

onds – optional field

1.25. Transactions of the blockchain platform 179

Technical description of the Waves Enterprise platform, Release 1.13.0

JSON:

Version 2

Signing:

{

"type": 4,

"version": 2,

"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"password": "",

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"amount": 40000000000,

"fee": 100000

}

Broadcasting:

{

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"amount": 200000000,

"fee": 100000,

"type": 4,

"version": 2,

"attachment": "3uaRTtZ3taQtRSmquqeC1DniK3Dv",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"feeAssetId": null,

"proofs": [

→˓"2hRxJ2876CdJ498UCpErNfDSYdt2mTK4XUnmZNgZiq63RupJs5WTrAqR46c4rLQdq4toBZk2tSYCeAQWEQyi72U6

→˓"

],

"assetId": null,

"recipient": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL",

"id": "757aQzJiQZRfVRuJNnP3L1d369H2oTjUEazwtYxGngCd",

"timestamp": 1558952680800

}

Version 3

Signing:

{

"type": 4,

"version": 3,

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"password": "",

"recipient": "3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"amount": 40000000000,

"fee": 10000000

"atomicBadge" : {

"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

(continues on next page)

1.25. Transactions of the blockchain platform 180

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

},

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"amount" : 10,

"fee" : 10000000,

"type" : 4,

"version" : 3,

"atomicBadge" : {

"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

},

"attachment" : "",

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"2vbAJmwzQw2FCtozcewxJVfxoHxf97BTNdGuaeSATV4vEHZ3XYA4Z7nXGsSnf18aesnAWTKWCfzwM5yGpWEyGM7f

→˓"],

"assetId" : null,

"recipient" : "3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"id" : "2wCEMREFbgk318hFFaNGsgFzyjZHuCrtwSnpK35qhiw4",

"timestamp" : 1619186861204,

"height" : 861644

}

5. Reissue Transaction

Transaction for native token re-issue.

Transaction data structures

Signing:

Field Data type Description

type Byte Transaction number (5)
version Byte Transaction version
quantity Long Amount of tokens to be re-issued
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore – optional field
assetId Byte ID of a token to be re-issued – optional field
reissuable Boolean Re-issuability of a token
fee Long WE Mainnet transaction fee

Broadcasting:

1.25. Transactions of the blockchain platform 181

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

senderPub-
licKey

PublicKey-
Account

Transaction sender public key

quantity Long Amount of tokens to be re-issued
sender ByteStr Address of a transaction sender
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
proofs List(ByteStr) Array of transaction proofs (in base58 format)
assetId Byte ID of a token to be re-issued – optional field
fee Long WE Mainnet transaction fee
id Byte Transaction identifier
type Byte Transaction number (5)
version Byte Transaction version
reissuable Boolean Re-issuability of a token
timestamp Long The Unix Timestamp of a transaction (in millisec-

onds) – optional field
height Int Height of transaction execution

JSON:

Version 2

Signing:

{

"type": 5,

"version":2,

"quantity": 556105,

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"password": "",

"assetId": "6UAMZA6RshxyPvt9W7aoWiUiB6N73yLQMMfiRQYXdWZh",

"reissuable": true,

"fee": 100000000

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"quantity" : 556105,

"fee" : 100000000,

"type" : 5,

"version" : 2,

"reissuable" : true,

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"chainId" : 86,

"proofs" : [

→˓"5ahD78wciu8YTsLoxo1XRghJWAGG7At7ePiBWTNzdkvX7cViRCKRLjjjPTGCoAH2mdGQK9i1JiY1wh18eh4h7pGy

→˓"],

"assetId" : "6UAMZA6RshxyPvt9W7aoWiUiB6N73yLQMMfiRQYXdWZh",

"id" : "8T9jJUusN5KBexxDUX1XBjoDydXGP34zWH7Qvp5mnmES",

"timestamp" : 1619187184206,

(continues on next page)

1.25. Transactions of the blockchain platform 182

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"height" : 861645

}

Version 3

Signing:

{

"type": 5,

"version":3,

"quantity": 556105,

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"password": "",

"assetId": "6UAMZA6RshxyPvt9W7aoWiUiB6N73yLQMMfiRQYXdWZh",

"reissuable": true,

"fee": 100000000

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"quantity" : 556105,

"fee" : 100000000,

"type" : 5,

"version" : 3,

"reissuable" : true,

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"chainId" : 86,

"proofs" : [

→˓"5ahD78wciu8YTsLoxo1XRghJWAGG7At7ePiBWTNzdkvX7cViRCKRLjjjPTGCoAH2mdGQK9i1JiY1wh18eh4h7pGy

→˓"],

"assetId" : "6UAMZA6RshxyPvt9W7aoWiUiB6N73yLQMMfiRQYXdWZh",

"id" : "8T9jJUusN5KBexxDUX1XBjoDydXGP34zWH7Qvp5mnmES",

"timestamp" : 1619187184206,

"height" : 861645

}

Important: If the reissuable field is set to False, i.e. tokens are not allowed to be reissued, then it will
be impossible to change this value in the future.

1.25. Transactions of the blockchain platform 183

Technical description of the Waves Enterprise platform, Release 1.13.0

6. Burn Transaction

Transaction for burning native tokens: decreases the amount of tokens at the sender’s address, and, with
this, decreases the total amount of tokens in the blockchain. The burned tokens cannot be restored.

Transaction data structures

Signing:

Field Data

type

Description

type Byte Transaction number (6)
version Byte Transaction version
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore – optional field
assetId Byte ID of a token to be burnt – optional field
quantity Long Number of tokens to be burnt
fee Long WE Mainnet transaction fee
attach-
ment

Byte Comment to a transaction (in base58 format) – optional
field

Broadcasting:

Field Data type Description

senderPub-
licKey

PublicKey-
Account

Transaction sender public key

amount Long Number of tokens to be burnt
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore – optional

field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
assetId Byte ID of a token to be burnt – optional field
fee Long WE Mainnet transaction fee
id Byte Transaction identifier
type Byte Transaction number (6)
version Byte Transaction version
timestamp Long The Unix Timestamp of a transaction (in millisec-

onds) – optional field
height Int Height of transaction execution

JSON:

1.25. Transactions of the blockchain platform 184

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 2

Signing:

{

"type": 6,

"version": 2,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"quantity": 1000,

"fee": 100000,

"attachment": "string"

}

Broadcasting:

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"amount": 1000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"kzTwsNXjJkzk6dpFFZZXyeimYo6iLTVbCnCXBD4xBtyrNjysPqZfGKk9NdJUTP3xeAPhtEgU9hsdwzRVo1hKMgS

→˓"],

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee": 100000,

"id": "3yd2HZq7sgun7GakisLH88UeKcpYMUEL4sy57aprAN5E",

"type": 6,

"version": 2,

"timestamp": 1551448489758,

"height": 1190

}

Version 3

Signing:

{

"type": 6,

"version": 3,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"quantity": 1000,

"fee": 100000,

"attachment": "string"

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

1.25. Transactions of the blockchain platform 185

Technical description of the Waves Enterprise platform, Release 1.13.0

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"amount": 1000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"kzTwsNXjJkzk6dpFFZZXyeimYo6iLTVbCnCXBD4xBtyrNjysPqZfGKk9NdJUTP3xeAPhtEgU9hsdwzRVo1hKMgS

→˓"],

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee": 100000,

"id": "3yd2HZq7sgun7GakisLH88UeKcpYMUEL4sy57aprAN5E",

"type": 6,

"version": 3,

"timestamp": 1551448489758,

"height": 1190

}

8. Lease Transaction

Leasing of tokens to another address. The tokens in leasing are taken into account in the generating balance
of a recipient after 1000 blocks.

Leasing of tokens can be carried out for increasing of probability of node appointment as a next round miner.
As a rule, a recipient shares his revenue for block generation with an address which has granted him tokens
for leasing.

Tokens in leasing remain blocked at a sender address. Leasing can be cancelled with the use of leasing cancel
transaction.

Transaction data structures

Signing:

Field Data type Description

type Byte Transaction number (8)
version Byte Transaction version
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore – optional field
recipient ByteStr Address of recipient of tokens
amount Long Number of tokens for leasing
fee Long WE Mainnet transaction fee

Broadcasting:

1.25. Transactions of the blockchain platform 186

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

senderPub-
licKey

PublicKey-
Account

Transaction sender public key

amount Long Number of tokens for leasing
sender ByteStr Address of a transaction sender
proofs List(ByteStr) Array of transaction proofs (in base58 format)
fee Long WE Mainnet transaction fee
recipient ByteStr Address of recipient of tokens
id Byte Transaction identifier
type Byte Transaction number (8)
version Byte Transaction version
height Int Transaction version
timestamp Long The Unix Timestamp of a transaction (in millisec-

onds) – optional field

JSON:

Version 2

Signing:

{

"type": 8,

"version": 2,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",

"amount": 1000,

"fee": 100000

}

Broadcasting:

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"amount": 1000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"proofs": [

→˓"5jvmWKmU89HnxXFXNAd9X41zmiB5fSGoXMirsaJ9tNeyiCAJmjm7MR48g789VucckQw2UExaVXfhsdEBuUrchvrq

→˓"],

"fee": 100000,

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",

"id": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"type": 8,

"version": 2,

"timestamp": 1551449299545,

"height": 1190

}

1.25. Transactions of the blockchain platform 187

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 3

Signing:

{

"type": 8,

"version": 3,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",

"amount": 1000,

"fee": 100000

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"amount": 1000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"proofs": [

→˓"5jvmWKmU89HnxXFXNAd9X41zmiB5fSGoXMirsaJ9tNeyiCAJmjm7MR48g789VucckQw2UExaVXfhsdEBuUrchvrq

→˓"],

"fee": 100000,

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",

"id": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"type": 8,

"version": 3,

"timestamp": 1551449299545,

"height": 1190

}

9. LeaseCancel Transaction

Cancelling of leasing of tokens that have been leased with the use of a transaction with a definite ID. The
lease structure of this transaction is not filled: the node fills it automatically upon providing the transaction
data.

Transaction data structures

Signing:

1.25. Transactions of the blockchain platform 188

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number (9)
version Byte Transaction version
fee Long WE Mainnet transaction fee
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore – optional field
txId Byte ID of a leasing transaction

Broadcasting:

Field Data type Description

senderPub-
licKey

PublicKey-
Account

Transaction sender public key

leaseId Byte ID of a leasing transaction
sender ByteStr Address of a transaction sender
chainId Byte Identifying byte of the network (Mainnet – 87 or V)
proofs List(ByteStr) Array of transaction proofs (in base58 format)
fee Long WE Mainnet transaction fee
id Byte ID of a leasing cancel transaction
type Byte Transaction number (9)
version Byte Transaction version
timestamp Long The Unix Timestamp of a transaction (in millisec-

onds) – optional field
height Int Height of transaction execution

JSON:

Version 2

Signing:

{

"type": 9,

"version": 2,

"fee": 100000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"txId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp"

}

Broadcasting:

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"leaseId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"2Gns72hraH5yay3eiWeyHQEA1wTqiiAztaLjHinEYX91FEv62HFW38Hq89GnsEJFHUvo9KHYtBBrb8hgTA9wN7DM

(continues on next page)

1.25. Transactions of the blockchain platform 189

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

→˓"],

"fee": 100000,

"id": "9vhxB2ZDQcqiumhQbCPnAoPBLuir727qgJhFeBNmPwmu",

"type": 9,

"version": 2,

"timestamp": 1551449835205,

"height": 1190

}

Version 3

Signing:

{

"type": 9,

"version": 3,

"fee": 100000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"txId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp"

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"leaseId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"2Gns72hraH5yay3eiWeyHQEA1wTqiiAztaLjHinEYX91FEv62HFW38Hq89GnsEJFHUvo9KHYtBBrb8hgTA9wN7DM

→˓"],

"fee": 100000,

"id": "9vhxB2ZDQcqiumhQbCPnAoPBLuir727qgJhFeBNmPwmu",

"type": 9,

"version": 3,

"timestamp": 1551449835205,

"height": 1190

}

1.25. Transactions of the blockchain platform 190

Technical description of the Waves Enterprise platform, Release 1.13.0

10. CreateAlias Transaction

Creation of an alias for a sender address. An alias can be used in transactions as a recipient identifier.

The 3rd version of the transaction implemented the ability to pay fee in another token. The 4th version of
the transaction features the ability to include the transaction in a atomic transaction.

Signing:

Field Data type Description

type Byte Transaction number (10)
version Byte Transaction version
fee Long WE Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
alias Byte An arbitrary alias

Broadcasting:

Data structure of a query for transaction broadcasting:

Field Data type Description

type Byte Transaction number (10)
id Byte ID of a CreateAlias transaction
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),

optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
alias Byte An arbitrary alias
height Byte Height of transaction execution

JSON:

1.25. Transactions of the blockchain platform 191

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 2

Signing:

{

"type": 10,

"version": 2,

"fee": 100000000,

"sender": "3NwTvbW7TMckBc785XjtGTUfHmcesaWBe1A",

"password": "",

"alias": "1@k1_kv29"

}

Broadcasting:

{

"senderPublicKey" : "C4eRfdUFaZMRkfUp91bYr7uMgdBRnUfAxuAjetxmK7KY",

"sender" : "3NwTvbW7TMckBc785XjtGTUfHmcesaWBe1A",

"proofs" : [

→˓"3fhJztBNnTDjppmqgi4GugAYo1aS1mzZhVhPdnNsqYqCEyLLHfzgb75psRPntHD4uBZgk8jByFP9mwwx2Ezsdg59

→˓"],

"fee" : 100000000,

"alias" : "1@k1_kv29",

"id" : "AavgVzV7avPMpERro6YqikwFESAgG2wViprtPJUtXP6F",

"type" : 10,

"version" : 2,

"timestamp" : 1608737444468,

"height" : 595942

}

Version 3

Signing:

{

"type": 10,

"version": 3,

"fee": 100000000,

"feeAssetId": DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB,

"sender": "3NwTvbW7TMckBc785XjtGTUfHmcesaWBe1A",

"password": "",

"alias": "1@k1_kv29"

}

Broadcasting:

{

"senderPublicKey" : "C4eRfdUFaZMRkfUp91bYr7uMgdBRnUfAxuAjetxmK7KY",

"sender" : "3NwTvbW7TMckBc785XjtGTUfHmcesaWBe1A",

"proofs" : [

→˓"3fhJztBNnTDjppmqgi4GugAYo1aS1mzZhVhPdnNsqYqCEyLLHfzgb75psRPntHD4uBZgk8jByFP9mwwx2Ezsdg59

→˓"],

"fee" : 100000000,

(continues on next page)

1.25. Transactions of the blockchain platform 192

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"feeAssetId": DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB,

"alias" : "1@k1_kv29",

"id" : "AavgVzV7avPMpERro6YqikwFESAgG2wViprtPJUtXP6F",

"type" : 10,

"version" : 3,

"timestamp" : 1608737444468,

"height" : 595942

}

Version 4

Signing:

{

"type": 10,

"version": 4,

"fee": 100000000,

"feeAssetId": DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB,

"sender": "3NwTvbW7TMckBc785XjtGTUfHmcesaWBe1A",

"password": "",

"alias": "1@k1_kv29"

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

Broadcasting:

{

"senderPublicKey" : "C4eRfdUFaZMRkfUp91bYr7uMgdBRnUfAxuAjetxmK7KY",

"sender" : "3NwTvbW7TMckBc785XjtGTUfHmcesaWBe1A",

"proofs" : [

→˓"3fhJztBNnTDjppmqgi4GugAYo1aS1mzZhVhPdnNsqYqCEyLLHfzgb75psRPntHD4uBZgk8jByFP9mwwx2Ezsdg59

→˓"],

"fee" : 100000000,

"feeAssetId": DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB,

"alias" : "1@k1_kv29",

"id" : "AavgVzV7avPMpERro6YqikwFESAgG2wViprtPJUtXP6F",

"type" : 10,

"version" : 4,

"timestamp" : 1608737444468,

"height" : 595942

}

1.25. Transactions of the blockchain platform 193

Technical description of the Waves Enterprise platform, Release 1.13.0

11. MassTransfer Transaction

Transfer of tokens to several recipients (1 to 100 addresses). The transaction fee depends on the number of
addresses.

Signing:

Field Data

type

Description

type Byte Transaction number (11)
sender ByteStr Address of a transaction sender
pass-
word

String Keypair password in the node keystore, optional field

fee Long WE Mainnet transaction fee
version Byte Transaction version
trans-
fers

List List of recipients with recipient and amount fields separated by a
comma

recipi-
ent

ByteStr Address of recipient of tokens

amount Long Number of tokens to be transferred to an address

Broadcasting:

Field Data type Description

senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
type Byte Transaction number (11)
transferCount Byte Number of recipient addresses
version Byte Transaction version
totalAmount Byte Total number of tokens to be transferred
attachment Byte Comment to a transaction (in base58 format), optional field
sender ByteStr Address of a transaction sender
proofs List(ByteStr) Array of transaction proofs (in base58 format)
assetId Byte ID of a token to be transferred, optional field
id Byte ID of a token transfer transaction
transfers List List of recipients with recipient and amount fields sepa-

rated by a comma
trans-
fers.recipient

ByteStr Address of recipient of tokens

trans-
fers.amount

Long Number of tokens to be transferred to an address

height Byte Height of transaction execution

Example of the transfers field:

1.25. Transactions of the blockchain platform 194

Technical description of the Waves Enterprise platform, Release 1.13.0

"transfers":

[

{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000 },

{ "recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc", "amount": 100000 }

]

JSON:

Version 2

Signing:

{

"type": 11,

"sender": "3NydXoTq3UgUW5rxsNwEMs1iwbbvVEwxoHU",

"password": "",

"fee": 30000000,

"version": 2,

"transfers":

[

{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000␣

→˓},

{ "recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc", "amount": 100000␣

→˓}

]

}

Broadcasting:

{

"senderPublicKey" : "AMhAY8RMy5QsPqj58xeMY3fJxTZKx71QztsjDzqWprHo",

"fee" : 30000000,

"type" : 11,

"transferCount" : 4,

"version" : 2,

"totalAmount" : 400000000,

"attachment" : "",

"sender" : "3NydXoTq3UgUW5rxsNwEMs1iwbbvVEwxoHU",

"feeAssetId" : "8bec1mhqTiveMeRTHgYr6az12XdqBBtpeV3ZpXMRHfSB",

"proofs" : [

→˓"21hhAMmwze6nLLQ9K6AoU6scek9Sk5KabR4VggGfdTVFHonfMGwVTse6qL2f8zR8DRm7RckMaikiYRt5XxWEKWcA

→˓"],

"assetId" : "8bec1mhqTiveMeRTHgYr6az12XdqBBtpeV3ZpXMRHfSB",

"transfers" : [{

"recipient" : "3NqEjAkFVzem9CGa3bEPhakQc1Sm2G8gAFU",

"amount" : 100000000

}, {

"recipient" : "3NzkzibVRkKUzaRzjUxndpTPvoBzQ3iLng3",

"amount" : 100000000

}, {

"recipient" : "3Nnx8cX3UiyfQeC3YQKVRqVr2ewSxrvaDyB",

"amount" : 100000000

(continues on next page)

1.25. Transactions of the blockchain platform 195

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

}, {

"recipient" : "3NzC4Ex91VBQKfJHPiGhuPEomLg48NMi2ZF",

"amount" : 100000000

}],

"id" : "EvnxFxdYhYxHgQSMhkyLaqgyUDZdnBknfAWEXyqEHt97",

"timestamp" : 1627643861044,

"height" : 1076874

}

Version 3

Signing:

{

"type": 11,

"sender": "3NydXoTq3UgUW5rxsNwEMs1iwbbvVEwxoHU",

"password": "",

"fee": 30000000,

"version": 3,

"transfers":

[

{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000 }

→˓,

{ "recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc", "amount": 100000 }

]

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"senderPublicKey" : "AMhAY8RMy5QsPqj58xeMY3fJxTZKx71QztsjDzqWprHo",

"fee" : 30000000,

"type" : 11,

"transferCount" : 4,

"version" : 3,

"totalAmount" : 400000000,

"attachment" : "",

"sender" : "3NydXoTq3UgUW5rxsNwEMs1iwbbvVEwxoHU",

"feeAssetId" : "8bec1mhqTiveMeRTHgYr6az12XdqBBtpeV3ZpXMRHfSB",

"proofs" : [

→˓"21hhAMmwze6nLLQ9K6AoU6scek9Sk5KabR4VggGfdTVFHonfMGwVTse6qL2f8zR8DRm7RckMaikiYRt5XxWEKWcA

→˓"],

"assetId" : "8bec1mhqTiveMeRTHgYr6az12XdqBBtpeV3ZpXMRHfSB",

"transfers" : [{

"recipient" : "3NqEjAkFVzem9CGa3bEPhakQc1Sm2G8gAFU",

"amount" : 100000000

}, {

"recipient" : "3NzkzibVRkKUzaRzjUxndpTPvoBzQ3iLng3",

(continues on next page)

1.25. Transactions of the blockchain platform 196

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"amount" : 100000000

}, {

"recipient" : "3Nnx8cX3UiyfQeC3YQKVRqVr2ewSxrvaDyB",

"amount" : 100000000

}, {

"recipient" : "3NzC4Ex91VBQKfJHPiGhuPEomLg48NMi2ZF",

"amount" : 100000000

}],

"id" : "EvnxFxdYhYxHgQSMhkyLaqgyUDZdnBknfAWEXyqEHt97",

"timestamp" : 1627643861044,

"height" : 1076874

}

12. Data Transaction

Transaction for adding, editing and removing of entries in an address data storage. An address data storage
contains data in the ‘key:value’ format.

The size of the address data repository is unlimited, but up to 100 new “key:value” pairs can be added with
a single data transaction. Also the byte representation of the transaction after signing must not exceed 150
kilobytes.

If the data author (the address in the author field) matches the transaction sender (the address in the
sender field), the senderPublicKey parameter is not required when signing the transaction.

Data structure of a query for transaction signing:

Signing:

Field Data type Description

type Byte Transaction number (12)
version Byte Transaction version
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
sender-
PublicKey

PublicKey-
Account

Transaction sender public key

author Byte Author address for data to be entered
data List Data list with key:, type: and value: fields separated by com-

mas
data.key Byte Record key
data.type Byte Record data type. Possible values: binary bool integer string

and null (record deletion by its key)
data.value Byte Record value
fee Long WE Mainnet transaction fee

Broadcasting:

1.25. Transactions of the blockchain platform 197

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

sender-
PublicKey

PublicKey-
Account

Transaction sender public key

sender-
PublicKey

PublicKey-
Account

Data author public key

data List Data list with key: type: and value: fields separated by com-
mas

data.key Byte Record key
data.type Byte Record data type. Possible values: binary bool integer string

and null (record deletion by its key)
data.value Byte Record value
sender ByteStr Address of a transaction sender
proofs List(ByteStr) Array of transaction proofs (in base58 format)
author Byte Author address for data to be entered
fee Long WE Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
id Byte Data transaction ID
type Byte Transaction number (12)
version Byte Transaction version
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds), op-

tional field

Example of the data field:

"data": [

{

"key": "objectId",

"type": "string",

"value": "obj:123:1234"

}, {...}

]

JSON:

Version 2

Signing:

{

"type": 12,

"version": 2,

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"password": "",

"senderPublicKey": "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"author": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"data": [

...

],

"fee": 150000000

}

Broadcasting:

1.25. Transactions of the blockchain platform 198

Technical description of the Waves Enterprise platform, Release 1.13.0

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"data" : [

...

],

"author" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"fee" : 150000000,

"type" : 12,

"version" : 2,

"authorPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"4wFNmn32NZqGwP4D4aAxCMyigGEVZLWftqi919pHAK7mCj3sFw7Ekf76g2rr51PZuk5sLwzjkKiZArQvWY8uEGqk

→˓"],

"id" : "GcDy84oTFf5NQzDtixkfUqiFNZwMaN2vfXqxsbGxumfo",

"timestamp" : 1619187166499,

"height" : 861644

}

Version 3

Signing:

{

"type": 12,

"version": 3,

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"password": "",

"senderPublicKey": "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"author": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"data": [

...

],

"fee": 150000000

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"data" : [

...

],

"author" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"fee" : 150000000,

"type" : 12,

"version" : 3,

"authorPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

(continues on next page)

1.25. Transactions of the blockchain platform 199

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"4wFNmn32NZqGwP4D4aAxCMyigGEVZLWftqi919pHAK7mCj3sFw7Ekf76g2rr51PZuk5sLwzjkKiZArQvWY8uEGqk

→˓"],

"id" : "GcDy84oTFf5NQzDtixkfUqiFNZwMaN2vfXqxsbGxumfo",

"timestamp" : 1619187166499,

"height" : 861644

}

13. SetScript Transaction

A transaction to bind the script to an account or delete the script. An account with a script tied to it is
called a smart account.

The script allows you to verify transactions transmitted on behalf of an account without using the blockchain
transaction verification mechanism.

Signing:

Field Data

type

Description

type Byte Transaction number (13)
ver-
sion

Byte Transaction version

sender ByteStr Address of a transaction sender
pass-
word

String Keypair password in the node keystore, optional field

fee Long WE Mainnet transaction fee
name Ar-

ray[Byte]
Script name

script Ar-
ray[Byte]

The compiled script is in base64 format. If you leave this field empty (null),
the script will be detached from the account

Broadcasting:

1.25. Transactions of the blockchain platform 200

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number (13)
id Byte ID of a script setting transaction
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),

optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
version Byte Transaction version
script Array[Byte] Compiled script in base64 format - optional field
name Array[Byte] Script name
description Byte Comment to a transaction (in base58 format), optional field
height Byte Height of transaction execution

JSON:

Version 1

Signing:

{

"type": 13,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 1000000,

"name": "faucet",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="

}

Broadcasting:

{

"type": 13,

"id": "HPDypnQJHJskN8kwszF8rck3E5tQiuiM1fEN42w6PLmt",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"fee": 1000000,

"timestamp": 1545986757233,

"proofs": [

→˓"2QiGYS2dqh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzojmR2kjppvGNj4tDPsYPbcDunqBaqhaudLyMeGFgG

→˓"],

"chainId": 84,

"version": 1,

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",

"name": "faucet",

"description": "",

(continues on next page)

1.25. Transactions of the blockchain platform 201

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"height": 3805

}

14. Sponsorship Transaction

A transaction that establishes or cancels a sponsorship.

The sponsoring mechanism allows addresses to pay fees for script call transactions and transfer transactions
in the sponsor asset, replacing WEST.

Signing:

Field Data type Description

sender ByteStr Address of a transaction sender
assetId Byte Sponsorship asset (token) ID - optional field
fee Long WE Mainnet transaction fee
isEnabled Bool Set the sponsorship (true) or cancel it (false)
type Byte Transaction number (14)
password String Keypair password in the node keystore, optional field
version Byte Transaction version

Broadcasting:

Field Data type Description

type Byte Transaction number (14)
id Byte Sponsorship transaction ID
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
assetId Byte Sponsorship asset (token) ID - optional field
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),

optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
version Byte Transaction version
isEnabled Bool Set the sponsorship (true) or cancel it (false)
height Byte Height of transaction execution

JSON:

1.25. Transactions of the blockchain platform 202

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 1

Signing:

{

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"fee": 100000000,

"isEnabled": false,

"type": 14,

"password": "1234",

"version": 1

}

Broadcasting:

{

"type": 14,

"id": "Ht6kpnQJHJskN8kwszF8rck3E5tQiuiM1fEN42wGfdk7",

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"senderPublicKey": "Gt55fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUophy89",

"fee": 100000000,

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"timestamp": 1545986757233,

"proofs": [

→˓"5TfgYS2dqh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzojmR2kjppvGNj4tDPsYPbcDunqBaqhaudLyMeGFh7

→˓"],

"chainId": 84,

"version": 1,

"isEnabled": false,

"height": 3865

}

Version 2

Signing:

{

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"fee": 100000000,

"isEnabled": false,

"type": 14,

"password": "1234",

"version": 2,

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

1.25. Transactions of the blockchain platform 203

Technical description of the Waves Enterprise platform, Release 1.13.0

{

"type": 14,

"id": "Ht6kpnQJHJskN8kwszF8rck3E5tQiuiM1fEN42wGfdk7",

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"senderPublicKey": "Gt55fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUophy89",

"fee": 100000000,

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"timestamp": 1545986757233,

"proofs": [

→˓"5TfgYS2dqh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzojmR2kjppvGNj4tDPsYPbcDunqBaqhaudLyMeGFh7

→˓"],

"chainId": 84,

"version": 2,

"isEnabled": false,

"height": 3865

}

15. SetAssetScript Transaction

A transaction to install or remove an asset script for an address. Asset script allows to verify transactions
involving this or that asset (token) without using the blockchain transaction verification mechanism.

Signing:

Field Data type Description

type Byte Transaction number (15)
version Byte Asset script transaction version
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
script Array[Byte] Compiled script in base64 format - optional field
assetId Byte Sponsorship asset (token) ID - optional field

Broadcasting:

1.25. Transactions of the blockchain platform 204

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number (15)
id Byte Asset script transaction ID
sender ByteStr Address of a transaction sender
sender-
Pub-
licKey

PublicK-
eyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
times-
tamp

Long The**Unix Timestamp** of a transaction (in milliseconds), optional
field

proofs List(ByteStr)Array of transaction proofs (in base58 format)
version Byte Transaction version
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
assetId Byte Sponsorship asset (token) ID - optional field
script Ar-

ray[Byte]
The compiled script is in base64 format. If you leave this field empty
(null), the script will be detached from the account

height Byte Height of transaction execution

JSON:

Version 1

Signing:

{

"type": 15,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 100000000,

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg"

}

Broadcasting:

{

"type": 15,

"id": "CQpEM9AEDvgxKfgWLH2HxE82iAzpXrtqsDDcgZGPAF9J",

"sender": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": 100000000,

"timestamp": 1549448710502,

"proofs": [

→˓"64eodpuXQjaKQQ4GJBaBrqiBtmkjSxseKC97gn6EwB5kZtMr18mAUHPRkZaHJeJxaDyLzGEZKqhYoUknWfNhXnkf

→˓"],

"version": 1,

"chainId": 84,

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",

(continues on next page)

1.25. Transactions of the blockchain platform 205

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"height": 61895

}

101. GenesisPermission Transaction

A transaction to assign the first network administrator who distributes permissions to other participants.

Signing:

Field Data

type

Description

type Byte Transaction number (101)
id Byte Transaction identifier
fee Long WE Mainnet transaction fee
times-
tamp

Long The**Unix Timestamp** of a transaction (in milliseconds), optional
field

signature ByteStr Transaction signature (in base58 format)
target ByteStr Address of a first administrator to be appointed
role String A permission to be assigned (for an administrator - permissioner)

Broadcasting:

Field Data

type

Description

type Byte Transaction number (101)
times-
tamp

Long The**Unix Timestamp** of a transaction (in milliseconds), optional
field

target ByteStr Address of a first administrator to be appointed
role String A permission to be assigned (for an administrator - permissioner)

102. Permission Transaction

Issuing or revoking a participant’s role (permission). Only a participant with the permissioner role can send
102 transactions to the blockchain.

The permissions you can specify in the role field:

• permissioner

• sender

• blacklister

• miner

• issuer

• contract_developer

1.25. Transactions of the blockchain platform 206

Technical description of the Waves Enterprise platform, Release 1.13.0

• connection_manager

• contract_validator

• banned

You can find the roles (permissions) description in the Permissions article.

The 102. Permission Transaction can be included in the atomic transaction starting from version 2.

Signing:

Field Data type Description

type Byte Transaction number (102)
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
target ByteStr Participant’s address for the permission assignment
opType String Type of operation: add - add a permission; remove - remove

a permission
dueTimes-
tamp

Long Role validity Unix Timestamp (in milliseconds) - optional
field

version Byte Transaction version

Broadcasting:

Field Data type Description

senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

role String A permission to be assigned (for an administrator -
permissioner)

sender ByteStr Address of a transaction sender
proofs List(ByteStr) Array of transaction proofs (in base58 format)
fee Long WE Mainnet transaction fee
opType String Type of operation: add - add a permission; remove - remove

a permission
id Byte ID of a transaction for permission adding or removing
type Byte Transaction number (102)
dueTimes-
tamp

Long Role validity Unix Timestamp (in milliseconds) - optional
field

timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),
optional field

target ByteStr Address of a first administrator to be appointed
atomicBadge Boolean Possibility to include the transaction in an atomic transac-

tion

JSON:

1.25. Transactions of the blockchain platform 207

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 1

Signing:

{

"type": 102,

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"password": "",

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"fee": 0,

"target": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL",

"opType": "add",

"role": "contract_developer",

"dueTimestamp": null,

"version": 1

}

Broadcasting:

{

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"role": "contract_developer",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"proofs": [

→˓"5ABJCRTKGo6jmDZCRWcLQc257CCeczmcjmtfJmbBE7TP3KsVkwvisH9kEkfYPckVCzEMKZTCd3LKAPcN8o4Git3j

→˓"

],

"fee": 0,

"opType": "add",

"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7Q23FW1KWepB9EZcFG6",

"type": 102,

"dueTimestamp": null,

"timestamp": 1559048837487,

"target": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL"

"version": 1

}

Version 2

Signing:

{

"type": 102,

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"password": "",

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"fee": 0,

"target": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL",

"opType": "add",

"role": "contract_developer",

"dueTimestamp": null,

(continues on next page)

1.25. Transactions of the blockchain platform 208

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"version": 2

}

Broadcasting:

{

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"role": "contract_developer",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"proofs": [

→˓"5ABJCRTKGo6jmDZCRWcLQc257CCeczmcjmtfJmbBE7TP3KsVkwvisH9kEkfYPckVCzEMKZTCd3LKAPcN8o4Git3j

→˓"

],

"fee": 0,

"opType": "add",

"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7Q23FW1KWepB9EZcFG6",

"type": 102,

"dueTimestamp": null,

"timestamp": 1559048837487,

"target": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL"

"version": 2

"atomicBadge": null

}

103. CreateContract Transaction

Creating a smart contract . The byte representation of this transaction after it is signed must not exceed 150
kilobytes.

103 transaction can only be signed by a user with the contract_developer permission.

Signing:

1.25. Transactions of the blockchain platform 209

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data

type

Description

fee Long Mainnet transaction fee
feeAs-
setId

Byte Identifier of a token for fee payment – optional field

image Ar-
ray[Bytes]

Smart contract Docker image name

image-
Hash

Ar-
ray[Bytes]

Smart contract Docker image hash

con-
tract-
Name

Ar-
ray[Bytes]

Smart contract name (if downloaded from a pre-installed repository) or
its full address (if the smart contract repository is not specified in the
node configuration file)

sender ByteStr Address of a transaction sender
pass-
word

String Keypair password in the node keystore, optional field

params List[DataEntry[_]]Input and output data of the smart contract; entered using the type,
value and key fields separated by commas – optional field

params.keyByte Parameter key
params.typeByte Parameter type; possible values: binary bool integer string

params.valueByte Parameter value
type Byte Transaction number (103)
version Byte Transaction version
apiVer-
sion

Byte API version for the smart contract gRPC methods (see gRPC services
used by smart contracts)

valida-
tionPol-
icy.type

String Smart contract validation policy type

isConfi-
dential

Boolean A flag that indicates whether the contract will support operation in
confidential mode

group-
Partici-
pants

Set[Address]Addresses authorized to access confidential data

groupOwn-
ers

Set[Address]Addresses that can modify the groupParticipants and groupOwners lists

Broadcasting:

1.25. Transactions of the blockchain platform 210

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data

type

Description

type Byte Transaction number (103)
id Byte ID of a CreateContract transaction
sender ByteStr Address of a transaction sender
sender-
Pub-
licKey

Pub-
licK-
eyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
times-
tamp

Long The**Unix Timestamp** of a transaction (in milliseconds), optional field

proofs List(ByteStr)Array of transaction proofs (in base58 format)
ver-
sion

Byte Transaction version

image Ar-
ray[Bytes]

Smart contract name (if downloaded from a pre-installed repository) or its
full address (if the smart contract repository is not specified in the node
configuration file)

im-
age-
Hash

Ar-
ray[Bytes]

Smart contract Docker image hash

con-
tract-
Name

Ar-
ray[Bytes]

Smart contract name

params List[DataEntry[_]]Input and output data of the smart contract; entered using the type, value
and key fields separated by commas – optional field

params.keyByte Parameter key
params.typeByte Parameter type; possible values: binary bool integer string

params.valueByte Parameter value
height Byte Height of transaction execution
apiVer-
sion

Byte API version for the smart contract gRPC methods (see gRPC services used
by smart contracts)

val-
ida-
tion-
Pol-
icy.type

String Smart contract validation policy type

pay-
ments.amount

An integer that specifies the number of assets to be transferred to the con-
tract; in the amount field the lower bits correspond to the fractional parts of
the number of assets to be transferred, if its decimals is not zero; the field
is optional

pay-
ments.assetId

The identifier of the asset transferred to the contract; the assetId field must
be empty for the WEST system token to be transferred; the field is optional

isCon-
fiden-
tial

Boolean A flag that indicates whether the contract will support operation in confi-
dential mode

group-
Par-
tici-
pants

Set[Address]Addresses authorized to access confidential data

groupOwn-
ers

Set[Address]Addresses that can modify the groupParticipants and groupOwners lists

1.25. Transactions of the blockchain platform 211

Technical description of the Waves Enterprise platform, Release 1.13.0

JSON:

Version 2

Signing:

{

"type": 103,

"version": 2,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"password": "signing-key-password",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"contractName": "Your contract name",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null

}

Broadcasting:

{

"id": "4WVhw3QdiinpE5QXDG7QfqLiLanM7ewBw4ChX4qyGjs2",

"type": 103,

"version": 2,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"senderPublicKey": "YNpp7chAaudMqEtSZZPyN4GYLJ5ZTXdjCXrQdszzuRp",

"contractName": "Your contract name",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

"proofs": [

→˓"4vqLnpJRFpcDgM5vgi78DpZnVfqztsARHNb7Hbmq3mQBjS3SRnzFAiYjRvPazEVMhBM9cE4Rcp6H5K29kk75Uxyh

→˓"

(continues on next page)

1.25. Transactions of the blockchain platform 212

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

]

}

Version 3

Signing:

{

"type": 103,

"version": 3,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"password": "signing-key-password",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"contractName": "Your contract name",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

"atomicBadge": null

}

Broadcasting:

{

"id": "4WVhw3QdiinpE5QXDG7QfqLiLanM7ewBw4ChX4qyGjs2",

"type": 103,

"version": 3,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"senderPublicKey": "YNpp7chAaudMqEtSZZPyN4GYLJ5ZTXdjCXrQdszzuRp",

"contractName": "Your contract name",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

(continues on next page)

1.25. Transactions of the blockchain platform 213

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"atomicBadge": null,

"proofs": [

→˓"4vqLnpJRFpcDgM5vgi78DpZnVfqztsARHNb7Hbmq3mQBjS3SRnzFAiYjRvPazEVMhBM9cE4Rcp6H5K29kk75Uxyh

→˓"

]

}

Version 4

Signing:

{

"type": 103,

"version": 4,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"password": "signing-key-password",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"contractName": "Your contract name",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

"atomicBadge": null,

"validationPolicy": {

"type": "majority"

},

"apiVersion": "1.0"

}

Broadcasting:

{

"id": "4WVhw3QdiinpE5QXDG7QfqLiLanM7ewBw4ChX4qyGjs2",

"type": 103,

"version": 4,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"senderPublicKey": "YNpp7chAaudMqEtSZZPyN4GYLJ5ZTXdjCXrQdszzuRp",

"contractName": "Your contract name",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

(continues on next page)

1.25. Transactions of the blockchain platform 214

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

"atomicBadge": null,

"proofs": [

→˓"4vqLnpJRFpcDgM5vgi78DpZnVfqztsARHNb7Hbmq3mQBjS3SRnzFAiYjRvPazEVMhBM9cE4Rcp6H5K29kk75Uxyh

→˓"

]

}

Version 5

Signing:

{

"type": 103,

"version": 5,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"password": "signing-key-password",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"contractName": "Your contract name",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

"atomicBadge": null,

"validationPolicy": {

"type": "majority"

},

"apiVersion": "1.0"

}

Broadcasting:

{

"id": "4WVhw3QdiinpE5QXDG7QfqLiLanM7ewBw4ChX4qyGjs2",

(continues on next page)

1.25. Transactions of the blockchain platform 215

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"type": 103,

"version": 5,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"senderPublicKey": "YNpp7chAaudMqEtSZZPyN4GYLJ5ZTXdjCXrQdszzuRp",

"contractName": "SOME_CONTRACT_NAME",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"key": "int",

"type": "integer",

"value": 24

},

{

"key": "bool",

"type": "boolean",

"value": true

},

{

"key": "blob",

"type": "binary",

"value": "base64:YWxpY2U="

}

],

"fee": 0,

"timestamp": 1665267880,

"feeAssetId": null,

"atomicBadge": {

"trustedSender": "SOME_SENDER_ACCOUNT_ADDRESS"

},

"proofs": [

→˓"32mNYSefBTrkVngG5REkmmGAVv69ZvNhpbegmnqDReMTmXNyYqbECPgHgXrX2UwyKGLFS45j7xDFyPXjF8jcfw94

→˓"

],

"validationPolicy": {

"type": "SOME_VALIDATION_POLICY_NAME"

},

"apiVersion": "SOME_CONTRACT_VERSION",

"payments": [

{

"amount": 100

},

{

"assetId": "SOME_ASSET_ID",

"amount": 100

}

]

}

1.25. Transactions of the blockchain platform 216

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 6

Signing:

{

"type": 103,

"version": 6,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"password": "signing-key-password",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"contractName": "Your contract name",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"type": "string",

"key": "test_key",

"value": "test_value"

}

],

"fee": 100000000,

"timestamp": 1651487626477,

"feeAssetId": null,

"atomicBadge": null,

"validationPolicy": {

"type": "majority"

},

"apiVersion": "1.0"

"isConfidential": true

"groupParticipants" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"],

"groupOwners" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"]

}

Broadcasting:

{

"id": "4WVhw3QdiinpE5QXDG7QfqLiLanM7ewBw4ChX4qyGjs2",

"type": 103,

"version": 6,

"sender": "3NpN3HyHzGj7Ny1k5F9zMMQ2n54TZg86G9D",

"senderPublicKey": "YNpp7chAaudMqEtSZZPyN4GYLJ5ZTXdjCXrQdszzuRp",

"contractName": "SOME_CONTRACT_NAME",

"image": "registry.yourdomain.com/test-docker-repo/contract:v1.0.0",

"imageHash":

→˓"573387bbf50cfdeda462054b8d85d6c24007f91044501250877392e43ff5ed50",

"params": [

{

"key": "int",

"type": "integer",

"value": 24

},

(continues on next page)

1.25. Transactions of the blockchain platform 217

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

{

"key": "bool",

"type": "boolean",

"value": true

},

{

"key": "blob",

"type": "binary",

"value": "base64:YWxpY2U="

}

],

"fee": 0,

"timestamp": 1665267880,

"feeAssetId": null,

"atomicBadge": {

"trustedSender": "SOME_SENDER_ACCOUNT_ADDRESS"

},

"proofs": [

→˓"32mNYSefBTrkVngG5REkmmGAVv69ZvNhpbegmnqDReMTmXNyYqbECPgHgXrX2UwyKGLFS45j7xDFyPXjF8jcfw94

→˓"

],

"validationPolicy": {

"type": "SOME_VALIDATION_POLICY_NAME"

},

"apiVersion": "SOME_CONTRACT_VERSION",

"payments": [

{

"amount": 100

},

{

"assetId": "SOME_ASSET_ID",

"amount": 100

}

]

"isConfidential": true

"groupParticipants" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"],

"groupOwners" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"]

}

1.25. Transactions of the blockchain platform 218

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 4

The 4th version of this transaction configures validation of the execution results of the updated smart contract
using the validationPolicy.type field (see section Validation of smart contracts). Variants of validation
policies:

• any - the general validation policy is kept in the network: to mine the updated smart contract, the
miner signs the corresponding 105 transaction. Also, this parameter is set if there are no registered
validators in the network.

• majority - a transaction is considered valid if it is confirmed by the majority of validators: 2/3 of the
total number of registered addresses with the contract_validator permission.

• majorityWithOneOf(List[Address]) - the transaction is considered valid if the majority of validators
is collected, among which there is at least one of the addresses included in the parameter list. The
addresses included in the list must have a valid contract_validator permission.

Warning: In case of using the majorityWithOneOf(List[Address]) validation policy, fill the address
list, passing an empty list is not allowed.

Version 5

In the version 5 of this transaction a user can transfer his assets to the balance of a contract. To do this,
an array of assets and their number are specified in the payments field. Both the system WEST token and
any other asset created in the network can be transferred. Version 5 of this transaction can be used starting
from release 1.12 after the 1120 feature activation.

In private networks, the 103 transaction allows to install Docker images of smart contracts not only from
repositories stated in the docker-engine section of the node configuration file. If you need to install a smart
contract from a registry not included in the list of the configuration file, type the full address of a smart
contract in the registry you have created in the name field of the 103 transaction.

An example of a request to broadcast a smart contract from a not installed repository:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"image": "customregistry.com:5000/stateful-increment-contract:latest",

"fee" : 100000000,

"imageHash" : "ad6d0f8a61222794da15571749bc9db08e76b6a120fc1db90e393fc0ee9540d8",

"type" : 103,

"params" : [{

"type" : "string",

"value" : "Value_here",

"key" : "data"

}, {

"type" : "integer",

"value" : 500,

"key" : "length"

}],

"version" : 5,

"atomicBadge" : null,

"apiVersion" : "1.0",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

(continues on next page)

1.25. Transactions of the blockchain platform 219

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"feeAssetId" : null,

"proofs" : [

→˓"L521YncSMJDPqwBjQyS7m7Q6tseAw51nYE8iiPChEALx7S2WvpSosCVtWkXxh2ZqJ6LHkCvjVjRVuVs793kzjw8

→˓"],

"contractName" : "grpc_validatable_statefull here_often",

"id" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"validationPolicy" : {

"type" : "any"

},

"timestamp" : 1625732696641,

"height" : 1028130

}

Version 6

Version 6 of this transaction implements support for confidential smart contracts. When registering a contract
using the sixth version of the transaction, you can specify if the contract is confidential, and define a set of
node addresses that have access to the smart contract confidential data. The following fields are implemented
for this purpose:

• the isConfidential flag determines whether the smart contract is confidential or not;

• the groupParticipants field specifies the group (policy) member nodes who have access to confidential
smart-contract data; the maximum group size is 1024 members;

• the groupOwners field specifies the nodes that can modify the groupParticipants and groupOwners

lists using the UpdateContract transaction; no more than 1024 nodes can be specified in this field.

Important: You cannot assign true to the isConfidential field when creating a contract if the
groupParticipants field contains less than three participants with the contract-validator role.

You cannot assign false to the isConfidential field when creating a contract if the groupParticipants
and groupOwners fields are not empty.

You cannot assign any value to the payments field when creating a contract if the isConfidential field is
set to true.

You cannot pass parameters to the params field when creating a contract if the isConfidential field is set
to true.

You can use the 6 th version of this transaction starting with 1.13 release after the 1130 feature activation.

104. CallContract Transaction

Calling a smart contract for execution. The byte representation of this transaction after it is signed must
not exceed 150 kilobytes.

Signing of the transaction is performed by the initiator of the contract execution.

The contractVersion field of the transaction specifies the contract version:

• 1 - for a new contract;

• 2 - for an updated contract.

1.25. Transactions of the blockchain platform 220

Technical description of the Waves Enterprise platform, Release 1.13.0

This field is only available for the transaction of the second version and older: if the version field of the
smart contract creation transaction is set to 2 or more, the contract is updated using the 107 transaction.

If the contract is not executed or is executed with an error, the 103 and 104 transactions are deleted and do
not enter the block.

Signing:

Field Data

type

Description

contrac-
tId

ByteStr Smart contract ID

fee Long WE Mainnet transaction fee
sender ByteStr Address of a transaction sender
pass-
word

String Keypair password in the node keystore, optional field

type Byte Transaction number (104)
params List[DataEntry[_]]Input and output data of the smart contract; entered using the type,

value and key fields separated by commas – optional field
params.key Byte Parameter key
params.typeByte Parameter type. Possible values: binary bool integer string

params.valueByte Parameter value
version Byte Transaction version
input-
Commit-
ment

Commit-
ment

The field is used to handle confidential smart contracts. Field length is
a constant equal to the length of the hash in the current cryptography

Broadcasting:

1.25. Transactions of the blockchain platform 221

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data

type

Description

type Byte Transaction number (104)
id Byte Smart contract call transaction ID
sender ByteStr Address of a transaction sender
sender-
Pub-
licKey

Pub-
licK-
eyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
fee-
As-
setId

Byte Identifier of a token for fee payment – optional field

times-
tamp

Long The Unix Timestamp of a transaction (in milliseconds) – optional field

proofs List(ByteStr)Array of transaction proofs (in base58 format)
ver-
sion

Byte Transaction version

con-
trac-
tId

ByteStr Smart contract ID

params List[DataEntry[_]]Input and output data of the smart contract; entered using the type, value
and key fields separated by commas – optional field

params.keyByte Parameter key
params.typeByte Parameter type. Possible values: binary bool integer string

params.valueByte Parameter value
pay-
ments.amount

An integer that specifies the number of assets to be transferred to the con-
tract; in the amount field the lower bits correspond to the fractional parts of
the number of assets to be transferred if its decimals is not zero. The field
is optional

pay-
ments.assetId

The identifier of the asset transferred to the contract; the assetId field must
be empty for the WEST system token to be transferred; the field is optional

in-
put-
Com-
mit-
ment

Com-
mit-
ment

The field is used to handle confidential smart contracts. The field length is
a constant and is equal to the hash length in current cryptography

JSON:

Version 2

Signing:

{

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"fee": 10,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"params":

(continues on next page)

1.25. Transactions of the blockchain platform 222

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

[

{

"type": "integer",

"key": "a",

"value": 1

},

{

"type": "integer",

"key": "b",

"value": 100

}

],

"version": 2,

"contractVersion": 1

}

Broadcasting:

{

"type": 104,

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 10,

"timestamp": 1549365736923,

"proofs": [

→˓"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v

→˓"],

"version": 2,

"contractVersion": 1,

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"params":

[

{

"key": "a",

"type": "integer",

"value": 1

},

{

"key": "b",

"type": "integer",

"value": 100

}

]

}

1.25. Transactions of the blockchain platform 223

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 3

Signing:

{

"contractId": "Dgk1hR7xRnDT1KJreaXCVtZLrnd5LJ8uUYtoZyQrV1LJ",

"fee": 10000000,

"sender": "3NpkC1FSW9xNfmAMuhRSRArLgnfyGyEry7w",

"password": "",

"type": 104,

"params":

[{

"type" : "string",

"value" : "value",

"key" : "data"

}, {

"type" : "integer",

"value" : 500,

"key" : "length"

}],

"version": 3,

"contractVersion": 1,

}

Broadcasting:

{

"senderPublicKey" : "9Kgnqqxr5MU3PNrLgf1dkZL2HH6LBktB5Pv9L1cVELi1",

"fee" : 10000000,

"type" : 104,

"params" : [{

"type" : "string",

"value" : "data_response",

"key" : "action"

}, {

"type" : "string",

"value" : "000008_regular_data_request_

→˓2m3SgcnQz9LXVi9ETy3CFHVGM1EyiqJi3vvRRQUM3oPp",

"key" : "request_id"

}, {

"type" : "string",

"value" : "76.33",

"key" : "value"

}, {

"type" : "string",

"value" : "1627678789267",

"key" : "timestamp"

}],

"version" : 3,

"contractVersion" : 1,

"sender" : "3NpkC1FSW9xNfmAMuhRSRArLgnfyGyEry7w",

"feeAssetId" : null,

"proofs" : [

(continues on next page)

1.25. Transactions of the blockchain platform 224

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

→˓"4aanqYjaTVNot8Fbz5ixjwKSdqS5x3DdvzxQ4WsTaPcftYdoFx99xwLC3UPN91VAtez4RTMzaYb1TECaVxHHT9AH

→˓"],

"contractId" : "Dgk1hR7xRnDT1KJreaXCVtZLrnd5LJ8uUYtoZyQrV1LJ",

"id" : "55imLuEXyVpBXb1S64R5PRx9acQQHaEATPwYwUVpqjAT",

"timestamp" : 1627678789267,

"height" : 1076064

}

Version 4

Signing:

{

"contractId": "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"fee": 10000000,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"params":

[{

"type" : "string",

"value" : "value",

"key" : "data"

}, {

"type" : "integer",

"value" : 500,

"key" : "length"

}],

"version": 4,

"contractVersion": 3,

"atomicBadge" : null

}

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"fee" : 10000000,

"type" : 104,

"params" : [{

"type" : "string",

"value" : "value",

"key" : "data"

}, {

"type" : "integer",

"value" : 500,

"key" : "length"

}],

"version" : 4,

"contractVersion" : 3,

"atomicBadge" : null,

(continues on next page)

1.25. Transactions of the blockchain platform 225

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : null,

"proofs" : [

→˓"2bpALen4diR7DTFhNQCrZKPueCPds2gFFPxe1KVzQwfRuGaK6QfvtpN8oqaZMsStoEHAa5DrTkKM8AuzHPYyMPVP

→˓"],

"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"id" : "GBfibn8VjGmDS9ex4Nd4JNRLvDyvJjj8jLUUcbYwFTCf",

"timestamp" : 1625732766458,

"height" : 1028132

}

Version 5

Signing:

{

"contractId": "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"fee": 10000000,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"params": [

{

"type" : "string",

"value" : "value",

"key" : "data"

},

{

"type" : "integer",

"value" : 500,

"key" : "length"

}

],

"version": 5,

"contractVersion": 3,

"atomicBadge" : null

}

Broadcasting:

{

"senderPublicKey": "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"fee": 0,

"type": 104,

"params": [

{

"key": "int",

"type": "integer",

"value": 24

},

{

(continues on next page)

1.25. Transactions of the blockchain platform 226

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"key": "bool",

"type": "boolean",

"value": true

},

{

"key": "blob",

"type": "binary",

"value": "base64:YWxpY2U="

}

],

"version": 5,

"contractVersion": "3",

"atomicBadge": {

"trustedSender": "SOME_SENDER_ACCOUNT_ADDRESS"

},

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId": null,

"proofs": [

→˓"32mNYSefBTrkVngG5REkmmGAVv69ZvNhpbegmnqDReMTmXNyYqbECPgHgXrX2UwyKGLFS45j7xDFyPXjF8jcfw94

→˓"

],

"contractId": "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"id": "GBfibn8VjGmDS9ex4Nd4JNRLvDyvJjj8jLUUcbYwFTCf",

"timestamp": 1665267880,

"payments": [

{

"amount": 100

},

{

"assetId": "SOME_ASSET_ID",

"amount": 100

}

]

}

Version 6

Signing:

{

"contractId": "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"fee": 10000000,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"params": [

{

"type" : "string",

"value" : "value",

"key" : "data"

(continues on next page)

1.25. Transactions of the blockchain platform 227

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

},

{

"type" : "integer",

"value" : 500,

"key" : "length"

}

],

"version": 6,

"contractVersion": 3,

"atomicBadge" : null

"inputCommitment" : "SOME_COMMITMENT"

}

Broadcasting:

{

"senderPublicKey": "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"fee": 0,

"type": 104,

"params": [

{

"key": "int",

"type": "integer",

"value": 24

},

{

"key": "bool",

"type": "boolean",

"value": true

},

{

"key": "blob",

"type": "binary",

"value": "base64:YWxpY2U="

}

],

"version": 6,

"contractVersion": "3",

"atomicBadge": {

"trustedSender": "SOME_SENDER_ACCOUNT_ADDRESS"

},

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId": null,

"proofs": [

→˓"32mNYSefBTrkVngG5REkmmGAVv69ZvNhpbegmnqDReMTmXNyYqbECPgHgXrX2UwyKGLFS45j7xDFyPXjF8jcfw94

→˓"

],

"contractId": "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"id": "GBfibn8VjGmDS9ex4Nd4JNRLvDyvJjj8jLUUcbYwFTCf",

"timestamp": 1665267880,

"payments": [

(continues on next page)

1.25. Transactions of the blockchain platform 228

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

{

"amount": 100

},

{

"assetId": "SOME_ASSET_ID",

"amount": 100

}

]

"inputCommitment" : "SOME_COMMITMENT"

}

Version 5

In the version 5 of this transaction a user can transfer his assets to the balance of a contract. To do this,
an array of assets and their number are specified in the payments field. Both the system WEST token and
any other asset created in the network can be transferred. Version 5 of this transaction can be used starting
from release 1.12 after the 1120 feature activation.

Version 6

Version 6 of this transaction implements the field required to handle confidential smart contracts.

The use of version 6 of this transaction is possible starting from release 1.13 after 1130 feature activation.
After the 1130 feature activation, only version 6 of the transaction is used in the network.

105. ExecutedContract Transaction

Writing smart contract execution result to its state. The byte representation of this transaction after signing
must not exceed 150 kilobytes.

105 Transaction contains all the fields (body) of the 103. CreateContract , 104. CallContract , 107. Up-
dateContract transaction of the smart contract whose execution result must be written to its state (the tx
field). The smart contract execution result is entered into its state from the corresponding parameters of
the params field of 103 or 104 transaction.

The transaction is signed by the node that forms the block after sending the request to publish the transaction.

1.25. Transactions of the blockchain platform 229

Technical description of the Waves Enterprise platform, Release 1.13.0

1.25. Transactions of the blockchain platform 230

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte

Transaction number (105)

id Byte

ExecutedContract
transaction ID

sender ByteStr

Address of a transaction
sender

senderPublicKey PublicKeyAccount

Transaction sender public
key

password String

Keypair password in the
node keystore, optional field

fee Long

Transaction fee

timestamp Long

The Unix Timestamp of a
transaction (in milliseconds)
– optional field

proofs List(ByteStr)

Array of transaction proofs
(in base58 format)

version Byte

Transaction version

tx Array

Body of transaction 103 or
104 of an executed smart
contract

results List[DataEntry[_]]

A list of possible results of
smart contract execution

height Byte

Height of the transaction
execution – an optional field

assetOperations

A structured list of the
smart contract actions with
the assets available to it,
including

issuing a new asset,
reissuing an asset,
burning an asset,
transferring an as-
set available to the
contract to another
user,
leasing an asset
available to the
contract to another
user,
cancelling of leas-
ing of tokens that
have been leased
before

assetOpera-
tions.operationType

A service field that
represents the operation
type. The field can take the
following values:

issue,
reissue, burn,
transfer, lease,
cancel-lease

assetOperations.version

Service field representing the
object version

assetOperations.assetId

When issuing assets, the
field value is calculated using
the gRPC method
CalculateAssetId of the
ContractService.

When reissuing or
burning an asset,
the identifier deter-
mines which token
is being reissued or
burned.
When transferring
an asset, the iden-
tifier determines
which asset is
being transferred.
In the case of send-
ing the WEST sys-
tem token, the as-
setId field must be
omitted or equal to
null.

assetOperations.name

Asset name

assetOperations.description

Asset description

assetOperations.quantity

When issuing an asset, the
field specifies the total
amount of the issued asset.

When reissuing an
asset – the amount
of the reissued as-
set

assetOperations.decimals

When issuing assets, the
field specifies the number of
decimal places of the asset
being issued

assetOperations.isReissuable

The flag indicating if the
asset can be reissued

assetOperations.nonce

When issuing asserts, the
field value is used to
calculate the assetId. It
cannot be equal to 0.

The range of ac-
ceptable values is
from -128 to 127.
Several assets with
the same nonce

cannot be released
within one contract
call

assetOperations.amount

When burning assets, the
field specifies the amount of
asset to be burned.

When transfer-
ring assets, the
field specifies the
amount of the
transferred asset

assetOperations.recipient

When transferring assets,
the field specifies the address
of the user to whom the
contract transfers the assets

readings ReadDescriptor The field is used to handle
confidential smart contracts
and describes the public data
reading order on the contract
side

readingsHash ByteStr The field is used to handle
confidential smart contracts
and represents a hash of read-
ings and the results of the
readings. The field has a fixed
length

outputCommitment Commitment The field is used to handle
confidential smart contracts.
Field length is a constant
equal to the length of the
hash in the current cryptog-
raphy

1.25. Transactions of the blockchain platform 231

Technical description of the Waves Enterprise platform, Release 1.13.0

JSON:

Version 2

Broadcasting:

{

"type": 105,

"id": "38GmSVC5s8Sjeybzfe9RQ6p1Mb6ajb8LYJDcep8G8Umj",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"password": "",

"fee": 500000,

"timestamp": 1550591780234,

"proofs": [

→˓"5whBipAWQgFvm3myNZe6GDd9Ky8199C9qNxLBHqDNmVAUJW9gLf7t9LBQDi68CKT57dzmnPJpJkrwKh2HBSwUer6

→˓"],

"version": 2,

"tx":

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv

→˓"],

"version": 2,

"image": "stateful-increment-contract:latest",

"imageHash":

→˓"7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

},

"results": [],

"height": 1619,

"atomicBadge" : null

}

Version 3

Broadcasting:

{

"type": 105,

"id": "SOME_TX_ID",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 0,

(continues on next page)

1.25. Transactions of the blockchain platform 232

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"timestamp": 1665267880,

"proofs": [

→˓"32mNYSefBTrkVngG5REkmmGAVv69ZvNhpbegmnqDReMTmXNyYqbECPgHgXrX2UwyKGLFS45j7xDFyPXjF8jcfw94

→˓"

],

"version": 3,

"tx": { // inner (executed) tx json-object

"id": "SOME_INNER_TX_ID",

// ...

},

"results": [

{

"key": "int",

"type": "integer",

"value": 24

},

{

"key": "bool",

"type": "boolean",

"value": true

},

{

"key": "blob",

"type": "binary",

"value": "base64:YWxpY2U="

}

],

"assetOperations": [

{

"operationType": "issue",

"version": 1,

"assetId": "SOME_ASSET_ID",

"name": "Gigacoin",

"description": "Gigacoin",

"quantity": 10000000000,

"decimals": 8,

"isReissuable": true,

"nonce": 1 // SOME_NONCE

},

{

"operationType": "burn",

"version": 1,

"assetId": "SOME_ASSET_ID",

"amount": 1000

},

{

"operationType": "reissue",

"version": 1,

"assetId": "SOME_ASSET_ID",

"quantity": 10000000000,

"isReissuable": true

(continues on next page)

1.25. Transactions of the blockchain platform 233

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

},

{

"operationType": "transfer",

"version": 1,

"recipient": "SOME_RECIPIENT_ACCOUNT_ADDRESS",

"assetId": "SOME_ASSET_ID",

"amount": 1000

}

{

"operationType": "lease",

"leaseId": "SOME_LEASE_ID",

"nonce": 1,

"recipient": "SOME_RECIPIENT_ACCOUNT_ADDRESS"

"amount": 1000

}

{

"operationType": "cancel-lease",

"leaseId": "SOME_LEASE_ID"

}

]

"resultsHash": "SOME_RESULTS_HASH",

"validationProofs": [],

}

Version 4

Broadcasting:

{

"type": 105,

"id": "SOME_TX_ID",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 0,

"timestamp": 1665267880,

"proofs": [

→˓"32mNYSefBTrkVngG5REkmmGAVv69ZvNhpbegmnqDReMTmXNyYqbECPgHgXrX2UwyKGLFS45j7xDFyPXjF8jcfw94

→˓"

],

"version": 4,

"tx": { // inner (executed) tx json-object

"id": "SOME_INNER_TX_ID",

// ...

},

"results": [

{

"key": "int",

"type": "integer",

"value": 24

},

(continues on next page)

1.25. Transactions of the blockchain platform 234

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

{

"key": "bool",

"type": "boolean",

"value": true

},

{

"key": "blob",

"type": "binary",

"value": "base64:YWxpY2U="

}

],

"assetOperations": [

{

"operationType": "issue",

"version": 1,

"assetId": "SOME_ASSET_ID",

"name": "Gigacoin",

"description": "Gigacoin",

"quantity": 10000000000,

"decimals": 8,

"isReissuable": true,

"nonce": 1 // SOME_NONCE

},

{

"operationType": "burn",

"version": 1,

"assetId": "SOME_ASSET_ID",

"amount": 1000

},

{

"operationType": "reissue",

"version": 1,

"assetId": "SOME_ASSET_ID",

"quantity": 10000000000,

"isReissuable": true

},

{

"operationType": "transfer",

"version": 1,

"recipient": "SOME_RECIPIENT_ACCOUNT_ADDRESS",

"assetId": "SOME_ASSET_ID",

"amount": 1000

}

{

"operationType": "lease",

"leaseId": "SOME_LEASE_ID",

"nonce": 1,

"recipient": "SOME_RECIPIENT_ACCOUNT_ADDRESS"

"amount": 1000

}

{

"operationType": "cancel-lease",

(continues on next page)

1.25. Transactions of the blockchain platform 235

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"leaseId": "SOME_LEASE_ID"

}

]

"resultsHash": "SOME_RESULTS_HASH",

"validationProofs": [],

"readings": [ReadDescriptor1, ..., ReadDescriptorN],

"readingsHash" : "SOME_READINGS_HASH",

"outputCommitment" : "SOME_COMMITMENT"

}

Important: If the isReissuable field is set to False, i.e. tokens are not allowed to be reissued, then it will
be impossible to change this value in the future.

Version 3

In the version 3 of this transaction you can pass a sequence of operations on assets, such as transferring
tokens from the user balance to the contract balance, in the assetOperations field.

• Both the WEST system token and any other asset created on the network can be transferred using the
transfer operation.

• The issue, reissue, burn operations can be performed with any token except the WEST system
token.

• The lease and cancel-lease operations work only with the WEST system token.

The version 3 of this transaction can be used starting with the 1.12 release after the 1120 feature activation.
After the 1120 feature activation, only version 3 of this transaction is used on the network.

You can use the lease and cancel-lease operations starting from release 1.12.3 after the 1123 feature
activation.

Version 4

Version 4 of this transaction implements the fields required to handle confidential smart contracts.

The use of version 4 of this transaction is possible starting from release 1.13 after 1130 feature activation.
After the 1130 feature activation, only version 4 of the transaction is used in the network.

106. DisableContract Transaction

Disabling a smart contract .

Important: The transaction is irreversible, that is, the disabled contract cannot be used thereafter under
any conditions.

The byte representation of this transaction after it is signed must not exceed 150 kilobytes.

Transaction 106 can only be signed by a user with the contract_developer role.

1.25. Transactions of the blockchain platform 236

Technical description of the Waves Enterprise platform, Release 1.13.0

Signing:

Field Data type Description

sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
contractId ByteStr Smart contract ID
fee Long WE Mainnet transaction fee
type Byte Transaction number (106)
version Byte Transaction version

Broadcasting:

Field Data type Description

type Byte Transaction number (106)
id Byte DisableContract transaction ID
sender ByteStr Address of a transaction sender
senderPublicKey PublicKeyAccount Transaction sender public key
fee Long WE Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
contractId ByteStr Smart contract ID
height Byte Height of transaction execution

JSON:

Version 1

Signing:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"contractId": "HKftkVDTcQp6kxdqVYNdzB9d4rhND4YRKxwJV1thMXcr",

"fee": 1000000,

"type": 106,

"version": 1,

}

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"proofs" : [

→˓"3FKPGT8YbLVun5cffZi1sHkgr9JZVxkeN7z2kUqDVLfhB5CwMtCAfyStRz1tpZuriKsR3MaBqNfReGx5sM2qey8i

→˓"],

"fee" : 1000000,

(continues on next page)

1.25. Transactions of the blockchain platform 237

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"contractId" : "HKftkVDTcQp6kxdqVYNdzB9d4rhND4YRKxwJV1thMXcr",

"id" : "5hXuHs5HVhZSfek153t76HfW6egmCLdZmi5AeFzYBFN",

"type" : 106,

"version" : 1,

"timestamp" : 1625648619321,

"height" : 1025992

}

Version 2

Signing:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"contractId": "HKftkVDTcQp6kxdqVYNdzB9d4rhND4YRKxwJV1thMXcr",

"fee": 1000000,

"type": 106,

"version": 2,

}

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : "7QpXWLGuaspzrMsESRaHTgksndq5mcvfbVrqBTuLbxuy",

"proofs" : [

→˓"3FKPGT8YbLVun5cffZi1sHkgr9JZVxkeN7z2kUqDVLfhB5CwMtCAfyStRz1tpZuriKsR3MaBqNfReGx5sM2qey8i

→˓"],

"fee" : 1000000,

"contractId" : "HKftkVDTcQp6kxdqVYNdzB9d4rhND4YRKxwJV1thMXcr",

"id" : "5hXuHs5HVhZSfek153t76HfW6egmCLdZmi5AeFzYBFN",

"type" : 106,

"version" : 2,

"timestamp" : 1625648619321,

"height" : 1025992

}

Version 3

Signing:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"contractId": "75PumcfCVxzV3v7RAPYQUwCtSpU21hxfaWFhureCRTLM",

"fee": 1000000,

"type": 106,

"version": 3,

(continues on next page)

1.25. Transactions of the blockchain platform 238

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"atomicBadge" : {

"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

}

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"atomicBadge" : {

"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

},

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"22tK24qHhgbTDjtRmR86z3WeLLqLnqPvhUhQrz8ohfbCwQ9nrwmHESuT9aFuwABeBRJ7MfVob1FiJnqg3y2PHLSj

→˓"],

"fee" : 1000000,

"contractId" : "75PumcfCVxzV3v7RAPYQUwCtSpU21hxfaWFhureCRTLM",

"id" : "7opPrLd6x1hATRr9R5oXnEbYjYQzo5cn4Qpkiz12Mw9b",

"type" : 106,

"version" : 3,

"timestamp" : 1619186857911,

"height" : 861644

}

107. UpdateContract Transaction

Updating a smart contract code. The byte representation of this transaction after it is signed must not
exceed 150 kilobytes.

Transaction 107 signing as well as smart contract updating can only be done by the user with the con-
tract_developer permission.

Signing:

1.25. Transactions of the blockchain platform 239

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data

type

Description

image Ar-
ray[Bytes]

Smart contract Docker image name

sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
contractId ByteStr Smart contract ID
imageHash Ar-

ray[Bytes]
Smart contract Docker image hash

type Byte Transaction number (107)
version Byte Transaction version
apiVersion Byte API version for the smart contract gRPC methods (see gRPC

services used by smart contracts)
validationPol-
icy.type

String Smart contract validation policy type

groupPartici-
pants

Set[Address]Addresses authorized to access confidential data

groupOwners Set[Address]Addresses that can modify the groupParticipants and groupOwn-
ers lists

Broadcasting:

Field Data type Description

senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

tx Array Body of 105 transaction of an executed smart contract
fee Long Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
groupPartici-
pants

Set[Address] Addresses authorized to access confidential data

groupOwners Set[Address] Addresses that can modify the groupParticipants and
groupOwners lists

JSON:

Version 2

Signing:

{

"image" : "we-sc/grpc-contract-example:2.2-test-update",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"fee" : 100000000,

"contractId" : "BWzX4mRBEnHKgn3HB78My5DZzDAqnCLWCCNpCuRkZrJA",

"imageHash" :

→˓"075ad1607f193cc6fdb5e85c201f9ca3907c622718d75706bbc2a94a330de5b5",

"type" : 107,

(continues on next page)

1.25. Transactions of the blockchain platform 240

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"version" : 2

}

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"image" : "we-sc/grpc-contract-example:2.2-test-update",

"fee" : 100000000,

"imageHash" :

→˓"075ad1607f193cc6fdb5e85c201f9ca3907c622718d75706bbc2a94a330de5b5",

"type" : 107,

"version" : 2,

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : null,

"proofs" : [

→˓"RetQwzuWZWxpSNMqwB7k7o6hSm6nhFCc49zKUpwZEedzBYcohj9NVEPwAbKLW9RzRKX168xApV7Nu2qV2jaHAMg

→˓"],

"contractId" : "BWzX4mRBEnHKgn3HB78My5DZzDAqnCLWCCNpCuRkZrJA",

"id" : "6oopqcEf4AF943SCAqkBPrghyeQhmwn64TrhtCZbAn3v",

"timestamp" : 1625649822957,

"height" : 1026022

}

Version 3

Signing:

{

"image" : "registry.wavesenterpriseservices.com/we-sc/grpc-contract-

→˓example:2.2-test-update",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"fee" : 100000000,

"contractId" : "HTqdjXUPTHZqGen2KKUkEenTELAqQ8irN58LA8EcP17q",

"imageHash" :

→˓"075ad1607f193cc6fdb5e85c201f9ca3907c622718d75706bbc2a94a330de5b5",

"type" : 107,

"version" : 3,

"atomicBadge" : null

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"image" : "registry.wavesenterpriseservices.com/we-sc/grpc-contract-

→˓example:2.2-test-update",

"fee" : 100000000,

"imageHash" :

→˓"075ad1607f193cc6fdb5e85c201f9ca3907c622718d75706bbc2a94a330de5b5",

(continues on next page)

1.25. Transactions of the blockchain platform 241

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"type" : 107,

"version" : 3,

"atomicBadge" : null,

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"3ncWfFPqBAdgh65YceCCvF2RhUWWokQc9MsnHk27YLrYmPj9gWgrbRcousymJVA7ARFSz5UJcdW4Sa62FFhR5en3

→˓"],

"contractId" : "HTqdjXUPTHZqGen2KKUkEenTELAqQ8irN58LA8EcP17q",

"id" : "B7qjgCa9N6M6FwV63PbLwvtVpFo4bzB5gRZzGjwJpKJV",

"timestamp" : 1619187337697,

"height" : 861650

}

Version 4

Signing:

{

"image" : "we-sc/grpc_validatable_stateless:0.1",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"fee" : 100000000,

"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"imageHash" :

→˓"bd98a7d3e55506ff936d8ea15e170a24d27662edd1b47e4fd20801d10655af8d",

"type" : 107,

"version" : 4,

"atomicBadge" : null

}

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"image" : "we-sc/grpc_validatable_stateless:0.1",

"fee" : 100000000,

"imageHash" :

→˓"bd98a7d3e55506ff936d8ea15e170a24d27662edd1b47e4fd20801d10655af8d",

"type" : 107,

"version" : 4,

"atomicBadge" : null,

"apiVersion" : "1.0",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : null,

"proofs" : [

→˓"fZr9LpqSWbPcUzArSZxFDEuygN62hR63j2Cz1GyTFxPNRrNvVwkDhTDcC8zwRp235gA1gSM8fvPps9mvPTWDQ4p

→˓"],

"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"id" : "HWZy7219Nx5oxj2QnK3ReEuZiqsjoULbmfdQz8YysFSz",

"validationPolicy" : {

(continues on next page)

1.25. Transactions of the blockchain platform 242

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"type" : "any"

},

"timestamp" : 1625732772746,

"height" : 1028132

}

Version 5

Signing:

{

"image" : "we-sc/grpc_validatable_stateless:0.1",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"fee" : 100000000,

"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"imageHash" :

→˓"bd98a7d3e55506ff936d8ea15e170a24d27662edd1b47e4fd20801d10655af8d",

"type" : 107,

"version" : 5,

"atomicBadge" : null

"groupParticipants" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"],

"groupOwners" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"],

}

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXh5bca1qMs7KFGntawHGww",

"image" : "we-sc/grpc_validatable_stateless:0.1",

"fee" : 100000000,

"imageHash" :

→˓"bd98a7d3e55506ff936d8ea15e170a24d27662edd1b47e4fd20801d10655af8d",

"type" : 107,

"version" : 5,

"atomicBadge" : null,

"apiVersion" : "1.0",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : null,

"proofs" : [

→˓"fZr9LpqSWbPcUzArSZxFDEuygN62hR63j2Cz1GyTFxPNRrNvVwkDhTDcC8zwRp235gA1gSM8fvPps9mvPTWDQ4p

→˓"],

"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYw1vZW2MoG",

"id" : "HWZy7219Nx5oxj2QnK3ReEuZiqsjoULbmfdQz8YysFSz",

"validationPolicy" : {

"type" : "any"

},

"timestamp" : 1625732772746,

"height" : 1028132

(continues on next page)

1.25. Transactions of the blockchain platform 243

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"groupParticipants" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"],

"groupOwners" : ["3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

→˓"3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY"],

}

Version 4

The 4th version of this transaction configures validation of the execution results of the updated smart contract
using the validationPolicy.type field (see section Validation of smart contracts).

Variants of validation policies:

• any - the general validation policy is kept in the network: to mine the updated smart contract, the
miner signs the corresponding 105 transaction. Also, this parameter is set if there are no registered
validators in the network.

• majority - a transaction is considered valid if it is confirmed by the majority of validators: 2/3 of the
total number of registered addresses with the contract_validator permission.

• majorityWithOneOf(List[Address]) - the transaction is considered valid if the majority of validators
is collected, among which there is at least one of the addresses included in the parameter list. The
addresses included in the list must have a valid contract_validator permission.

Warning: In case of using the majorityWithOneOf(List[Address]) validation policy, fill the address
list, passing an empty list is not allowed.

Version 5

Version 5 of this transaction implements the fields required to handle confidential smart contracts:

• the groupParticipants field specifies the group (policy) member nodes who have access to confidential
smart-contract data; the maximum group size is 1024 members;

• the groupOwners field specifies the nodes that can modify the groupParticipants and groupOwners

lists using the UpdateContract transaction; no more than 1024 nodes can be specified in this field.

Only the sender of the UpdateContract transaction, whose address is specified in the groupOwners field, can
change the values of the groupParticipants and groupOwners fields.

The contract creator can modify the contract itself (the image, imageHash and apiVersion fields), but he
must have his address listed in the groupOwners field to be able to modify the groupParticipants and
groupOwners fields.

The group owner (the address listed in the groupOwners field) cannot modify the contract, that is the image,
imageHash and apiVersion fields.

The groupParticipants and groupOwners fields must be empty if the isConfidential parameter was set
to false when the contract was created .

Important: You cannot update a contract if its isConfidential parameter was set to true when it was
created , and the groupParticipants field contains less than 3 participants with the contract-validator

1.25. Transactions of the blockchain platform 244

Technical description of the Waves Enterprise platform, Release 1.13.0

role.

You can use the 5 th version of this transaction starting with 1.13 release after the 1130 feature activation.

110. GenesisRegisterNode Transaction

Registration of a node in a network genesis block while starting the blockchain.

This transaction does not require signing.

Field Data

type

Description

type Byte Transaction number (110)
id Byte GenesisRegisterNode transaction ID
fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds) – optional

field
signature ByteStr Transaction signature (in base58 format)
version Byte Transaction version
targetPub-
Key

Byte Public key of a node to be registered

height Byte Height of transaction execution

111. RegisterNode Transaction

Registration of a new node in the blockchain or its deletion.

Signing:

Field Data type Description

type Byte Transaction number (111)
opType String Type of operation: add - add a node; remove - remove a node
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
targetPubKey Byte Public key of a node to be removed
NodeName Byte Name of a node
fee Long WE Mainnet transaction fee

Broadcasting:

1.25. Transactions of the blockchain platform 245

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number (111)
id Byte RegisterNode transaction ID
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds) –

optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
targetPub-
Key

Byte Public key of a node to be removed

NodeName Byte Name of a node
opType String Type of operation: add - add a node; remove - remove a

node
height Byte Height of transaction execution
password String Keypair password in the node keystore, optional field

JSON:

Version 1

Signing:

{

"type": 111,

"opType": "add",

"sender":"3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

"password": "",

"targetPubKey": "6caEKC1UBgRvgAe9A7L5PWcrawrnEZGxtsXynGESwSj7",

"nodeName": "GATEs node",

"fee": 1100000,

}

Broadcasting:

{

"senderPublicKey" : "FWz5gZ2w2ZxXbKEiwhgEcZKT4we1Wneh9XqmCeGPsA4r",

"nodeName" : "GATEs node",

"fee" : 1100000,

"opType" : "add",

"type" : 111,

"version" : 1,

"target" : "3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY",

"sender" : "3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

"proofs" : [

→˓"FHEexr8MqMCkdqaVRrfxv7dnQFwo1VQxQFb4rW2VKh1NkuAhjhtzftKybBQCVbpKcCD1ZTRhwATpwERF9re2Viz

→˓"],

"id" : "6WnDGkBDeSjg5y6QqVdy3BFHUy5nnr4QsxZCeNXZtZoq",

"targetPubKey" : "6caEKC1UBgRvgAe9A7L5PWcrawrnEZGxtsXynGESwSj7",

(continues on next page)

1.25. Transactions of the blockchain platform 246

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"timestamp" : 1619078302988,

"height" : 858895

}

Version 2

Signing:

{

"type": 111,

"version" : 2,

"opType": "add",

"sender":"3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

"password": "",

"targetPubKey": "6caEKC1UBgRvgAe9A7L5PWcrawrnEZGxtsXynGESwSj7",

"nodeName": "GATEs node",

"fee": 1100000,

"atomicBadge":{

"trustedSender":"3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP"

}

}

Broadcasting:

{

"senderPublicKey" : "FWz5gZ2w2ZxXbKEiwhgEcZKT4we1Wneh9XqmCeGPsA4r",

"nodeName" : "GATEs node",

"fee" : 1100000,

"opType" : "add",

"type" : 111,

"version" : 2,

"target" : "3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY",

"sender" : "3NgSJRdMYu4ZbNpSbyRNZLJDX926W7e1EKQ",

"proofs" : [

→˓"FHEexr8MqMCkdqaVRrfxv7dnQFwo1VQxQFb4rW2VKh1NkuAhjhtzftKybBQCVbpKcCD1ZTRhwATpwERF9re2Viz

→˓"],

"id" : "6WnDGkBDeSjg5y6QqVdy3BFHUy5nnr4QsxZCeNXZtZoq",

"targetPubKey" : "6caEKC1UBgRvgAe9A7L5PWcrawrnEZGxtsXynGESwSj7",

"timestamp" : 1619078302988,

"height" : 858895

}

1.25. Transactions of the blockchain platform 247

Technical description of the Waves Enterprise platform, Release 1.13.0

112. CreatePolicy Transaction

Creation of a confidential data group consisting of the addresses stated in the transaction.

Signing:

Field Data

type

Description

sender ByteStr Address of a transaction sender
policy-
Name

String Name of an access group to be created

pass-
word

String Keypair password in the node keystore, optional field

recipi-
ents

Ar-
ray[Bytes]

Array of addresses of a group participants separated by commas

fee Long WE Mainnet transaction fee
de-
scrip-
tion

Ar-
ray[byte]

An arbitrary description of a transaction (in base58 format)

owners Ar-
ray[Bytes]

Array of addresses of group administrators separated by commas: admin-
istrators are entitled to change an access group

type Byte Transaction number (112)
version Byte Transaction version

Broadcasting:

Field Data type Description

type Byte Transaction number (112)
id Byte CreatePolicy transaction ID
sender ByteStr Address of a transaction sender
sender-
Pub-
licKey

PublicK-
eyAccount

Transaction sender public key

policy-
Name

String Name of an access group to be created

recipi-
ents

Ar-
ray[Bytes]

Array of addresses of a group participants separated by commas

owners Ar-
ray[Bytes]

Array of addresses of group administrators separated by commas:
administrators are entitled to change an access group

fee Long WE Mainnet transaction fee
feeAs-
setId

Byte Identifier of a token for fee payment – optional field

times-
tamp

Long The Unix Timestamp of a transaction (in milliseconds) – optional
field

proofs List(ByteStr)Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
descrip-
tion

Ar-
ray[byte]

An arbitrary description of a transaction (in base58 format)

version Byte Transaction version

1.25. Transactions of the blockchain platform 248

Technical description of the Waves Enterprise platform, Release 1.13.0

JSON:

Version 1

Signing:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112,

"version": 1,

}

Broadcasting:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112,

"version": 1,

}

1.25. Transactions of the blockchain platform 249

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 2

Signing:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112,

"version": 2,

}

Broadcasting:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"feeAssetId" : null,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112,

"version": 2,

}

1.25. Transactions of the blockchain platform 250

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 3

Signing:

{

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"policyName": "Policy_v3_for_demo_txs",

"password":"sfgKYBFCF@#$fsdf()%",

"recipients" : [

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn"

],

"fee": 100000000,

"description": "",

"owners" : [

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"type": 112,

"version": 3

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"policyName" : "Policy_v3_for_demo_txs",

"fee" : 100000000,

"description" : "",

"owners" : [

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn"

],

"type" : 112,

"version" : 3,

"atomicBadge" : null,

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"4NccZyPCgchDjeMdMmFKu7kxyU8AFF4e9cWaPFTQVQyYU1ZCCu3QmtmkfJkrDpDwGs4eJhYUVh5TnwYvjZYKPhLp

→˓"],

"recipients" : [

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

(continues on next page)

1.25. Transactions of the blockchain platform 251

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn"

],

"id" : "5aYtmTr1AYYG8BrYvTTSqKzfJZxfgorx1BLGVwSAhwrz",

"timestamp" : 1619186864092,

"height" : 861637

}

113. UpdatePolicy Transaction

Updating a confidential data group.

Signing:

Field Data

type

Description

poli-
cyId

String Confidential data group identifier

pass-
word

String Keypair password in the node keystore, optional field

sender ByteStr Address of a transaction sender
recip-
ients

Ar-
ray[Bytes]

Array of addresses of a group participants separated by commas

fee Long WE Mainnet transaction fee
op-
Type

String Type of operation: add - add participants; remove - remove participants

own-
ers

Ar-
ray[Bytes]

Array of addresses of group administrators separated by commas: admin-
istrators are entitled to change an access group

type Byte Transaction number (113)
ver-
sion

Byte Transaction version

Broadcasting:

1.25. Transactions of the blockchain platform 252

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number (113)
id Byte UpdatePolicy transaction ID
sender ByteStr Address of a transaction sender
sender-
Pub-
licKey

PublicK-
eyAccount

Transaction sender public key

policyId String Confidential data group identifier
recipi-
ents

Ar-
ray[Bytes]

Array of addresses for adding or removing of group participants sep-
arated by commas

owners Ar-
ray[Bytes]

Array of addresses of group administrators separated by commas:
administrators are entitled to change an access group

fee Long WE Mainnet transaction fee
feeAs-
setId

Byte Identifier of a token for fee payment – optional field

times-
tamp

Long The Unix Timestamp of a transaction (in milliseconds) – optional
field

proofs List(ByteStr)Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
opType String Type of operation: add - add a permission; remove - remove a per-

mission
descrip-
tion

Ar-
ray[byte]

An arbitrary description of a transaction (in base58 format)

version Byte Transaction version

JSON:

Version 1

Signing:

{

"policyId": "UkvoboGXiwWpASr1GLG9M1MUbhrEMo4NBS7kquxVMw5",

"password":"sfgKYBFCF@#$fsdf()*%",

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"fee": 50000000,

"opType": "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"type": 113,

"version": 1

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"fee" : 50000000,

"opType" : "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"type" : 113,

(continues on next page)

1.25. Transactions of the blockchain platform 253

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"version" : 1,

"policyId" : "UkvoboGXiwWpASr1GLG9M1MUbhrEMo4NBS7kquxVMw5",

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"proofs" : [

→˓"2CKd57kU3wbxdrHxMPNbrWHptnf5ZcydYjqxMPk46miMcUUAxgFGXcy621cjYFXC3vjpKNNrB2QcgtKe1Yx9TcLY

→˓"],

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"id" : "6o4azRwzmMg9SqWUq6rv6GAe5gzTYJvE5ek1v9VM3Mb",

"timestamp" : 1619004195630,

"height" : 856970

}

Version 2

Signing:

{

"policyId": "UkvoboGXiwWpASr1GLG9M1MUbhrEMo4NBS7kquxVMw5",

"password":"sfgKYBFCF@#$fsdf()*%",

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"fee": 50000000,

"opType": "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"type": 113,

"version": 2

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"fee" : 50000000,

"opType" : "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"type" : 113,

"version" : 2,

"policyId" : "UkvoboGXiwWpASr1GLG9M1MUbhrEMo4NBS7kquxVMw5",

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"2CKd57kU3wbxdrHxMPNbrWHptnf5ZcydYjqxMPk46miMcUUAxgFGXcy621cjYFXC3vjpKNNrB2QcgtKe1Yx9TcLY

→˓"],

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"id" : "6o4azRwzmMg9SqWUq6rv6GAe5gzTYJvE5ek1v9VM3Mb",

"timestamp" : 1619004195630,

"height" : 856970

}

1.25. Transactions of the blockchain platform 254

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 3

Signing:

{

"policyId": "5aYtmTr1AYYG8BrYvTTSqKzfJZxfgorx1BLGVwSAhwrz",

"password":"sfgKYBFCF@#$fsdf()*%",

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"fee": 50000000,

"opType": "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"type": 113,

"version": 3

}

Broadcasting:

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"fee" : 50000000,

"opType" : "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"type" : 113,

"version" : 3,

"atomicBadge" : null,

"policyId" : "5aYtmTr1AYYG8BrYvTTSqKzfJZxfgorx1BLGVwSAhwrz",

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

→˓"2QMGoz6rycNsDLhN3mDce2mqGRQQ8r26vDDw551pnYcAecpFBDA8j38FVqDjLTGuFHs6ScX32fsGcaemmptpCFHk

→˓"],

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"id" : "Hwqf8LgpQfEcUYX9nMNG8uU2Cw1xSuGFqYxmuACpvU1L",

"timestamp" : 1619187450552,

"height" : 861653

}

114. PolicyDataHash Transaction

Sending confidential data hash into the network. This transaction is created automatically while sending
confidential data into the network with the use of the POST /privacy/sendData REST API method .

This transaction does not require signing.

1.25. Transactions of the blockchain platform 255

Technical description of the Waves Enterprise platform, Release 1.13.0

Field Data type Description

type Byte Transaction number (114)
id Byte Transaction identifier
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

policyId String Name of an access group to be created
dataHash String Confidential data hash to be sent
fee Long Mainnet transaction fee
feeAssetId Byte Identifier of a token for fee payment – optional field
timestamp Long The Unix Timestamp of a transaction (in milliseconds) –

optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
version Byte Transaction version

JSON:

Version 1

Broadcasting:

{

"senderPublicKey":

→˓"4L4XEpNpesX9r6rVJ8hW1TrMiNCZ6SMvRuWPKB7T47wKfnp4D84XBUv7xsa36CGwoyK3fzfojivwonHNrsX2fLBL

→˓",

"dataHash": "8GPtHQeLxhtt8HianM9c8otS2EeAHNVZCfpCRUmYbSFi",

"fee": 0,

"type": 114,

"version": 1,

"policyId": "75rGACZxkTE5x5seNjEzJUEe73fTzkQiBrr28hCjMMVq",

"sender": "3M3ybNZvLG7o7rnM4F7ViRPnDTfVggdfmRX",

"proofs": [

→˓"5uW8SeX4k3nb8esuMeRY27MyZ6dnWijwbGhSo53zSKY1FjjofWiE4mPfNwUhYKgqyAtHtUvwsdTMyL87LGNqwp5o

→˓"

],

"id": "52zCNUhfne9HYfHr7sEYBGFHqnzHKBdkGbGnsYfCYXug",

"timestamp": 1632916536685,

"height": 1585580

}

1.25. Transactions of the blockchain platform 256

Technical description of the Waves Enterprise platform, Release 1.13.0

Version 2

Broadcasting:

{

"senderPublicKey":

→˓"4L4XEpNpesX9r6rVJ8hW1TrMiNCZ6SMvRuWPKB7T47wKfnp4D84XBUv7xsa36CGwoyK3fzfojivwonHNrsX2fLBL

→˓",

"dataHash": "8GPtHQeLxhtt8HianM9c8otS2EeAHNVZCfpCRUmYbSFi",

"fee": 0,

"type": 114,

"version": 2,

"policyId": "75rGACZxkTE5x5seNjEzJUEe73fTzkQiBrr28hCjMMVq",

"sender": "3M3ybNZvLG7o7rnM4F7ViRPnDTfVggdfmRX",

"feeAssetId": null,

"proofs": [

→˓"5uW8SeX4k3nb8esuMeRY27MyZ6dnWijwbGhSo53zSKY1FjjofWiE4mPfNwUhYKgqyAtHtUvwsdTMyL87LGNqwp5o

→˓"

],

"id": "52zCNUhfne9HYfHr7sEYBGFHqnzHKBdkGbGnsYfCYXug",

"timestamp": 1632916536685,

"height": 1585580

}

Version 3

Broadcasting:

{

"senderPublicKey":

→˓"4L4XEpNpesX9r6rVJ8hW1TrMiNCZ6SMvRuWPKB7T47wKfnp4D84XBUv7xsa36CGwoyK3fzfojivwonHNrsX2fLBL

→˓",

"dataHash": "8GPtHQeLxhtt8HianM9c8otS2EeAHNVZCfpCRUmYbSFi",

"fee": 0,

"type": 114,

"version": 3,

"atomicBadge": {

"trustedSender": "3M3ybNZvLG7o7rnM4F7ViRPnDTfVggdfmRX"

},

"policyId": "75rGACZxkTE5x5seNjEzJUEe73fTzkQiBrr28hCjMMVq",

"sender": "3M3ybNZvLG7o7rnM4F7ViRPnDTfVggdfmRX",

"feeAssetId": null,

"proofs": [

→˓"5uW8SeX4k3nb8esuMeRY27MyZ6dnWijwbGhSo53zSKY1FjjofWiE4mPfNwUhYKgqyAtHtUvwsdTMyL87LGNqwp5o

→˓"

],

"id": "52zCNUhfne9HYfHr7sEYBGFHqnzHKBdkGbGnsYfCYXug",

"timestamp": 1632916536685,

(continues on next page)

1.25. Transactions of the blockchain platform 257

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"height": 1585580

}

120. Atomic Transaction

Atomic transaction sets other transactions in a container for their atomic execution. This transaction can
be executed only in full (no transactions have been declined), in other cases it will not be executed.

Atomic transaction support 2 and more transactions of the following types:

• 4. Transfer Transaction, ver. 3

• 102. Permission Transaction, ver. 2

• 103. CreateContract Transaction, ver. 3

• 104. CallContract Transaction, ver. 4

• 106. DisableContract Transaction, ver. 3

• 107. UpdateContract Transaction, ver. 3

• 112. CreatePolicy Transaction, ver. 3

• 113. UpdatePolicy Transaction, ver. 3

• 114. PolicyDataHash Transaction, ver. 3

Once the 1122 blockchain feature is activated, you can also include the following transaction types in an
atomic transaction:

• 3. Issue Transaction, ver. 3

• 5. Reissue Transaction, ver. 3

• 6. Burn Transaction, ver. 3

• 8. Lease Transaction, ver. 3

• 9. LeaseCancel Transaction, ver. 3

• 10. CreateAlias Transaction, ver. 4

• 11. MassTransfer Transaction, ver. 3

• 12. Data Transaction, ver. 3

• 14. Sponsorship Transaction, ver. 2

• 111. RegisterNode Transaction, ver. 2

An atomic transaction itself does not require a fee: its total fee is summed up from fee of transactions
included into it.

Learn more about atomic transactions: Atomic transactions

1.25. Transactions of the blockchain platform 258

Technical description of the Waves Enterprise platform, Release 1.13.0

Signing:

Field Data type Description

type Byte Transaction number (120)
sender ByteStr Address of a transaction sender
transactions Array Full bodies of transactions to be included
password String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
version Byte Transaction version

Broadcasting:

Field Data type Description

type Byte Transaction number (114)
id Byte Transaction identifier
sender ByteStr Address of a transaction sender
senderPub-
licKey

PublicKeyAc-
count

Transaction sender public key

fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds) –

optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
transactions Array Full bodies of transactions to be included
miner String Block miner public key; filled during a mining round
password String Keypair password in the node keystore, optional field
version Byte Transaction version

JSON:

Version 1

Signing:

{

"sender": sender_0,

"transactions": [

signed_transfer_tx,

signed_transfer_tx2

],

"type": 120,

"version": 1,

"password":"lskjbJJk$%^#298",

"fee": 0,

}

Broadcasting:

1.25. Transactions of the blockchain platform 259

Technical description of the Waves Enterprise platform, Release 1.13.0

{

"sender": "3MufokZsFzaf7heTV1yreUtm1uoJXPoFzdP",

"transactions": [

signed_transfer_tx,

signed_transfer_tx2

],

"type": 120,

"version": 1,

}

See also

Description of transactions

Mainnet fees

Actual versions of transactions

When sending transactions to Waves Enterprise Mainnet or a private network, it is recommended to use the
current versions of the transactions. The version of the transaction is specified in the version field when
signing and sending.

Transaction number Transaction name Actual version

1 Genesis Transaction No version
3 Issue Transaction 3
4 Transfer Transaction 3
5 Reissue Transaction 3
6 Burn Transaction 3
8 Lease Transaction 3
9 Lease Cancel Transaction 3
10 Create Alias Transaction 4
11 Mass Transfer Transaction 3
12 Data Transaction 3
13 Set Script Transaction 1
14 Sponsorship Transaction 2
15 Set Asset Script Transaction 1
101 Genesis Permission Transaction No version
102 Permission Transaction 2
103 Create Contract Transaction 6
104 Call Contract Transaction 6
105 Executed Contract Transaction 4
106 Disable Contract Transaction 3
107 Update Contract Transaction 5
110 Genesis Resgister Node Transaction 1
111 Register Node Transaction 2
112 Create Policy Transaction 3
113 Update Policy Transaction 3
114 Policy Data Hash Transaction 3
120 Atomic Transaction 1

1.25. Transactions of the blockchain platform 260

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Transactions of the blockchain platform

Description of transactions

Mainnet fees

1.26 Atomic transactions

The Waves Enterprise platform supports atomic operations. Atomic operations consist of multiple actions,
if any action cannot be finalized, other actions also will not be performed. Atomic operations are realized
through the 120 AtomicTransaction, which is a container consisting of two or more signed transactions.

Atomic transaction support 2 and more transactions of the following types:

• 4. Transfer Transaction, ver. 3

• 102. Permission Transaction, ver. 2

• 103. CreateContract Transaction, ver. 3

• 104. CallContract Transaction, ver. 4

• 105. ExecutedContract Transaction, ver. 1 and 2

• 106. DisableContract Transaction, ver. 3

• 107. UpdateContract Transaction, ver. 3

• 112. CreatePolicy Transaction, ver. 3

• 113. UpdatePolicy Transaction, ver. 3

• 114. PolicyDataHash Transaction, ver. 3

Once the blockchain feature1122 is activated, you can include the following transaction types in an atomic
transaction:

• 3. Issue Transaction, ver.3

• 5. Reissue Transaction, ver. 3

• 6. Burn Transaction, ver. 3

• 8. Lease Transaction, ver. 3

• 9. LeaseCancel Transaction, ver. 3

• 10. CreateAlias Transaction, ver. 4

• 11. MassTransfer Transaction, ver. 3

• 12. Data Transaction, ver. 3

• 14. Sponsorship Transaction, ver. 2

• 111. RegisterNode Transaction, ver. 2

The key peculiarity of transactions that are supported by atomic transactions, is an atomicBadge field. This
field contains a trustedSender value: a trusted address of a transaction sender to include into the 120
transaction container. If a sender address is not specified, an address of a sender of the 120 transaction
becomes the sender of the included transaction.

1.26. Atomic transactions 261

Technical description of the Waves Enterprise platform, Release 1.13.0

1.26.1 Processing of atomic transactions

Atomic transactions have two signatures. First signature belongs to its sender and is used for broadcasting.
Second signature is generated by a miner and is used for including of the transaction into the blockchain.
When an atomic transaction is added to the UTX pool, the node checks its own signature, as well as
signatures of all transactions included into the atomic container.

Validation of included transactions is carried out as follows:

• There should be more than one included transactions.

• All transactions should have different identifiers.

• An atomic transaction should contain only supported transaction types.

Including of an atomic transaction to another atomic transaction is not allowed.

There should not be executed transactions inside an atomic transaction to be sent into the UTX pool, the
miner field should be empty. This field is filled during transferring of the transaction into a block.

There should not be executable transactions in an atomic transaction which is in the UTX pool.

After execution of an atomic transaction, its ‘copy’ is included into a block. This ‘copy’ is generated as
follows:

• The miner field is not engaged for transaction signing and is filled with a miner public key.

• A block miner generates a proofs array, the source of which are identifiers of transactions included
into an atomic transaction. When included into a block, an atomic transaction has 2 signatures: a
signature of a source transaction and a miner signature.

• If executable transactions are included into an atomic transaction, they are substituted with executed
transactions. While validating an atomic transaction in a block, both signatures are checked.

1.26.2 Generating of atomic transactions

An access to the node REST API is required for generating of an atomic transaction.

1. A user picks supported transactions that should be used as an atomic operation.

2. After that, a user fills fields of all transactions and signs them.

3. A user fills the transactions field of an atomic transaction with data of signed, but not broadcasted
transactions.

4. After filling an atomic transaction with data of all included transaction, a user signs it and broadcasts
into the blockchain.

Data structures for signing and broadcasting of an atomic transaction, are listed in the list of transactions.

Attention: If you create an atomic transaction including a 114 transaction, set its broadcast value as
false while signing.

1.26. Atomic transactions 262

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Description of transactions

Mainnet fees

1.27 Consensus algorithms

Blockchain is a distributed system which does not have a unified process regulator. Decentralization prevents
corruption inside the system but complicates decision making and organization of an overall workflow.

These problems are resolved by the consensus - an algorithm which coordinates work of the blockchain
participants by means of a certain voting method. Voting in the blockchain is always performed in support
of the majority: minority interests are not taken into account, and decisions that have been made become
mandatory for all network participants. Anyway, voting guarantees achievement of a consensus that will be
profitable for the entire network.

The Waves Enterprise blockchain platform supports three consensus algorithms:

1.27.1 LPoS consensus algorithm

The PoS (Proof of Stake) consensus algorithm is based on proofing of an address token share, the LPoS
(Leased Proof of Stake) also includes an opportunity to lease tokens. With these algorithms, generation of
a block does not need energy consuming calculations, a miner should create a digital signature of a block.

Proof of Stake

In the Proof of Stake consensus algorithm, the right to generate a block is determined in a pseudo-random
way: a next miner is identified on the basis of previous miner data and balances of all network users. This
is possible due to a deterministic computation of a block’s generating signature, which can be obtained by
SHA256 hashing of the current block’s generating signature and the account’s public key. The first 8 bytes
of the resulting hash are converted to a hit digit Xn of an account, this digit will be a pointer to the following
miner. The time of block generation for an i account is calculated as:

𝑇𝑖 = 𝑇𝑚𝑖𝑛 + 𝐶1 log(1− 𝐶2

log 𝑋𝑛

𝑋𝑚𝑎𝑥

𝑏𝑖𝐴𝑛
)

where:

• bi – a balance stake of a participant in comparison with the network total balance;

• An – baseTarget, the adaptive ratio regulating the average time of issue of the block;

• Xn – a pointer to the next miner;

• Tmin – a constant value defining a minimum time interval between blocks (5 seconds);

• C1 – a constant value correcting the form of interval allocation between blocks (70);

• C2 – a constant value that is equal to the BaseTarget (5E17) by default and intended for its correction.

Based on this formula, the probability of selecting the participant to be rewarded depends on the participant’s
stake of assets in the system. The bigger the stake, the higher the chance of reward. The minimum number
of tokens needed for mining is 50000 WEST.

1.27. Consensus algorithms 263

Technical description of the Waves Enterprise platform, Release 1.13.0

BaseTarget is a parameter that maintains the block generation time within a given range. BaseTarget is
calculated as follows:

(𝑆 > 𝑅𝑚𝑎𝑥 → 𝑇𝑏 = 𝑇𝑝 +𝑚𝑎𝑥(1,
𝑇𝑝

100
)) ∧ (𝑆 < 𝑅𝑚𝑖𝑛 ∧ ∧𝑇𝑏 > 1 → 𝑇𝑏 = 𝑇𝑝 −𝑚𝑎𝑥(1,

𝑇𝑝

100
))

where

• R max - maximal decrease of complexity that is engaged when block generation time exceeds 40 seconds
(90);

• Rmin - minimal increase of complexity that is engaged when block generation time is less than 40
seconds (30);

• S – the average time of generation of at least three last blocks;

• Tp – the previous baseTarget value;

• Tb – a calculated baseTarget value.

A detailed description of the technical characteristics and developments of the classical PoS algorithm for
the Waves Enterprise blockchain platform is stated in this article.

Advantages over the Proof of Work (PoW)

The absence of complex calculations allows PoS networks to lower the hardware requirements for the system
participants, which reduces the cost of deploying private networks. No additional emission is required, which
in PoW systems is used to reward miners for finding a new block. In PoS systems, a miner receives a reward
in the form of fees for transactions which appeared in the miner’s block.

Leased Proof of Stake

A user who has an insufficient stake for effective mining may transfer his balance for lease to another
participant and receive a portion of the income from mining. Leasing is a completely safe operation, as
tokens do not leave the user’s wallet, but are delegated to another miner, which gives the miner a greater
opportunity to earn mining rewards.

See also

General platform configuration: consensus algorithm

Consensus algorithms

PoA consensus algorithm

CFT consensus algorithm

1.27.2 PoA consensus algorithm

In a private blockchain, tokens are not always needed. For example, a blockchain can be used to store hashes
of documents exchanged by organizations. In this case, in the absence of tokens and fees from transactions,
a solution based on the PoS consensus algorithm is redundant. The Waves Enterprise Blockchain Platform
offers the option of a Proof of Authority (PoA) consensus algorithm. Mining permission is issued centrally in
the PoA algorithm, which simplifies the decision-making compared to the PoS algorithm. The PoA model is
based on a limited number of block validators, which makes it scalable. Blocks and transactions are verified
by pre-approved participants who act as moderators of the system.

1.27. Consensus algorithms 264

https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/

Technical description of the Waves Enterprise platform, Release 1.13.0

Algorithm description

An algorithm determining the miner of the current block is formed on the basis of the parameters stated
below. The parameters of the consensus are specified in the consensus block of the node configuration file.

• t - the duration of a round in seconds (the parameter of the node configuration file: round-duration).

• ts - the duration of a synchronization period, calculated as t*0.1, but not more than 30 seconds (the
parameter of the node configuration file: sync-duration).

• Nban - a number of missed consecutive rounds for issuing the ban for the miner (the parameter of the
node configuration file: warnings-for-ban);

• Pban - a maximum percentage of banned miners, from 0 to 100 (the parameter of the node configuration
file: max-bans-percentage);

• tban - the duration of the miner ban in blocks (the parameter of the node configuration file:
ban-duration-blocks).

• T0 - unix timestamp of genesis block creation.

• TH - unix timestamp of creation of the H block — the NG key block.

• r - round number, calculated as (TCurrent -T0) div (t+ ts).

• Ar - the leader of the round r, who is entitled to create key blocks and microblocks for NG in the round
r.

• H – blockchain height, at that the NG key block and microblocks are created. The Ar round leader is
entitled to generate the block.

• MH - the miner who creates a block at the H height.

• QH - the queue of active miners at the H height.

The QH queue consists of addresses that have the miner permission. At the same time, the miner permission
should not be removed from the addresses before the H height or expiry before the TH time.

The queue is sorted by the time stamp of the mining rights transaction. The node which was granted the
rights earlier will be higher in the queue. To keep the network consistent, this queue will be the same on
each node.

A new block is generated during each r round. A duration of a round is t seconds. Each round is followed
with ts seconds for network data synchronization. During the synchronization, microblocks and key blocks
are not generated. Each round has a leader Ar , who is entitled to generate a block in this round. A leader
can be defined at each network node with the same result.

The round leader is defined as follows:

1. The miner MH-1 is defined, who has created a previous block at the H-1 height.

2. The queue of active miners QH is calculated.

3. Inactive miners are excluded from the queue (see Exclusion of inactive miners).

4. If the miner of the H-1 (MH-1) block is in the QH queue, a next miner in the queue becomes the leader
of the Ar round.

5. If the miner H-1 (MH-1) block is not in the QH queue, the miner next to the miner of the H-2(MH-2)
block becomes a leader of the Ar round, and so on.

6. If the miners of the (H-1..1) blocks are not in the queue, the first miner in the queue becomes the
round leader.

1.27. Consensus algorithms 265

Technical description of the Waves Enterprise platform, Release 1.13.0

This algorithm identifies and checks the miner, who creates each block of the chain by calculating the list of
authorized miners for each moment of time. If the block was not created by the designated leader within the
allotted time, no blocks are generated within that round, and the round is skipped. Leaders who skip block
generation are temporarily excluded from the queue by the algorithm described in the paragraph Exclusion
of inactive miners.

The block generated by the leader Ar with the time of the block TH from the half-interval (T0 +(r-1)*(t+ts
); T0 +(r-1)*(t+ts)+t] is determined to be valid. The block created by the miner out of its turn or not in
time is considered invalid. After a round of t duration, the network synchronizes the data for ts . The leader
Ar has ts seconds to propagate the validation block over the network. If any node of the network during ts
has not received a block from the leader Ar , this node recognizes the round as ‘skipped’ and expects a new
H block in the next round r+1, from the following leader Ar+1 .

The consensus parameters t and ts are configured in the node configuration file. The parameter T should be
the same for all network participants, otherwise the network will fork.

Synchronization of time between network hosts

Each host should synchronize the application time with a trusted NTP server at the beginning of each round.
The server address and port are specified in the node configuration file. The server must be available to each
network node.

Exclusion of inactive miners

If any miner misses generation of a block Nban times in a row, this miner is excluded from the queue for tban
of next blocks (the ban-duration-blocks parameter in the node configuration file). Each node excludes
an inactive miner on its own based on the calculated queue QH and information about the H block and the
MH miner. The Pban parameter specifies the maximum percentage of excluded miners in the network in
comparison with all active miners at any moment. If the Nban of misses is achieved by a miner, but at the
same time the Pban is also achieved, this miner will not be excluded from the queue.

Monitoring

The PoA consensus monitoring helps to identify how non-valid blocks are created and distributed, as well
as how miners skip the queue. Network administrators perform additional troubleshooting and blocking of
malicious nodes.

To monitor the process of generating blocks using the PoA algorithm, the following details are entered in
InfluxDB:

• Active list of miners sorted by the timestamp of granting of mining rights.

• Scheduled round timestamp.

• Actual round timestamp.

• Current miner.

1.27. Consensus algorithms 266

Technical description of the Waves Enterprise platform, Release 1.13.0

Changing consensus settings

The consensus parameters (round time and synchronization period) are changed on the basis of the node
configuration file at the from-height of the blockchain. If any node does not specify new parameters, the
blockchain will fork.

Configuration example:

// specifying inside of the blockchain parameter

consensus {

type = poa

sync-duration = 10s

round-duration = 60s

ban-duration-blocks = 100

changes = [

{

from-height = 18345

sync-duration = 5s

round-duration = 60s

},

{

from-height = 25000

sync-duration = 10s

round-duration = 30s

}]

}

See also

General platform configuration: consensus algorithm

Consensus algorithms

LPoS consensus algorithm

CFT consensus algorithm

1.27.3 CFT consensus algorithm

When information is exchanged extensively in a corporate blockchain, coherence among the network elements
that form a single blockchain is important. And the more participants are engaged in the exchange, the
more likely it is that an error will occur: a hardware failure by one of the participants, network problems,
and so on. This can lead to forks of the main blockchain and, as a consequence, rollback of a block that
seems to be already formed and included in the blockchain. In this case, the blocks subject to the rollback
begin to be mined again and become unavailable in the blockchain for some time. This, in turn, can affect
the business processes that use the blockchain. The Crash Fault Tolerance (CFT) consensus algorithm is
designed to prevent such situations.

1.27. Consensus algorithms 267

Technical description of the Waves Enterprise platform, Release 1.13.0

Algorithm description

The CFT consensus algorithm is based on the PoA with an added phase for voting of mining round validators:
network participants that are automatically appointed by the consensus algorithm. This approach guarantees
the following:

• more than a half of participants (validators) are familiar with a definite block and have validated it;

• the block will not be rollbacked and will be published in the blockchain;

• there will be no parallel chain in the network.

This is achieved by the finalization of a produced block. The finalization itself is based on the consensus
of majority of round validators (50% + 1 vote). In accordance with this consensus, the decision of block
broadcasting is taken. If this majority has not been achieved, mining will be stopped until the network
cohesion is restored.

Like the PoA, the CFT algorithm depends on the current time, starting and ending time of each mining
round is calculated upon the basis of a genesis block timestamp. Basic parameters that form an algorithm
that is used for appointment of a current block miner are also identical to the PoA parameters (see the PoA
consensus algorithm section). For validation of blocks, the consensus block of the node configuration file
has been expanded with three new parameters:

• max-validators – limit of validators participating in a current round.

• finalization-timeout – time period, during which a miner waits for finalization of the last block in a
blockchain. After that time, the miner will return the transactions back to the UTX pool and start
mining the round again.

• full-vote-set-timeout – optional parameter which defines, how long a miner will wait for the full
set of votes from all validators after the end of the round (node configuration file parameter:
round-duration).

The following terms are used for the following description of CFT functionality:

• t – round duration in seconds (parameter of the node configuration file: round-duration).

• tstart – round start time.

• tsync – blockchain synchronization time (tstart + t).

• tend – round end time.

• tfin - time period during which a miner waits for the finalization of the last block (parameter of the
node configuration file: finalization-timeout).

• Vmax – the maximum number of validators taking part in voting (parameter of the node configuration
file: max-validators).

Voting

The general scheme of the CFT consensus mining round:

Voting is performed in each round, nodes with the miner role can take part in it. Voting starts upon tsync
and ends by tend + tfin . Within each time period defined for voting, voting of validators and voting of
current round miner are performed. Each validator of the round can send multiple votes, but a miner can
vote only once for its last microblock.

For voting, instance of a vote is used, which includes following parameters:

• senderPublicKey – a public key of a validator which has formed a vote;

• blockVotingHash – hash of a liquid block with votes confirmed by a validator;

1.27. Consensus algorithms 268

Technical description of the Waves Enterprise platform, Release 1.13.0

• signature – vote signature formed by a validator.

Defining of round validators and their voting

In order to define validators that can vote in a current round, a configurable node parameter max-validators
(Vmax) is used. If the number of active miners minus the current round miner does not exceed Vmax , each of
them can take part in voting. Otherwise, in order to define validators of a current round, the pseudorandom
selection algorithm is used which allows to exclude the influence of a particular miner on choices of voters.

Voting of validators start under two preconditions:

• the next attempt to vote falls within the time interval required for voting;

• the address of the current node is one of the defined validators of the round for voting.

After the end of the round validators voting, the miner voting is started.

Voting of current round miners

The miner’s vote is triggered under two conditions:

• the next attempt to vote falls within the time interval required for voting;

• the address of the current node is the miner of the round.

A vote is considered valid if it was issued by an address that is in a list of validators of the current round and
has a correct signature. As soon as a miner gains the required number of votes, voting time slot is checked.
Then the finalizing microblock with all votes is released. The block with votes is considered finalized.

1.27. Consensus algorithms 269

Technical description of the Waves Enterprise platform, Release 1.13.0

Mining features

The basic rules of CFT consensus mining are identical to the PoA consensus rules. However, an additional
mechanism has been introduced to ensure consensus fault tolerance.

With CFT consensus, another mining attempt is considered a failure in case the last received block has not
been finalized – in other words, a microblock with valid votes has not been applied to the state. In this
case, if the mining attempts exceed the tstart + tfin , the node decides to return all transactions from the
last block back to the UTX pool, after that the round starts mining again.

To avoid the possible return of your transactions into the UTX pool, it is highly recommended to work not
with the current (liquid) block, but with a finalized one that has been already validated by the network
participants.

Selecting a channel for synchronization

The PoS and PoA consensus algorithms use a module that selects the strongest chain for synchronization by
comparing the data of the involved nodes. CFT uses a different selection mechanism, which also increases
system fault tolerance: it selects a random channel from the channels that are active at the moment of
synchronization. The list of active channels is constantly updated during the system operation, and the
synchronization time with a particular channel is limited to distribute the load evenly over the network.

Changing consensus parameters

Like in the PoS and PoA consensus algorithms, the consensus parameters are configured in the node config-
uration file. The configuration example is stated below:

consensus {

type: cft

warnings-for-ban: 3

ban-duration-blocks: 15

max-bans-percentage: 33

round-duration: 7s

sync-duration: 2s

max-validators: 7

finalization-timeout: 4s

full-vote-set-timeout: 4s

}

Recommendations for CFT configuration are stated in the General platform configuration: consensus algo-
rithm section.

See also

Consensus algorithms

Consensus algorithms

LPoS consensus algorithm

PoA consensus algorithm

The Waves Enterprise Mainnet uses the Leased Proof of Stake consensus algorithm for the internal decision
making. To support this, the WEST technical token has been developed, which serves as a proof of the right
for mining, as well as a financial motivation for the participants.

1.27. Consensus algorithms 270

Technical description of the Waves Enterprise platform, Release 1.13.0

Sidechains and private networks based on the Waves Enterprise blockchain platform can use any of three
supported consensus algorithms, depending on needs of a certain project. A private network consensus
algorithm is configured in the node configuration file.

See also

General platform configuration: consensus algorithm

1.28 Cryptography

The Waves Enterprise platform uses the Waves cryptographic algorithm.

The table below lists the cryptographic functions used.

Table 6: Cryptographic functions and algorithms used

Functionality Cryptographic functions and algorithms

Hash coding Blake2b256 and Keccak256 functions consequently
Digital signature Based on the Curve25519 elliptic curve (ED25519 with X25519 keys)
Data encryption AES symmetric data encryption
Confidential data encryption TLS v1.2 with cryptoset TLS_RSA_WITH_AES_256_CBC_SHA

1.28.1 Hash coding

As indicated in the table above, in the Waves cryptography hash coding is performed consequently by the
Blake2b256 and Keccak256 functions.

The size of an output data block is 256 bits.

1.28.2 Electronic signature

As shown in the table above, in Waves cryptography, the algorithms for key generation, and digital signatures
forming and verifying are implemented on the basis of the Curve25519 elliptic curve (ED25519 with X25519
keys).

Learn more about the digital signatures generation and verification with the use of the gRPC and REST
API methods in the following sections: gRPC: generation and checking of data digital signatures и REST
API: generation and checking of data digital signatures.

1.28.3 Protecting confidential data

On the Waves Enterprise platform you can use the TLS protocol to protect data transmitted between nodes.
The supported protocols are listed in the table above.

To enable TLS, set the node.network.tls parameter to true in the node.conf node configuration file.

If the TLS protocol is not used to create connections between nodes (the node.network.tls parameter
is set to false), a TLS-like end-to-end encryption scheme using session keys based on the Diffie-Hellman
protocol is used to protect transmitted confidential data (privacy). This protection will only be applied to
confidential data when transmitted between nodes peer-to-peer, i.e. between two network members.

1.28. Cryptography 271

Technical description of the Waves Enterprise platform, Release 1.13.0

Here you can see the scheme of the text data encryption procedure based on the Diffie-Hellman protocol:

Note: The platform also uses theTLS protocol when working with smart contracts for the following con-
nections:

• connection with the Docker-host (Docker-TLS);

• connection from a smart contract to a node via gRPC API.

TLS setup and usage in these cases are documented in the General platform configuration: execution of
smart contracts section.

See also

General platform configuration: cryptography

Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: TLS

REST API: encryption and decryption methods

REST API: generation and checking of data digital signatures

contract_pki_service.proto

1.28. Cryptography 272

Technical description of the Waves Enterprise platform, Release 1.13.0

1.29 Permissions

The Waves Enterprise blockchain platform implements a permissioned blockchain model: only authorized
participants can have access to it.

The platform also has a role (permission) model which allows to separate permissions of the network partic-
ipants. Permission management is performed with the use of the 102 Permission Transaction.

1.29.1 Description of permissions

permissioner

A participant with the permissioner role is a network administrator and is entitled to add or remove any
roles of participants. The first permissioner is appointed upon the start of the blockchain network.

sender

A participant with the sender role is entitled to send transactions into the network.

This role can be enabled with the use of the sender-role-enabled parameter which is to be found in the
genesis block of the node configuration file.

banned

The banned role temporarily or permanently limits the transaction sending from the participant to the
blockchain. The address with the banned role is added to the blacklist of nodes – the list of addresses from
which no transactions are accepted.

blacklister

A participant with the blacklister role is entitled to temporarily or constantly restrict the activity of
other participants by adding the banned role to their accounts. To do this, a blacklister sends the 102
transaction with the corresponding parameters.

miner

A participant with the miner role can be chosen as a round miner. In this case he will be entitled to form a
next blockchain block.

issuer

A participant with the issuer role is entitled to issue, reissue and burn tokens.

contract_developer

A participant with the contract_developer role is entitled to create smart contracts in the blockchain.

Learn more about smart contracts and usage of this role in the Smart contracts article.

contract_validator

A participant with the contract_validator role is entitled to validate smart contracts to be created or
updated in the blockchain.

Learn more about smart contracts and usage of this role in the Smart contract validation article.

connection-manager

A participant with the connection-manager role is entitled to connect and disconnect network nodes. As a
rule, network administrator is also appointed as a connection-manager.

Learn more about node connection and disconnection in the article Connection and removing of nodes.

1.29. Permissions 273

Technical description of the Waves Enterprise platform, Release 1.13.0

1.29.2 Permission management

The permission list can be changed only by a node with the permissioner role. Roles are added and removed
with the use of the 102 Permission Transaction. You can sign the transaction using the sign REST API
method, and broadcast it using the corresponding gRPC or REST API method.

The process of assigning a permission to and removal from a participant is described in the Role management
article.

Prior to sending the 102 transaction, the node performs the following checks:

1. The sender of the 102 transaction is not included in the blacklist.

2. The sender address has the permissioner role.

3. The permissioner role of the address is active at the moment of transaction sending.

4. The role stated in the 102 transaction is not active in case it is added to the address and, vice versa,
is active in case it is removed.

Adding and removing permissions is performed by broadcasting the corresponding transactions into the
blockchain. Permissions can be arbitrarily combined for any address; a permission can be removed at any
moment.

See also

REST API: information about permissions of participants

Description of transactions

1.30 Client

Waves Enterprise Client is a web application for interaction with the Waves Enterprise blockchain in the
Mainnet .

The client consists of the following sections:

• Network stats – general information about the current state of the Waves Enterprise Mainnet, statistical
data of the network and oracles;

• Explorer – information about transactions sent to the network;

• Tokens – issue, transfer and leasing of tokens;

• Contracts – smart contract broadcasting in the network;

• Data transfer – sending of data transactions and files, work with confidential data access groups;

• Network settings – information about network nodes, registration of new nodes and leasing calculation;

• Write to us – the Waves Enterprise support feedback form.

You can access settings of your profile in the upper right corner of the page by clicking on an icon with your
e-mail address.

The Address button in the upper right corner of the page will direct you to the node address form or the form
for creation of a new blockchain address and linkage of your profile to it. After setting up of the address, you
will be able to list information about your account (public and private keys, seed phrase, current balance).

The ‘Address’ window also allows you to manage permissions of other blockchain network participants, if
you have the permissioner permission.

1.30. Client 274

https://client.wavesenterprise.com
https://wavesenterprise.com/ru/products-and-services/oracles

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30. Client 275

Technical description of the Waves Enterprise platform, Release 1.13.0

Working with Ledger Nano is described in the following section

1.30.1 Use Ledger Nano Devices with Waves Enterprise Client

Introduction

Ledger Nano is a hardware wallet for storing digital assets. Ledger Nano uses an offline (cold storage)
method of private key generation, so it is considered one of the most reliable ways to store digital assets and
many cryptocurrency users choose it. Below are the settings required to use Ledger Nano with the Waves
Enterprise Client. The Waves Enterprise Client allows you to transfer tokens using the Ledger Nano device.

Prerequisites

1. You’ve initialized your Ledger Nano device.

Note: Waves Enterprise supports Ledger Nano S, Ledger Nano S+ and Ledger Nano X models.

2. The latest firmware is installed.

3. Ledger Live is ready to use.

4. Google Chrome or Firefox browsers are installed.

Install Waves Enterprise App on Ledger Device

1. Open the Manager in Ledger Live.

2. Connect and unlock your Ledger Nano device.

3. If asked, allow the Manager on your device by pressing the right button.

4. In the Ledger Live catalog, find Waves Enterprise app and click Install.

Note: The Waves Enterprise application requires about 40 kB to install. The exact size of the
application is specified in the Ledger Live catalog.

The installation window will appear and your Ledger Nano device will display Processing...; then the app
installation will be finished.

Open Waves Enterprise App on Your Ledger Nano Device

1. Once the Waves Enterprise application is installed, use the left or right button to find it on the
dashboard.

2. Press both left and right buttons simultaneously to launch the app.

1.30. Client 276

https://client.wavesenterprise.com
https://client.wavesenterprise.com
https://support.ledger.com/hc/en-us/articles/360000613793
https://support.ledger.com/hc/en-us/articles/360002731113
https://support.ledger.com/hc/en-us/articles/360006395233
https://shop.ledger.com/pages/ledger-live

Technical description of the Waves Enterprise platform, Release 1.13.0

Use Ledger Nano Device with Waves Enterprise App

1. Make sure your Ledger Nano Device is connected, unlocked, other cryptocurrency apps are not running
and not intercepting the connection between Ledger Nano and Waves Enterprise app.

2. Open Waves Enterprise Client in Google Chrome or Firefox browser.

3. Log in to your account and click the left button in the top menu to select or add address.

1. Click Add address.

2. Then select Add address from ledger.

3. On the next page enter account index (address id) or range of indexes then click the Submit button.

4. Select the address you need, name it and use as the current address.

Transferring tokens

At the moment, only transfer transactions are supported.

To transfer tokens:

1. In the Waves Enterprise Client, open the Tokens tab and click Transfer token.

2. On the next page enter the recipient’s address, amount of tokens and the transfer description.

3. Verify data on you Ledger and sign the transaction.

Note: If you open the Waves Enterprise Client on a new machine or in a new browser, you have to validate
it on the Ledger.

If you need help setting up work with Ledger Nano, contact us.

1.30. Client 277

https://client.wavesenterprise.com
https://client.wavesenterprise.com
https://docs.wavesenterprise.com/ru/latest/feedback/resources.html#id2

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30. Client 278

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30. Client 279

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30. Client 280

Technical description of the Waves Enterprise platform, Release 1.13.0

See also

Client

1.30.2 Network stats

The General information tab of the “Network stats” section shows the current state of the Waves Enterprise
Mainnet:

• network load;

• average block size;

• total number of blocks in the network;

• number of nodes and transaction senders;

• last called smart contracts.

The Stats tab shows the basic metrics of the blockchain:

• Number of transactions in the network;

• Number of smart contract call transactions;

• Number of transactions for token operations;

• Number of other transactions;

• List of last called smart contracts;

• List of smart contract images being in use;

• Number of active addresses;

1.30. Client 281

Technical description of the Waves Enterprise platform, Release 1.13.0

• Top 10 addresses according to number of sent transactions;

• Top 10 miner nodes;

• Token cycle stats.

The Oracles tab shows data obtained from external sources.

The relative chart shows dependence of WEST price from conventional assets in the following pairs:

• WEST - USDN;

• BTC - USD;

• BRENT - USD;

• Gold - USD;

The WEST price chart shows price of the WEST token in other cryptocurrencies:

• WEST - USDN;

• WEST - WAVES;

• WEST - BTC.

1.30.3 Explorer

The “Explorer” section contains information about transactions in the blockchain. Broadcasting timestamp
is available as a search filter, as well as following categories:

• participants;

• data transactions;

• transaction identifiers;

1.30. Client 282

Technical description of the Waves Enterprise platform, Release 1.13.0

• names of smart contracts;

• transaction signatures;

• number of a block containing transactions.

Additional filters are also available for showing of a definite transaction category:

• Tokens – token operations;

• Contracts – smart contract operations;

• Data transactions;

• Permissions – permission management;

• Groups – confidential data groups management;

• Unconfirmed transactions – UTX pool content.

The Users link situated in the end of filter list will direct you to the list of the network users with a filter
according to their permissions.

1.30.4 Tokens

If you do not have tokens on your address, the “Tokens” section will show a button that will redirect you to
the Waves Exchange.

In case you have tokens on your address, the tab will show your current balance, as well as buttons for
transfer of tokens to other network participants, tokens leasing and issue. Issue of tokens requires the issuer
permission of your address.

1.30. Client 283

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30.5 Contracts

The “Contracts” section contains information about smart contracts installed in the blockchain. It also allows
to start a smart contract. To search for smart contracts, use filtering by transaction parameters which is
available in the search bar:

• authors and senders of transactions;

• signatures;

• smart contract identifiers;

• smart contract names;

• Docker image name.

Additional filters are also available to display smart contract of the selected category:

• My contracts – the smart contracts developed and installed by you;

• All contracts – default value;

• Disabled smart contracts – smart contracts disabled by their developers with the use of the 106 trans-
action.

When you select a contract, its card opens.

The page of each smart contract contains the following tabs:

• Information – author address, image name, checksum, smart contract version and creation date;

• Data – the result of the last smart contract call;

• Call – on this tab, you can call the smart contract if you have sufficient balance on your address;

• Update – information about the last contract update;

1.30. Client 284

Technical description of the Waves Enterprise platform, Release 1.13.0

• Version history – a table with Docker image names, creation timestamps and checksums for each smart
contract version.

Contract call

Using the Client you can load parameters for the following transactions with csv or json:

• CallContract Transaction;

• Data Transaction,

To load parameters, on the Call tab, click the Import from File (CSV, JSON) link, and then upload the file.
The json file must be an array of objects, each of which has the following keys:

• value;

• key – the name of the key, a string;

• type – one of the following values:

– integer;

– string;

– boolean;

– binary (base64).

Learn more about smart contracts of the Waves Enterprise blockchain platform in the article Smart contracts.

1.30. Client 285

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30.6 Data transfer

The “Data transfer” section allows to sign and send data transactions into the blockchain. You can also
create confidential data groups and send confidential data transactions into them in this section.

Learn more about confidential data groups in the article Confidential data exchange.

At the Data record tab allows you to create and send a data transaction. To do this, fill the “key-value”
fields and choose a recipient address.

At the Groups tab, you can create and edit confidential data groups and send data transactions to them.
This tab also shows confidential data groups you are a member of.

1.30.7 Network settings

The “Network settings” sections allows to list information about nodes registered in the network, as well as
to calculate leasing.

The Node tab shows information about the blockchain network:

• Public key;

• Address;

• Status;

• Address of a last transaction sender that have changed the node state;

• Last node state change timestamp;

• Presence of miner or banned permissions;

• Node membership in confidential data groups with information about these groups.

1.30. Client 286

Technical description of the Waves Enterprise platform, Release 1.13.0

Search and filtering of nodes according to the following parameters are available:

• Name;

• Address;

• Public key;

• Activity in the network.

You can also send a request for connection of a new node to the network by pressing the Create request.

The Calculation of lease payouts tab contains the form for leasing calculation.

The calculation has the following algorithm:

1. A generating balance is requested from the leasing pool node for the beginning of a calculated period;

2. Leasing sum is calculated taking into account miner revenues (each miner should receive 40% for his
own block and 60% for a previous block);

3. The sum is divided for each pool participant proportionately with a total sum of assets in leasing and
the node generating balance at a defined height;

4. The calculated leasing sum is multiplied by a revenue percentage;

5. The node generating balance is re-calculated for a new height taking into account new and cancelled
leasings.

1.30. Client 287

Technical description of the Waves Enterprise platform, Release 1.13.0

1.30.8 Write to us

In the “Write to us” section, you can write any comment or message for the Waves Enterprise technical
support service.

See also

Attachment of a client to the private blockchain

1.31 Generators

Generators is a set of utilities included in the supply package of the Waves Enterprise blockchain platform.
Generators are supplied as a package file generator-x.x.x.jar, where x.x.x is the blockchain platform release
version.

Generators for each version of the blockchain platform are available in the Waves Enterprise official GitHub
repository.

In order to work with the generators, you have to install the Java Runtime Environment for your operating
system. All components of the generator set are operated in the terminal or command line.

The generator set includes following utilities:

• AccountsGeneratorApp – node account generator;

• GenesisBlockGenerator – genesis block signer;

• ApiKeyHash – a generator for hash coding of an API key string required for node API authorization;

1.31. Generators 288

https://github.com/waves-enterprise/we-node/releases
https://github.com/waves-enterprise/we-node/releases
https://java.com/en/download/help/download_options.html

Technical description of the Waves Enterprise platform, Release 1.13.0

1.31.1 AccountsGeneratorApp

The AccountsGeneratorApp is used for configuration of a node account in a private network – a set of data
about a blockchain network participant. To generate an account, you have to set up the accounts.conf file
in the node directory.

accounts.conf configuration file example:

accounts-generator {

crypto {

type = WAVES

}

chain-id = T

amount = 5

wallet = ${ user.home} "/node/wallet/wallet1.dat"

wallet-password = "some string as password"

reload-node-wallet {

enabled = false

url = "http://localhost:6869/utils/reload-wallet"

}

}

Running of the AccountsGeneratorApp:

java -jar generator-x.x.x.jar AccountsGeneratorApp YourNode/accounts.conf

The generator creates a node public key (account) and stores it in the keystore.dat file in the directory of
your node. If necessary, you can set a keypair password.

Hint: If you have set the password for your keypair, you have to state it in the password field while creating
queries and transactions.

Learn more about node account generation in the Creation of a node account section.

1.31.2 GenesisBlockGenerator

The GenesisBlockGenerator is used for signing of a private network genesis block – the first block of a new
network which contains transactions that define initial balances and permissions. To sign a genesis block,
the generator uses the blockchain.genesis block of the node.conf node configuration file.

Running of the GenesisBlockGenerator:

java -jar generator-x.x.x.jar GenesisBlockGenerator YourNode/node.conf

The generator fills the fields genesis-public-key-base-58 (a public key of a genesis block) and signature

(genesis block signature) of a node configuration file.

Learn more about genesis block signing in the section Genesis block signing .

1.31. Generators 289

Technical description of the Waves Enterprise platform, Release 1.13.0

1.31.3 ApiKeyHash

The ApiKeyHash utility is used for authorization of the node API methods (gRPC and REST API interfaces
for data exchange). For generation of a JWT token (in case of oAuth authorization) or a token based on an
api-key string, the generator uses the api-key-hash.conf configuration file in the node directory.

Running of the ApiKeyHash:

java -jar generator-x.x.x.jar ApiKeyHash YourNode/api-key-hash.conf

The utility generates a JWT token or a hash of an entered api-key string, which are stated in the auth

section of the node configuration file.

api-key-hash.conf example:

apikeyhash-generator {

crypto {

type = WAVES

}

api-key = "some string for api-key"

}

Learn more about gRPC and REST API authorization in the section Precise platform configuration: gRPC
and REST API authorization.

See also

Architecture

1.32 Authorization and data services

The Waves Enterprise blockchain platform includes two external services:

• Authorization service, which provides authorization of all network components;

• Data service, which gathers blockchain data into a database and provides API for access to the gathered
data.

1.32.1 Authorization service

This service provides authorization of all blockchain network components on the basis of the oAuth 2.0
protocol. oAuth 2.0 is the open authorization framework which allows to grant a third party restricted
access to a user’s protected resources without disclosing login and password.

The general chart of the oAuth 2.0 authorization:

The object of the oAuth authorization is the JSON Web Token (JWT). Tokens are used for authorization of
every query from a client to a server and have a limited lifetime. A client receives two tokens – access and
refresh. An access token is used for authorization of queries for access to protected resources and storage of
additional information about a user. A refresh token is used for receiving of a new access token and updating
of a refresh token.

The authorization scheme of the Waves Enterprise blockchain platform:

The general authorization procedure is carried out as follows:

1.32. Authorization and data services 290

https://jwt.io/

Technical description of the Waves Enterprise platform, Release 1.13.0

1.32. Authorization and data services 291

Technical description of the Waves Enterprise platform, Release 1.13.0

1. A client (blockchain network component: a corporate client, data exchange service or a third-party
application) provides its authentication data once to the authorization service;

2. In case of a successful primary authentication, the authorization service saves the client`s authentication
data in the data storage, generates the signed access and refresh tokens and sends them to the client.
The tokens include the token lifetime and basic client`s data: identifier and role. Clients’ authentication
data is stored in the authorization service configuration file. Each time before sending a query to a
third-party service, a client checks an access token lifetime. In case of token lifetime expiry, a client
refers to the authorization service to obtai a new access token. For these queries to the authorization
service, the client uses the refresh token.

3. With an actual access token, a client sends a query for obtaining of a third-party service data;

4. A third-party service checks an access token lifetime, its integrity and compares an authorization service
public key, received in advance, with a key, which is stored in the access token signature. If the check
is successful, a third-party service provides required data to a client.

See the following article for a description of authorization methods:

Authorization service: authorization variants

The authorization service supports two authorization options for accessing node API methods:

• api-key string hash authorization;

• JWT token authorization.

You can set the authorization option for accessing API methods in the auth section of the node configuration
file.

Depending on a used authorization method, different values are put in queries or in the fields of the Swagger
framework for providing access to the API:

• ApiKey or PrivacyApiKey (apiKey) – the value of the api-key string hash;

• OAuth2 Bearer (apiKey) – the value of the access token.

Api-key string hash authorization

A hash of a string defined by a user can be calculated with the use of the ApiKeyHash utility from the genera-
tor package. You can also generate a key string hash by yourself with the use of the POST /utils/hash/secure
method.

A sample request with authorization by api-key hash:

curl -X POST

--header 'Content-Type: application/json'
--header 'Accept: application/json'
--header 'X-API-Key: 1' -d '1' 'http://2.testnet-pos.com:6862/transactions/calculateFee'

1.32. Authorization and data services 292

Technical description of the Waves Enterprise platform, Release 1.13.0

1.32. Authorization and data services 293

Technical description of the Waves Enterprise platform, Release 1.13.0

JWT token authorization

If the oAuth protocol authorization is used, a client receives a refresh and an access tokens for access to the
API methods. These tokens can be obtained with the use of the authorization service REST API methods.

The method POST /v1/user is used for registration of users. The method query contains following param-
eters:

• login – user login (e-mail address);

• password – the account password;

• locale – language of further e-mail notifications (possible options: en and ru);

• source – user type:

– license – the blockchain platform usage license owner;

– voting – a user of the Waves Enterprise Voting service.

After registration, a user has an opportunity to request access and refresh tokens.

The following methods are used to obtain and refresh authorization tokens:

1. POST /v1/auth/login – obtaining authorization token using login and password. This method is used
for authorization of users.

2. POST /v1/auth/token – obtaining refresh and access authorization tokens for services and applications.
This method requires no parameters in its query and returns values of the tokens in response. The
method can be used only by the authorization service administrator.

3. POST /v1/auth/refresh – updating the refresh token. The token value is passed in the method query.

Note: A user must have a specific authorization role encrypted in the user’s JWT token in order to invoke
some of the REST API methods.

See also

Authorization and data services

data-sv-conf

REST API: authorization service methods

REST API: methods of the data service

Precise platform configuration: gRPC and REST API authorization

OAuth2 authorization roles

1.32. Authorization and data services 294

https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.13.0

1.32.2 Data service

The data service is used for gathering blockchain data into a database. This service has its own API for
access to the gathered data.

In the Waves Enterprise Mainnet, the data service operates in the autonomous mode, access to its API is
restricted. For deployment in a private network, the data service is configured by the Waves Enterprise spe-
cialists, depending on the peculiarities of a project. You can also change data service parameters by yourself
with the use of environment variables that are described in the article Data service: manual configuration.

1.32.3 API methods of the integration services

Definite REST API methods are available for the integration services for data exchange:

REST API: authorization service methods

GET /status

The method is used for obtaining of the authorization service status.

Example of the service response:

GET /status:

{

"status": "string",

"version": "string",

"commit": "string"

}

POST /v1/user

The method is used for registration of a new user via the authorization service.

The method query contains following data:

• login – user login (e-mail address);

• password – account password;

• locale – e-mail notifications language (possible variants: en and ru);

• source – user type:

– license – owner of a blockchain platform license ;

– voting – user of the Waves Enterprise Voting service.

If the registration has been carried out successful, the method returns the 201 code. In case of another
response, a user has not been registered.

1.32. Authorization and data services 295

https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /v1/user/profile

The method is used for obtaining of user data.

Example of the service response:

GET /v1/user/profile:

{

"id": "string",

"name": "string",

"locale": "en",

"addresses": [

"string"

],

"roles": [

"string"

]

}

POST /v1/user/address

The method is used for obtaining of a user address identifier. The method query contains following data:

• address – user blockchain address;

• name – user name.

Example of the service response:

POST /v1/user/address: :animate: fade-in-slide-down

{

"addressId": "string"

}

GET /v1/user/address/exists

The method is used for checking of a user e-mail address. The method query contains a user e-mail address.

Example of the service response:

1.32. Authorization and data services 296

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /v1/user/address/exists: :animate: fade-in-slide-down

{

"exist": true

}

POST /v1/user/password/restore

The method is used for restoring of an account password.

The method query contains following data:

• email – user e-mail;

• source – user type:

– license – owner of a blockchain platform license ;

– voting – user of the Waves Enterprise Voting service.

Example of the service response:

POST /v1/user/password/restore: :animate: fade-in-slide-down

{

"email": "string"

}

POST /v1/user/password/reset

The method is used for user password reset.

The method query contains following data:

• token – user authorization token;

• password – current user password.

Example of the service response:

POST /v1/user/password/reset: :animate: fade-in-slide-down

{

"userId": "string"

}

1.32. Authorization and data services 297

https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /v1/user/confirm/–code˝

The method is used for confirmation of a password restoring code for a user account. The method query
contains a confirmation code value.

POST /v1/user/resendEmail

The method is used for resending of a password recovery code to a specified e-mail.

The method query contains following data:

• email – user e-mail;

• source – user type:

– license – owner of a blockchain platform license ;

– voting – user of the Waves Enterprise Voting service.

The method response returns a user e-mail, to which a restoring code was sent.

Example of the service response:

POST /v1/user/resendEmail:

{

"email": "string"

}

POST /v1/auth/login

The method is used for obtaining of a new authorization token for a user.

The method query contains following data:

• name – user name;

• password – account password;

• locale – e-mail notifications language (possible variants: en and ru);

• source – user type:

– license – owner of a blockchain platform license ;

– voting – user of the Waves Enterprise Voting service.

Example of the service response:

1.32. Authorization and data services 298

https://wavesenterprise.com/products-and-services/voting
https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.13.0

POST /v1/auth/login:

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

POST /v1/auth/token

The method is used for obtaining of authorization tokens for external services and applications. This method
does not require any query parameters.

Example of the service response:

POST /v1/auth/token:

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

POST /v1/auth/refresh

The method is used for obtaining of a new refresh token. The method query contains a current refresh token
value.

Example of the service response:

POST /v1/auth/refresh:

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

GET /v1/auth/publicKey

The method is used for obtaining of an authorization service public key. This method does not require any
parameters in its query.

Example of the service response:

1.32. Authorization and data services 299

Technical description of the Waves Enterprise platform, Release 1.13.0

POST /v1/auth/refresh:

-----BEGIN PUBLIC KEY-----

MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA7d9Oj/ZQTkkjf4UuMfUu

QIFDTYxYf6QBKMVJnq/wXyPYYkV8HVFYFizCaEciv3CXmBH77sXnuTlrEtvK7zHB

KvV870HmZuazjIgZVSkOnOY7F8UUVNXnlzVD1dPsOGJ6orM41DnC1W65mCrP3bjn

fV4RbmykN/lk7McA6EsMcLEGbKkFhmeq2Nk4hn2CQvoTkupJUnOCP1dhO4bq1lQ7

Ffj9K/FJq73wSXDoH+qqdRG9sfrtgrhtJHerruhv3456e0zyAcDO8+sJUQFKY80B

SZMEndVzFS2ub9Q8e7BfcNxTmQPM4PhHO5wuTqL32qt3uJBx2OI4lu3OND44ZrDJ

BbVog73oPjRYXj+kTbwUZI66SP4aLcQ8sypQyLwqKk5DtLRozSN0OIrupJJ/pwZs

9zPEggL91T0rirbEhGlf5U8/6XN8GVXX4iMk2fD8FHLFJuXCD7Oj4JC2iWfFDC6a

uUkwUfqfjJB8BzIHkncoqOZbpidEE2lTWl+svuEu/wyP5rNlyMiE/e/fZQqM2+o0

cH5Qow6HH35BrloCSZciutUcd1U7YPqESJ5tryy1xn9bsMb+On1ocZTtvec/ow4M

RmnJwm0j1nd+cc19OKLG5/boeA+2zqWu0jCbWR9c0oCmgbhuqZCHaHTBEAKDWcsC

VRz5qD6FPpePpTQDb6ss3bkCAwEAAQ==

-----END PUBLIC KEY-----

See also

Authorization and data services

data-sv-conf

Authorization service: authorization variants

REST API: methods of the data service

REST API: methods of the data service

Following API methods are available for the data service:

Assets method group

The methods of the Assets group are used for obtaining of data about token sets (assets).

GET /assets

The method is used for obtaining the blockchain available assets list. The list consists of transactions for
emission of the corresponding assets.

Response example:

1.32. Authorization and data services 300

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /assets:

[

{

"index": 0,

"id": "string",

"name": "string",

"description": "string",

"reissuable": true,

"quantity": 0,

"decimals": 0

}

]

POST /assets/count

The method returns a number of available assets in the blockchain.

Response example:

POST /assets/count:

{

"count": 0

}

GET /assets/–id˝

The method returns information about an available asset according to its {id}.

The response of the method contains following data:

• index – asset index number;

• id – asset identifier;

• name – asset name;

• description – asset description;

• reissuable – reissuability of an asset;

• quantity – the number of tokens in an asset;

• decimals – number of decimal places in a used token (WEST – 8)

Response example:

1.32. Authorization and data services 301

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /assets/–id˝:

{

"index": 14,

"id": "12nx0qnhjd83",

"name": "Demo asset",

"description": "Demo asset",

"reissuable": true,

"quantity": 400,

"decimals": 8

}

Blocks method group

GET /blocks/at/–height˝

The method returns content of a block at a defined height.

The response of the method contains following parameters:

• reference – block hash sum;

• blocksize – size of a block;

• features – features activated at the moment of block generation;

• signature – block signature;

• fee – total fee for the transactions included in a block;

• generator – block creator address;

• transactionCount – number of transactions included in a block;

• transactions – array with bodies of transactions included in a block;

• version – block version;

• poa-consensus.overall-skipped-rounds – number of skipped mining rounds in case the PoA con-
sensus algorithm is used;

• timestamp – block Unix Timestamp (in milliseconds);

• height – height of block generation.

Response example:

GET /blocks/at/–height˝:

{

"reference":

→˓"hT5RcPT4jDVoNspfZkNhKqfGuMbrizjpG4vmPecVfWgWaGMoAn5hgPBJpC9696TL8wGDKJzkwewiqe8m26C4aPd

→˓",

"blocksize": 226,

"features": [],

"signature":

→˓"5GAM7jfQScw4g3g7PCNNtz5xG3JzjJnW4Ap2soThirSx1AmUQHQMjz8VMtkFEzK7L447ouKHfj2gMvZyP5u94Rps

(continues on next page)

1.32. Authorization and data services 302

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

→˓",

"fee": 0,

"generator": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",

"transactionCount": 0,

"transactions": [],

"version": 3,

"poa-consensus": {

"overall-skipped-rounds": 1065423

},

"timestamp": 1615816767694,

"height": 1826

}

Contracts method group

Methods of the Contracts group are used for obtaining of information about smart contracts of the blockchain.

GET /contracts

The method returns information about all smart contracts installed in the network. For each smart contract,
following parameters are returned:

• contractId – smart contract identifier;

• image – name of a smart contract Docker image or its absolute path in its registry;

• imageHash – smart contract hash sum;

• version – smart contract version;

• active – smart contract status at the moment of the query: true – working, false – not working.

Example of an answer for one smart contract:

GET /contracts:

[

{

"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCq1CCh8i",

"image": "registry.wvservices.com/wv-sc/may14_1:latest",

"imageHash": "ff9b8af966b4c84e66d3847a514e65f55b2c1f63afcd8b708b9948a814cb8957",

"version": 1,

"active": false

}

]

1.32. Authorization and data services 303

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /contracts/count

The method returns a number of smart contracts on a blockchain that correspond with defined provisions
and filters.

Response example:

GET /contracts/count:

{

"count": 19

}

GET /contracts/info/–contractId˝

The method returns information about a smart contract with a definite {contractId}.

Response example:

GET /contracts/id/–id˝:

{

"creator": "9yxe6Kw9eiCD2mTNvKdrcQ1EoQqzMy7p52USZftBtQhp",

"contractId": "7zcrHAFZmcZ3EGs7JWL5jCrbizCppu2rcpDDuChNTF6K",

"image": "registry.wvservices.com/waves-enterprise-public/east-contract:v1.2",

"imageHash": "baef03e82e4ecc723b85876111cbe25ed390ad7c62169e8a3ba142b6a2ad3000",

"version": 5,

"active": true,

"validationPolicy": {

"type": "majority_with_one_of",

"addresses": [

"3NyJPnLBdEQiPdHoHHgQAYX6UVj6GKMxgMx",

"3NmHrYoC8S2SUosy6UJp47bBwq2Cr2X6Yq1",

"3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu"

]

},

"apiVersion": "1.0"

}

GET /contracts/id/–id˝/versions

The method returns version history of a smart contract with a definite {id}.

Example of a response for one version:

1.32. Authorization and data services 304

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /contracts/id/–id˝/versions:

[

{

"version": 0,

"image": "string",

"imageHash": "string",

"timestamp": "string"

}

]

GET /contacts/history/–id˝/key/–key˝

Returns a history of changes of a {key} key for a smart contract with a definite {id}.

Example of a response for one key:

GET /contacts/history/–id˝/key/–key˝:

{

"total": 777,

"data": [

{

"key": "some_key",

"type": "integer",

"value": "777",

"timestamp": 1559347200000,

"height": 14024

}

]

}

GET /contracts/senders-count

The method returns a number of unique participants that send transactions 104 for smart contract calls.

Response example:

GET /contracts/senders-count:

{

"count": 777

}

1.32. Authorization and data services 305

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /contracts/calls

The method returns a list of 104 transactions for smart contract calls with their parameters and results.

Example of a response for one transaction:

GET /contracts/calls:

[

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0,

"contract_id": "string",

"contract_name": "string",

"contract_version": "string",

"image": "string",

"fee_asset": "string",

"finished": "string",

"params": [

{

"tx_id": "string",

"param_key": "string",

"param_type": "string",

"param_value_integer": 0,

"param_value_boolean": true,

"param_value_binary": "string",

"param_value_string": "string",

"position_in_tx": 0,

"contract_id": "string",

"sender": "string"

}

],

"results": [

{

"tx_id": "string",

"result_key": "string",

"result_type": "string",

"result_value_integer": 0,

"result_value_boolean": true,

"result_value_binary": "string",

"result_value_string": "string",

"position_in_tx": 0,

"contract_id": "string",

"time_stamp": "string"

}

(continues on next page)

1.32. Authorization and data services 306

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

]

}

]

Privacy method group

Methods of the Privacy group are used for obtaining of information about confidential data groups.

GET /privacy/groups

The method returns a list of confidential data groups in the blockchain.

Example of a response for one group:

GET /privacy/groups:

[

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

]

GET /privacy/groups/count

The method returns a number of confidential data groups in the blockchain.

Response example:

GET /privacy/groups/count:

{

"count": 2

}

GET /privacy/groups/–address˝

The method returns a list of confidential data groups that include a defined {address}.

Example of a response for one group:

1.32. Authorization and data services 307

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /privacy/groups/–address˝:

[

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

]

GET /privacy/groups/by-recipient/–address˝

The method returns a list of privacy data groups that include a defined {address} as a recipient of data.

Example of a response for one group:

GET /privacy/groups/by-recipient/–address˝:

[

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

]

GET /privacy/groups/–address˝/count

The method returns a number of confidential data groups that include a defined {address}.

Response example:

GET /privacy/groups/–address˝/count:

{

"count": 1

}

1.32. Authorization and data services 308

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /privacy/groups/id/–id˝

The method returns information about a privacy data group with a definite {id}.

Response example:

GET /privacy/groups/id/–id˝:

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

GET /privacy/groups/id/–id˝/history

The method returns a history of changes of a confidential data access group with a definite {id}. The history
is returned as a list of sent 112-114 transactions with their descriptions.

Example of a response for one transaction:

GET /privacy/groups/id/–id˝/history:

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

GET /privacy/groups/id/–id˝/history/count

The method returns a number of 112-114 transactions sent for changing of an access group with a definite
{id}.

Response example:

GET /privacy/groups/id/–id˝/history/count:

{

"count": 0

}

1.32. Authorization and data services 309

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /privacy/nodes

The method returns a list of available nodes in the blockchain.

Example of a response for one node:

GET /privacy/nodes:

[

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

]

GET /privacy/nodes/count

The method returns a number of available nodes in the blockchain.

Response example:

GET /privacy/nodes/count:

{

"count": 0

}

GET /privacy/nodes/publicKey/–targetPublicKey˝

The method returns information about a node according to its {targetPublicKey}.

Response example:

GET /privacy/nodes/publicKey/–targetPublicKey˝:

[

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

]

1.32. Authorization and data services 310

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /privacy/nodes/address/–address˝

The method returns information about a node according to its {address}.

Response example:

GET /privacy/nodes/address/–address˝:

[

{

"id": "string",

"name": 0,

"description": "string",

"createdAt": "string"

}

]

Transactions method group

Methods of the Transactions group are used for obtaining of information about transactions in the blockchain.

GET /transactions

The method returns a list of transactions corresponding with provisions of a search query and applied filters.

Important: The GET /transactions method returns not more than 500 transactions for one query.

Example of a response for one transaction:

GET /transactions:

[

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0

}

1.32. Authorization and data services 311

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /transactions/count

The method returns a number of transactions corresponding with provisions of a search query and applied
filters.

Response example:

GET /transactions/count:

{

"count": "116"

}

GET /transactions/–id˝

The method returns a transaction according to its {id}.

Response example:

GET /transactions/–id˝:

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0

}

Users method group

Methods of the Users group are used for obtaining information about participants of the blockchain network.

GET /users

The method returns a list of participants corresponding with provisions of a search query and applied filters.

Example of a response for one participant:

1.32. Authorization and data services 312

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /users:

[

{

"address": "string",

"aliases": [

"string"

],

"registration_date": "string",

"permissions": [

"string"

]

}

]

GET /users/count

The method returns a number of participants corresponding with filters applied in the query.

Example of a response for one participant:

GET /users/count:

{

"count": 1198

}

GET /users/–userAddressOrAlias˝

The method returns information about a participants according to his address or alias.

Response example:

GET /users/–userAddressOrAlias˝:

{

"address": "string",

"aliases": [

"string"

],

"registration_date": "string",

"permissions": [

"string"

]

}

1.32. Authorization and data services 313

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /users/contract-id/–contractId˝

The method returns a list of participants that have ever called a smart contract with a definite {contractId}.

Example of a response for one participant:

GET /users/contract-id/–contractId˝:

{

"address": "string",

"aliases": [

"string"

],

"registration_date": "string",

"permissions": [

"string"

]

}

POST /users/by-addresses

The method returns a list of participants for a definite set of addresses.

Example of a response for one participant:

POST /users/by-addresses:

{

"address": "string",

"aliases": [

"string"

],

"registration_date": "string",

"permissions": [

"string"

]

}

Methods for obtaining of information about data transactions (12)

This group of methods is called via the /api/v1/txIds/ route.

1.32. Authorization and data services 314

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /api/v1/txIds/–key˝

The method returns a list of identifiers for data transactions that include the defined {key}.

Example of a response for one transaction:

GET /api/v1/txIds/–key˝:

[

{

"id": "string"

}

]

GET /api/v1/txIds/–key˝/–value˝

The method returns a list of identifiers for data transactions that include defined {key} and {value}.

Example of a response for one transaction:

GET /api/v1/txIds/–key˝/–value˝:

[

{

"id": "string"

}

]

GET /api/v1/txData/–key˝

The method returns bodies of data transactions that include a defined {key}.

Example of a response for one transaction:

GET /api/v1/txData/–key˝:

[

{

"id": "string",

"type": "string",

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0,

"key": "string",

(continues on next page)

1.32. Authorization and data services 315

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"value": "string",

"position_in_tx": 0

}

]

GET /api/v1/txData/–key˝/–value˝

The method returns bodies of data transactions that include defined {key} and {value}.

Example of a response for one transaction:

GET /api/v1/txData/–key˝/–value˝:

[

{

"id": "string",

"type": "string",

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0,

"key": "string",

"value": "string",

"position_in_tx": 0

}

]

Leasing method group

GET /leasing/calc

The method returns a total sum for leasing of tokens in a specified block interval.

Response example:

GET /leasing/calc:

{

"payouts": [

{

"leaser": "3P1EiJnPxFxGyhN9sucXfB2rhQ1ws4cmuS5",

"payout": 234689

}

],

(continues on next page)

1.32. Authorization and data services 316

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"totalSum": 4400000,

"totalBlocks": 1600

}

Stats method group

Methods of the Stats group are used for obtaining statistical data and blockchain monitoring.

GET /stats/transactions

The method returns information about transactions that have been send within a specified time period.

Response example:

GET /stats/transactions:

{

"aggregation": "day",

"data": [

{

"date": "2020-03-01T00:00:00.000Z",

"transactions": [

{

"type": 104,

"count": 100

}

]

}

]

}

GET /stats/contracts

The method returns information about transactions 104 within a specified time period.

Response example:

GET /stats/contracts:

{

"aggregation": "day",

"data": [

{

"date": "2020-03-01T00:00:00.000Z",

"transactions": [

{

"type": 104,

(continues on next page)

1.32. Authorization and data services 317

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"count": 100

}

]

}

]

}

GET /stats/tokens

The method returns information about turnover of tokens in the blockchain within a specified time period.

Response example:

GET /stats/tokens:

{

"aggregation": "day",

"data": [

{

"date": "2020-03-01T00:00:00.000Z",

"sum": "12000.001"

}

]

}

GET /stats/addresses-active

The method returns addresses that have been active within a specified time period.

Response example:

GET /stats/addresses-active:

{

"aggregation": "day",

"data": [

{

"date": "2020-03-01T00:00:00.000Z",

"senders": "12",

"recipients": "12"

}

]

}

1.32. Authorization and data services 318

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /stats/addresses-top

The method returns addresses that have been the most active senders or recipients within a specified time
period.

Response example:

GET /stats/addresses-top:

{

"aggregation": "day",

"data": [

{

"date": "2020-03-01T00:00:00.000Z",

"senders": "12",

"recipients": "12"

}

]

}

GET /stats/nodes-top

The method returns addresses of nodes that have created the largest number of blocks within a specified
time period.

Response example:

GET /stats/nodes-top:

{

"limit": "10",

"data": [

{

"generator": "3NdPsjaFC7NeioGVF6X4J5A8FVaxdtKvAba",

"count": "120",

"node_name": "Genesis Node #5"

}

]

}

GET /stats/contract-calls

The method returns a list of smart contracts that have been mostly called within a specified time period.

Response example:

1.32. Authorization and data services 319

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /stats/contract-calls:

{

"limit": "5",

"data": [

{

"contract_id": "Cm9MDf7vpETuzUCsr1n2MVHsEGk4rz3aJp1Ua2UbWBq1",

"count": "120",

"contract_name": "oracle_contract",

"last_call": "60.321"

}

]

}

GET /stats/contract-last-calls

The method returns a list of last smart contract calls according to their IDs and names.

Response example:

GET /stats/contract-last-calls:

{

"limit": "5",

"data": [

{

"contract_id": "Cm9MDf7vpETuzUCsr1n2MVHsEGk4rz3aJp1Ua2UbWBq1",

"contract_name": "oracle_contract",

"last_call": "60.321"

}

]

}

GET /stats/contract-types

The method returns a list of blockchain smart contracts according to their images and hashes.

Response example:

GET /stats/contract-types:

{

"limit": "5",

"data": [

{

"id": "Cm9MDf7vpETuzUCsr1n2MVHsEGk4rz3aJp1Ua2UbWBq1",

"image": "registry.wvservices.com/waves-enterprise-public/oracle-contract:v0.1",

"image_hash": "936f10207dee466d051fe09669d5688e817d7cdd81990a7e99f71c1f2546a660",

"count": "60",

(continues on next page)

1.32. Authorization and data services 320

Technical description of the Waves Enterprise platform, Release 1.13.0

(continued from previous page)

"sum": "6000"

}

]

}

GET /stats/monitoring

The method returns general information about the network.

Response example:

GET /stats/monitoring:

{

"tps": "5",

"blockAvgSize": "341.391",

"senders": "50",

"nodes": "50",

"blocks": "500000"

}

Anchoring method group

Methods of the Anchoring group are used for obtaining of information about anchoring rounds.

GET /anchoring/rounds

The method returns a list of transactions that have been sent in anchoring rounds in accordance with specified
provisions and filters.

Response example:

GET /anchoring/rounds:

[

{

"height": 0,

"sideChainTxIds": [

"string"

],

"mainNetTxIds": [

"string"

],

"status": "string",

"errorCode": 0

}

]

1.32. Authorization and data services 321

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /anchoring/round/at/–height˝

The method returns information about an anchoring round at a specified block {height}.

Response example:

GET /anchoring/round/at/–height˝:

{

"height": 0,

"sideChainTxIds": [

"string"

],

"mainNetTxIds": [

"string"

],

"status": "string",

"errorCode": 0

}

GET /anchoring/info

The method returns information about the blockchain anchoring.

Response example:

GET /anchoring/info:

{

"height": 0,

"sideChainTxIds": [

"string"

],

"mainNetTxIds": [

"string"

],

"status": "string",

"errorCode": 0

}

Auxiliary methods of the data service

GET /info

The method returns information about a data service in use.

Response example:

1.32. Authorization and data services 322

Technical description of the Waves Enterprise platform, Release 1.13.0

GET /info:

{

"version": "string",

"buildId": "string",

"gitCommit": "string"

}

GET /status

The method returns information about status of the data service.

Response example:

GET /status:

{

"status": "string"

}

See also

Authorization and data services

data-sv-conf

REST API: authorization service methods

Authorization service: authorization variants

See also

Authorization service: authorization variants

data-sv-conf

REST API: authorization service methods

REST API: methods of the data service

Precise platform configuration: gRPC and REST API authorization

OAuth2 authorization roles

1.32. Authorization and data services 323

Technical description of the Waves Enterprise platform, Release 1.13.0

1.33 Differences between the opensource and the commercial versions of the
Waves Enterprise blockchain platform

The Waves Enterprise blockchain platform exists in the commercial and the opensource versions.

The commercial version of the Waves Enterprise blockchain platform is intended for use in the corporate
and government sectors and is distributed through user licenses. To purchase a commercial version of the
Waves Enterprise platform, contact the Waves Enterprise sales team by email: sales@wavesenterprise.com.

The release of the Waves Enterprise opensource version distributed under the Apache 2.0 license is available
on GitHub. The 30000 blocks limit on blockchain height does not apply to the opensource version.

Table 7: Differences between the opensource and commercial ver-
sions of the Waves Enterprise blockchain platform

Functionality Opensource Corporate

Containerized Smart Contracts

Confidential data exchange

Consensus algorithms: LPoS,
PoA, CFT

Anchoring
Cryptography:

• Waves (Curve25519,
Blake2b256 and Kec-
cak256)

• GOST

Support of TLS

PKI support v1

Correspondingly, the node configuration files are different for the opensource and commercial versions of the
Waves Enterprise blockchain platform. The following sections of the node configuration file are not available
in the opensource version:

• node.tls

• node.network.tls

1.33. Differences between the opensource and the commercial versions of the Waves Enterprise blockchain
platform

324

mailto:sales@wavesenterprise.com
https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

• node.api.rest.tls

• node.api.grpc.tls

• node.docker-engine.docker-tls

• node.license

• cryptography setup

See also

Licenses of the Waves Enterprise blockchain platform

1.34 External components of the platform

1.34.1 External proprietary components of the platform

Table 8: List of proprietary components

Name Ver-

sion

License Li-

cense

type

License link Architecture

component

CryptoPro CSP, includ-
ing CryptoPro JCSP

5.0
R2

CRYPTO-PRO
JSC license

Pro-
pri-
etary

https://www.cryptopro.
ru/download?pid=1417

Node

1.34. External components of the platform 325

https://www.cryptopro.ru/download?pid=1417
https://www.cryptopro.ru/download?pid=1417

Technical description of the Waves Enterprise platform, Release 1.13.0

1.34.2 External open-source components of the platform

Table 9: List of open-source components

Name Ver-

sion

License License

type

License link Architecture com-

ponent

postgres 13.x PostgreSQL
License

Freeware,
opensource

https://github.com/postgres/
postgres/blob/master/
COPYRIGHT

Data crawler

nodejs 12.21.xMIT License Freeware,
opensource

https://raw.githubusercontent.com/
nodejs/node/master/LICENSE

Data crawler,
data service,
client

npm 6.14.x The Artistic
License 2.0

Freeware,
opensource

https://github.com/npm/cli/blob/
latest/LICENSE

Data crawler,
data service,
client

netty 4.1.x Apache Li-
cense 2.0

Freeware,
opensource

https://github.com/netty/netty/
blob/4.1/LICENSE.txt

Node

rocksdb 6.13.x Apache Li-
cense 2.0

Freeware,
opensource

https://github.com/facebook/
rocksdb/blob/master/LICENSE.
Apache

Node

docker-
java

3.2.x Apache Li-
cense 2.0

Freeware,
opensource

https://github.com/docker-java/
docker-java/blob/master/LICENSE

Node

akka
(http,
grpc)

10.1.x Apache Li-
cense 2.0

Freeware,
opensource

https://github.com/akka/akka/
blob/master/LICENSE

Node

swagger-
ui

3.23.x Apache Li-
cense 2.0

Freeware,
opensource

https://github.com/swagger-api/
swagger-ui/blob/master/LICENSE

Node

nginx 1.18.x BSD License Freeware,
opensource

https://nginx.org/LICENSE Client

See also

System requirements

Installing CryptoPro CSP license

1.35 Official resources and contacts

1.35.1 Blockchain platform official resources

• Official website of the Waves Enterprise blockchain platform

• Github page of the project

• Official website of the Waves blockchain platform

1.35. Official resources and contacts 326

https://github.com/postgres/postgres/blob/master/COPYRIGHT
https://github.com/postgres/postgres/blob/master/COPYRIGHT
https://github.com/postgres/postgres/blob/master/COPYRIGHT
https://raw.githubusercontent.com/nodejs/node/master/LICENSE
https://raw.githubusercontent.com/nodejs/node/master/LICENSE
https://github.com/npm/cli/blob/latest/LICENSE
https://github.com/npm/cli/blob/latest/LICENSE
https://github.com/netty/netty/blob/4.1/LICENSE.txt
https://github.com/netty/netty/blob/4.1/LICENSE.txt
https://github.com/facebook/rocksdb/blob/master/LICENSE.Apache
https://github.com/facebook/rocksdb/blob/master/LICENSE.Apache
https://github.com/facebook/rocksdb/blob/master/LICENSE.Apache
https://github.com/docker-java/docker-java/blob/master/LICENSE
https://github.com/docker-java/docker-java/blob/master/LICENSE
https://github.com/akka/akka/blob/master/LICENSE
https://github.com/akka/akka/blob/master/LICENSE
https://github.com/swagger-api/swagger-ui/blob/master/LICENSE
https://github.com/swagger-api/swagger-ui/blob/master/LICENSE
https://nginx.org/LICENSE
https://wavesenterprise.com/
https://github.com/waves-enterprise/we-node/releases
https://wavesplatform.com

Technical description of the Waves Enterprise platform, Release 1.13.0

1.35.2 How to contact with us

• Waves Enterprise technical support service

• Feedback form of the blockchain platform client

• Official Telegram chat in English: Waves Enterprise Group

• Official Telegram chat in Russian: Waves Enterprise

1.36 Glossary

Authorization
Granting a participant the rights to perform certain operations on the blockchain (in particular, to use
API methods)

Address
The identifier of a network member derived from its public key. Each address has its own balance and
state

Account
A set of data about a network member used to identify him or her

Alias
The conditional name of a network member associated with its address. An alias is assigned to a
member using the transaction 10 and can be specified in transactions instead of the address of a
specific member

Anchoring
Algorithm for checking data in a private blockchain for invariance by validating it in a larger network

Asset
A digital asset in blockchain. An asset is a set of tokens

Atomic transaction
A container transaction consisting of several other transactions. If one of the transactions placed in
the atomic is not executed, all other transactions are also not executed

Balance
Number of tokens owned by the address in the blockchain

Block
A set of transactions recorded in the blockchain, signed by the miner and containing a link to the
signature of the previous block. Block size is limited to 1 Mb or 6000 transactions

Blockchain
A decentralized, distributed, and publicly accessible digital registry that records information in such
a way that any individual record cannot be changed once it is made without changing all subsequent
blocks

Validation
Confirmation of data invariability (integrity)

Generator
An auxiliary utility that allows you to create key pairs or key strings

Generating balance
Minimum balance, giving the address the right to mine

1.36. Glossary 327

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://client.wavesenterprise.com/report
https://t.me/wavesenterprisegroup
https://t.me/WavesEnterprise_Ru

Technical description of the Waves Enterprise platform, Release 1.13.0

Access group
List of addresses with access to sensitive data on the blockchain

Data crawler
Service for extracting data from a node and loading it into a data preparation service

Smart contract execution
Execution of program code embedded in a smart contract in a blockchain

Key block
Initial block of a mining round, containing service information:

• public key of the miner for validation of microblock signatures;

• a miner fee for a previous block;

• the miner signature;

• a reference to a previous block

Fee
The amount of tokens an address pays for the transactions it sends to the blockchain

Consensus
Algorithm of coordination of information recorded in the blockchain between its participants

License
A document granting the right to use the Waves Enterprise blockchain platform

Leasing
Leasing of tokens on a participant’s balance to other participants. Leasing is used to create a generating
balance from the participant taking tokens on lease, as well as to increase the probability of the
participant’s selection by the miner of the next round when using the LPoS consensus algorithm

Miner
Node, having the right to create new blockchain blocks

Mining
The process of creating new blockchain blocks

Migration
The process of changing key blockchain parameters

Microblock
A set of transactions applied to a blockchain state. The number of transactions in a microblock is
limited to 500 units. Microblocks form a network block. Microblocks are generated only under load:
if there are no transactions, only blocks are released.

Node
A network participant’s computer with the Waves Enterprise blockchain platform software installed
and a network address assigned

Node update
Updating the Waves Enterprise blockchain platform software installed on a network member’s computer

Image
A smart contract template that contains its code and is used to create a Docker container in which the
smart contract is executed

Rollback
Sending an already created block for re-mining due to failures occurring on blockchain nodes

Peer
Node network address

1.36. Glossary 328

Technical description of the Waves Enterprise platform, Release 1.13.0

Transaction signing
Adding to the body of the transaction the public key of its creator, used to confirm the integrity of the
transaction in the blockchain

Private network, sidechain
A blockchain network separate from Waves Enterprise Mainnet and with its own registered participants

Private key
A string combination of characters for transactional signing and token access, to which only its owner
has access. The private key is inextricably linked to the public key

Transaction broadcasting
Writing a transaction to a blockchain block during a mining round

Public network
A large blockchain network where each participant is known and registered in advance (e.g., Waves
Enterprise Mainnet)

Public key
A string combination of characters inextricably linked to the private key. The public key is attached
to transactions to confirm the correctness of the user’s signature made on the private key

Unconfirmed transaction pool (UTX pool)
A component of the Waves Enterprise blockchain platform that stores unconfirmed transactions until
they are verified and sent to the blockchain

Round
The process of mining a block by a blockchain network participant

Repository
Smart contract image repository deployed with Docker Registry software

Permission
Granting or denying of certain operations in the blockchain

Network message
Network event information sent by a node to other nodes in the blockchain

Smart contract
A separate application which saves its entry data in the blockchain, as well as the output results of its
algorithm

Snapshot
A set of all the blockchain current data on accounts, smart contracts, sensitive data access groups,
permissions and registered nodes. A snapshot contains no history of changing values, transactions or
blocks.

Creation of a smart contract
Upload a new smart contract to the blockchain using transaction 103

Soft fork
Mechanism for activating pre-built blockchain functionality

State
Blockchain transaction history stored in the database of each node

Address state
Data set of an individual address: balances, information about sent data transactions, results of exe-
cution of smart contracts called by the address

Smart contract state
Current data on the smart contract execution result, such as calculation result. This data is recorded

1.36. Glossary 329

Technical description of the Waves Enterprise platform, Release 1.13.0

and updated using the 104 transaction. Smart contract parameters such as publication time, infor-
mation about whether the smart contract has been disabled, and other information about the smart
contract itself are not included in the smart contract state and are stored outside of the blockchain in
the Docker registry.

Token

1. A blockchain unit used to motivate participants to mine on the network.

When using the platform on the Mainnet , the WEST system token is used. In addition to the
system token, you can create and use other tokens.

Unlike blockchain platforms where you need to publish a ERC-20 standard smart contact to
create a new token, the Waves Enterprise network provides the native way to issue tokens via a
token issue transaction.

2. The object used to authorize the blockchain participant

Transaction
A separate operation in the blockchain that changes the network state and is performed on behalf of
a participant. By sending a transaction the participant sends a request to the network with a set of
data necessary to change the state accordingly

AQDS
Advanced qualified digital signature based of Public Key Infrastructure (PKI). AQDS is issued by an
accredited Certification Authority (CA). As a rule, the validity period of an AQDS is limited to one
year

Participant
User of the Waves Enterprise blockchain platform software, sending transactions to the blockchain

Fork
The formation of a new blockchain branch

Keystore
A closed repository where key pairs of blockchain nodes are stored

Hash
A unique set of characters generated from raw data using a given algorithm. Hash allows to uniquely
identify the raw data

Keystring hash
A set of characters generated from a key string specified by the participant and used to authorize him
in the blockchain

Service Endpoint
HTTP or HTTPS address to which the HTTP method refers. The endpoint performs a specific task,
accepts parameters and returns data.

API method
A separate procedure called by a member via the API of the blockchain platform (gRPC or REST
API) and designed to perform a specific operation in the blockchain

CEK
Content Encryption Key – data encryption key. The key is used to encrypt text data

Crash Fault Tolerance (CFT)
A PoA-based consensus algorithm that prevents blockchain forks from occurring in the event of any
malfunction by one or more participants

1.36. Glossary 330

Technical description of the Waves Enterprise platform, Release 1.13.0

Genesis block
Initial block of the blockchain network, containing service transactions for the distribution of primary
roles and balances of participants

KEK
Key Encryption Key used to encrypt the content encryption key (CEK)

Leased Proof of Stake (LPoS)
The PoS consensus algorithm that enables a participant to lease tokens to other participants

Liquid block
Block state during a mining round from the formation of its key block to the formation of the next key
block

MVCC (Multiversion concurrency control)
A mechanism for managing concurrent access to the state of smart contracts through multiversionality.
With this mechanism, the node supports the ability to execute multiple transactions of any smart
contracts in parallel, while ensuring data consistency.

JWT (JSON Web Token)
JSON-formatted object used to authorize a blockchain participant using the oAuth protocol

PKI
Public Key Infrastructure in which each key is represented by two parts: public and private. For more
information, see. Public key infrastructure

Proof of Authority (PoA)
Consensus algorithm, in which the ability to verify transactions and create new blocks is given to the
more authoritative nodes

Proof of Stake (PoS)
A consensus algorithm in which the node that checks transactions and mines in the next round is
chosen based on its current balance

Sandbox
Blockchain platform trial mode

Seed phrase
A set of 24 randomly defined words to restore access to the address balance

Targetnet
A blockchain network into which data from a private network is anchored

1.37 What is new at Waves Enterprise

1.37.1 1.13.0

The 1.13.0 is the last released version, and is marked as latest in this documentation.

The following articles have been added:

• Confidential smart contracts

• gRPC: transfer of confidential smart contract data

• REST API: working with confidential smart contracts

• OAuth2 authorization roles

• Precise platform configuration: setting the fee for the transactions sent to the blockchain

1.37. What is new at Waves Enterprise 331

https://en.wikipedia.org/wiki/Public_key_infrastructure

Technical description of the Waves Enterprise platform, Release 1.13.0

• GET /permissions/contract-validators

• GET /permissions/contract-validators/{height}

The following articles have been modified:

• Role management

• gRPC: monitoring of blockchain events

• GET /addresses/scriptInfo/{address}

• Development and usage of smart contracts

• Smart contracts

• GET /contracts/{contractId}

• POST /contracts/{contractId}

• GET /contracts/executed-tx-for/{id}

• 103. CreateContract Transaction

• 104. CallContract Transaction

• 105. ExecutedContract Transaction

• 107. UpdateContract Transaction

• 114. PolicyDataHash Transaction

• List of available feature identifiers

• Actual versions of transactions

• Precise platform configuration: confidential data groups configuration

• Versions of smart contract API

• GET /consensus/minersAtHeight/{height}

• Deploying the platform in the trial mode (Sandbox)

• System requirements

• Precise platform configuration: gRPC and REST API authorization

The 1.13.0 version contains critical fixes, see release description for details.

1.37.2 1.12.3

The following articles have been added:

• GET /contracts/balance/details/{ContractID}

• Precise platform configuration: logging

The following articles have been modified:

• GET /leasing/active/{address}

• 105. ExecutedContract Transaction

• List of available feature identifiers

• GET /contracts/status/{id}

• Information on the results of the execution of a smart contract call

1.37. What is new at Waves Enterprise 332

https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

• REST API: information about network blocks

• gRPC: monitoring of blockchain events

• REST API: information about configuration and state of the node, stopping the node

• gRPC: obtaining node information

• REST API: retrieving certificates

• gRPC: retrieving certificates

• GET /transactions/unconfirmed/size

• gRPC: obtaining information about UTX pool size

• Signing and sending transactions

• Sending transactions into the blockchain

• POST /transactions/signAndBroadcast

• REST API: confidential data exchange and obtaining of information about confidential data groups

• gRPC: handling confidential data

• addresses group

• gRPC: information about the network members’ addresses

• What the platform REST API is for

• Authorization and data services

• Authorization service: authorization variants

• POST /pki/verify

• Development and usage of smart contracts

• Installing a smart contract into the blockchain

• Calling a smart contract and saving the results of its operation

• POST /addresses/verifyText/{address}

• GET /addresses/scriptInfo/{address}

• Environment requirements for the Waves Enterprise blockchain platform

• POST /node/logging

• Node start with a snapshot

The 1.12.3 version contains critical fixes, see release description for details.

1.37.3 1.12.2

The following articles have been added:

• GET /privacy/%policyId%/transactions

• Launching the network

The following articles have been modified:

• Activation of blockchain features

• Atomic transactions

1.37. What is new at Waves Enterprise 333

https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

• 120. Atomic Transaction

• 3. Issue Transaction

• 5. Reissue Transaction

• 6. Burn Transaction

• 8. Lease Transaction

• 9. LeaseCancel Transaction

• 10. CreateAlias Transaction

• 11. MassTransfer Transaction

• 12. Data Transaction

• 14. Sponsorship Transaction

• 102. Permission Transaction

• 103. CreateContract Transaction

• 104. CallContract Transaction

• 106. DisableContract Transaction

• 107. UpdateContract Transaction

• 111. RegisterNode Transaction

• 112. CreatePolicy Transaction

• 113. UpdatePolicy Transaction

• 114. PolicyDataHash Transaction

• Actual versions of transactions

• Versions of smart contract API

• Precise platform configuration: confidential data groups configuration

• Confidential data exchange

• GET /contracts/status/{id}

• gRPC: obtaining information on the results of the execution of a smart contract call

• Permission management

• Role management

The 1.12.2 version contains critical fixes, see release description for details.

1.37.4 1.12.1

The following articles have been added:

• Tokens of the Waves Enterprise blockchain platform

• Handling tokens from a smart contract

The following articles have been modified:

• gRPC services used by smart contracts

• contract_contract_service.proto

1.37. What is new at Waves Enterprise 334

https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

• Permissions

• gRPC tools

• Smart contracts

• List of available feature identifiers

• Glossary

• POST /utils/hash/secure

The 1.12.1 version contains critical fixes, see release description for details.

1.37.5 1.12.0

The following articles have been added:

• General platform configuration: cryptography

• REST API: retrieving certificates

• gRPC: retrieving certificates

The following articles have been modified:

• Anchoring

• node.conf

• Examples of node configuration files

• Licenses of the Waves Enterprise blockchain platform

• Obtaining a private network license and associated files

• Deployment of the platform in a private network

• Platform configuration for operation in a private network

• gRPC: obtaining node configuration parameters

• REST API: information about configuration and state of the node, stopping the node

• REST API: information about smart contracts

• Generators

• POST /utils/hash/fast

• POST /privacy/sendData

• POST /privacy/sendDataV2

• POST /privacy/sendLargeData

• Sending confidential data to the blockchain

• Sending confidential data to the blockchain

• Activation of blockchain features

• gRPC: obtaining node configuration parameters

• Use Ledger Nano Devices with Waves Enterprise Client

• REST API: signing and validating messages in the blockchain

• REST API: encryption and decryption methods

1.37. What is new at Waves Enterprise 335

https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

• REST API: generation and checking of data digital signatures

• Signing and sending transactions

• Sending transactions into the blockchain

• REST API: confidential data exchange and obtaining of information about confidential data groups

• gRPC: handling confidential data

• gRPC: obtaining information on the results of the execution of a smart contract call

• 103. CreateContract Transaction

• External components of the platform

• Cryptography

• General platform configuration: consensus algorithm

• General platform configuration: mining

• Genesis block signing

• REST API: information about address assets and balances

• Development and usage of smart contracts

• sc-example-rest

• 103. CreateContract Transaction

• 104. CallContract Transaction

• 107. UpdateContract Transaction

• Activation of blockchain features

The 1.12.0 version contains critical fixes, see release description for details.

1.37.6 1.11.0

Following articles have been added:

• Differences between the opensource and the commercial versions of the Waves Enterprise blockchain
platform

• WE Contract SDK (Java/Kotlin Contract SDK) Client

The following articles have been modified:

• Deployment of the platform in a private network

• Deploying a platform with connection to Mainnet

• Precise platform configuration: node gRPC and REST API configuration

• Precise platform configuration: TLS

• General platform configuration: execution of smart contracts

• Licenses of the Waves Enterprise blockchain platform

The 1.11.0 version contains critical fixes, see release description for details.

1.37. What is new at Waves Enterprise 336

https://github.com/waves-enterprise/we-node/releases
https://github.com/waves-enterprise/we-node/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

1.37.7 1.8.4

Following articles have been added:

• Use Ledger Nano Devices with Waves Enterprise Client

• Constructing smart contracts with JS Contract SDK

• Constructing smart contracts with Java/Kotlin Contract SDK

The following articles have been modified:

• 103. CreateContract Transaction

• Contracts method group

• General platform configuration: execution of smart contracts

• REST API usage

• Mainnet fees

The 1.8.4 version contains critical fixes, see release description for details.

1.37.8 1.8.2

The 1.8.2 version contains critical fixes, see release description for details.

1.37.9 1.8.0

The following articles have been modified:

• Precise platform configuration: confidential data groups configuration

• REST API: encryption and decryption methods

• Glossary

• System requirements

• Precise platform configuration: TLS

• Example of how to prepare artefacts for TLS

• Precise platform configuration: node gRPC and REST API configuration

• General platform configuration: execution of smart contracts

• node.conf

• General platform configuration: mining

• Environment requirements for the Waves Enterprise blockchain platform

• gRPC tools

• gRPC: monitoring of blockchain events

• gRPC: obtaining node information

• contract_transaction_service.proto

• gRPC: obtaining information on the results of the execution of a smart contract call

• gRPC: obtaining information about UTX pool size

1.37. What is new at Waves Enterprise 337

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

• contract_pki_service.proto

• gRPC: encryption and decryption methods

• gRPC: handling transactions

• gRPC: handling confidential data

• REST API: confidential data exchange and obtaining of information about confidential data groups

• gRPC: retrieving auxiliary information

• gRPC: information about the network members’ addresses

• Confidential data exchange

• REST API: information about configuration and state of the node, stopping the node

• Smart contracts

• Activation of blockchain features

• Client

• Data immutability in a blockchain

The 1.8.0 version contains critical fixes, see release description for details.

1.37.10 1.7.3

The 1.7.3 version contains critical fixes, see details in the release description.

1.37.11 1.7.2

The following articles have been modified:

• generating_balance

• Creation of a node account

• Genesis block signing

• Smart contract validators fee mechanism

• Glossary

1.37.12 1.7.0

Following article has been added:

Precise platform configuration: node in the watcher mode

1.37. What is new at Waves Enterprise 338

https://docs.wavesenterprise.com/en/1.8.0/usage/grpc/grpc-crypto.html
https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.13.0

1.37.13 1.6.2

The following articles have been modified:

• Description of transactions

• gRPC services used by smart contracts

• Smart contracts

• Permissions

• Snapshooting

• Activation of blockchain features

• System requirements

1.37.14 1.6.0

The structure and content of the documentation have been fully changed, the landing page with the search
line and quick access to the basic sections have been added.

The following articles describing the snapshot mechanism developed in the 1.6.0 version have been added:

• Snapshooting

• Node start with a snapshot

• Precise platform configuration: snapshot

1.37.15 1.5.2

The article CFT consensus algorithm has been changed.

The 1.5.2 version contains critical fixes, see details in the release description.

1.37.16 1.5.0

Following articles have been added:

• CFT consensus algorithm

• Preparing to work

• gRPC methods of the node

• Monitoring of events in the blockchain with the use of the gRPC

The following articles have been modified:

• Cryptography

• Managing permissions

• Transactions

• Preparing configuration files

• Changes to the node config file

• Description of the node configuration file parameters and sections

1.37. What is new at Waves Enterprise 339

https://github.com/waves-enterprise/WE-releases/releases
https://docs.wavesenterprise.com/en/1.5.0/how-to-use/smart-contracts/docker/prepare-to-work.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-use/grpc-methods-node.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-setup/configuration/config-prepare.html#config-prepare
https://docs.wavesenterprise.com/en/1.5.0/how-to-setup/configuration/config-changelog.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-setup/configuration/config-fields.html

Technical description of the Waves Enterprise platform, Release 1.13.0

• Consensus setup

• API instruments of the node

• JavaScript SDK

• Glossary

• Content of the Docker Config section has been transferred into the new Preparing to work section

• The section Docker smart contracts with the use of the node REST API has been deleted from the
index

1.37.17 1.4.0

Following articles have been added:

• Atomic transactions

• Working in the web client

• JavaScript SDK

The following articles have been modified:

• Architecture

• Transactions

• Authorization type configuration for the REST API and gRPC access

• REST API instruments of the node

• Updating a Mainnet node

1.37.18 1.3.1

Following articles have been added:

• Parallel contract execution

The following articles have been modified:

• Smart contract creation

• Docker setup

1.37.19 1.3.0

The following articles have been modified:

• gRPC methods of the node

• The “Role model” and “Access managing” sections have been converted to a section Permissions man-
aging

• Description of the node configuration file parameters and sections

• Privacy data access groups configuration

• Dockеr setup

• REST API Addresses methods

1.37. What is new at Waves Enterprise 340

https://docs.wavesenterprise.com/en/1.5.0/how-to-setup/configuration/consensus-config.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-use/api-methods-node.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-use/js-library.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-setup/configuration/docker-config.html#docker-configuration
https://docs.wavesenterprise.com/en/1.5.0/how-to-use/smart-contracts/docker/prepare-to-work.html
https://docs.wavesenterprise.com/en/1.5.0/how-to-use/smart-contracts/docker/rest-api-methods-sc/rest-api-contract.html#first-contract-tutorial
https://docs.wavesenterprise.com/en/1.4.0/how-to-setup/configuration/authorization-config.html
https://docs.wavesenterprise.com/en/1.4.0/how-to-use/rest-api-common.html
https://docs.wavesenterprise.com/en/1.4.0/how-to-setup/one-node-update.html
https://docs.wavesenterprise.com/en/1.3.1/how-the-platform-works/smart-contracts/docker.html#parallel-docker-execution
https://docs.wavesenterprise.com/en/1.3.1/how-to-use/smart-contracts/docker/grpc-contract.html#grpc-contracr-creating
https://docs.wavesenterprise.com/en/1.3.1/how-to-setup/configuration/docker-config.html#docker-configuration
https://docs.wavesenterprise.com/en/1.5.2/how-to-use/grpc-methods-node.html
https://docs.wavesenterprise.com/en/1.3.0/how-the-platform-works/authorization.html#authorization
https://docs.wavesenterprise.com/en/1.3.0/how-the-platform-works/authorization.html#authorization
https://docs.wavesenterprise.com/en/1.3.0/how-to-setup/configuration/config-fields.html#config-fields
https://docs.wavesenterprise.com/en/1.3.0/how-to-setup/configuration/privacy-config.html#privacy-config
https://docs.wavesenterprise.com/en/1.3.0/how-to-setup/configuration/docker-config.html#docker-configuration
https://docs.wavesenterprise.com/en/1.3.0/how-to-use/rest-api-node/address.html#addresses-api

Technical description of the Waves Enterprise platform, Release 1.13.0

• REST API Node methods

• REST API Contracts methods

• REST API Privacy methods

• System requirements

1.37.20 1.2.3

The following articles have been modified:

• Docker smart contract

• Description of the node configuration file parameters and sections

• Privacy access groups configuration

1.37.21 1.2.2

Following articles have been added:

• REST API Debug methods

• The complete REST API description on the API Documentation page

The following articles have been modified:

• Installing and running the platform

1.37.22 1.2.0

Following articles have been added:

• A new Integration services section, which includes Authorization service и Data preparation service.

• Obtaining a license section was added.

• A new REST API Licenses method was added.

• A new Smart contract run with gRPC section was added

• A new gRPC services available to smart contract section was added.

The following articles have been modified:

• Installing and running the platform

• Updated: Cryptography . Part of information was moved into Data encryption operations

• Changes in the node configuration file

• Transactions

1.37. What is new at Waves Enterprise 341

https://docs.wavesenterprise.com/en/1.3.0/how-to-use/rest-api-node/node.html#node-api
https://docs.wavesenterprise.com/en/1.3.0/how-to-use/rest-api-node/contracts.html#contracts
https://docs.wavesenterprise.com/en/1.3.0/how-to-use/rest-api-node/privacy.html#privacy-api
https://docs.wavesenterprise.com/en/1.3.0/how-to-setup/system-requirement.html#system-requirements
https://docs.wavesenterprise.com/en/1.2.3/how-the-platform-works/smart-contracts/docker.html#docker-smart-contracts
https://docs.wavesenterprise.com/en/1.2.3/how-to-setup/configuration/config-fields.html#config-fields
https://docs.wavesenterprise.com/en/1.2.3/how-to-setup/configuration/privacy-config.html#privacy-config
https://docs.wavesenterprise.com/en/1.2.2/how-to-use/rest-api-node/debug.html#debug-api
https://docs.wavesenterprise.com/ru/latest/api.html
https://docs.wavesenterprise.com/en/1.2.2/how-to-setup/install-node.html#install-node
https://docs.wavesenterprise.com/en/1.2.0/how-the-platform-works/components.html#components
https://docs.wavesenterprise.com/en/1.2.0/how-the-platform-works/components/authorization-service.html#authorization-service
https://docs.wavesenterprise.com/en/1.2.0/how-the-platform-works/components/data-service.html#data-service
https://docs.wavesenterprise.com/en/1.2.0/how-to-use/getting-license.html#getting-license
https://docs.wavesenterprise.com/en/1.2.0/how-to-use/rest-api-node/licenses.html#licenses-api
https://docs.wavesenterprise.com/en/1.2.0/how-to-use/smart-contracts/docker/api-grpc-contract.html#api-grpc-contract

Technical description of the Waves Enterprise platform, Release 1.13.0

1.37.23 1.1.2

The following articles have been modified:

• Demo version

• Changes in the node configuration file

• ‘Node installation’ section was converted into ‘Installing and running the platform’

• Connecting participants to the network

• Anchoring Configuration

• Authorization type configuration for the REST API access

• Connection of the node to the “Partnernet”

• Connection of the node to the “Mainnet”

• System requirements

1.37.24 1.1.0

Following articles have been added:

• API methods available to smart contract

• Sandbox

• Changes in the node configuration file

The following articles have been modified:

• Docker Smart Contracts

• Example of starting a contract

• Node installation

• Additional services deploy

1.37.25 1.0.0

Following articles have been added:

• Authorization service

Following articles have been changed:

• Node configuration

• Connection to Mainnet and Partnernet

• REST API

• Node installation

Changes in the node.conf configuration file

• The NTP server article has been added

• The auth section for authorization type configuration has been added in the REST API article

1.37. What is new at Waves Enterprise 342

https://docs.wavesenterprise.com/ru/1.1.2/how-to-setup/configuration/anchoring-config.html
https://docs-out.welocal.dev/en/1.1.0/how-to-use/smart-contracts/docker/api-for-contract.html
https://docs-out.welocal.dev/en/1.1.0/how-to-setup/sandbox.html
https://docs-out.welocal.dev/en/1.1.0/how-to-setup/configuration/config-changelog.html
https://docs-out.welocal.dev/en/1.1.0/how-to-use/smart-contracts-docker.html
https://docs-out.welocal.dev/en/1.1.0/how-to-use/smart-contracts/docker/first-contract-tutorial.html
https://docs-out.welocal.dev/en/1.1.0/how-to-setup/install-node.html
https://docs-out.welocal.dev/en/1.1.0/how-to-setup/install-client.html

INDEX

A

Access group, 328
Account, 327
Address, 327
Alias, 327
Anchoring, 327
Asset, 327
Atomic transaction, 327
Authorization, 327

B

Balance, 327
Block, 327
Blockchain, 327

C

Consensus, 328

D

Data crawler, 328

F

Fee, 328

G

Generating balance, 327
Generator, 327

I

Image, 328

K

Key block, 328

L

Leasing, 328
License, 328

M

Microblock, 328
Migration, 328
Miner, 328

Mining, 328

N

Node, 328
Node update, 328

P

Peer, 328
Private key, 329
Private network, sidechain, 329
Public key, 329
Public network, 329

R

Rollback, 328

S

Smart contract execution, 328

T

Transaction broadcasting, 329
Transaction signing, 329

V

Validation, 327

343

	Contents
	System requirements
	Environment requirements for the Waves Enterprise blockchain platform
	Installing CryptoPro CSP license

	Licenses of the Waves Enterprise blockchain platform
	License types
	License usage
	Duration of licenses

	Deploying the platform in the trial mode (Sandbox)
	Platform installation
	Further actions
	Sandbox mode of the platform: fixing issues

	Deploying a platform with connection to Mainnet
	Account creation, token transfer and confirming transaction
	Node deployment
	Node connection to the Mainnet
	Mainnet fees
	Node update in the Mainnet
	Mainnet: fixing issues

	Deployment of the platform in a private network
	Creation of a node account
	Platform configuration for operation in a private network
	General platform configuration: cryptography
	General platform configuration: consensus algorithm
	type = "pos" or the commented consensus block
	type = "poa"
	type = "cft"

	General platform configuration: execution of smart contracts
	General platform configuration: mining
	Mining settings and consensus algorithm
	UTX settings

	Precise platform configuration: gRPC and REST API authorization
	type = "api-key"
	type = "oauth2"
	OAuth2 authorization roles

	Precise platform configuration: node gRPC and REST API configuration
	rest { } block
	grpc { } block

	Precise platform configuration: TLS
	Example of how to prepare artefacts for TLS
	tls section of the node configuration file

	Precise platform configuration: confidential data groups configuration
	Choosing the database
	PostgreSQL
	Amazon S3

	storage block
	vendor = postgres
	url field
	pgBouncer
	vendor = s3

	replier block
	inventory-handler block
	cache block
	synchronizer block
	inventory-timestamp-threshold field

	service block

	Precise platform configuration: logging
	Log storage
	Logging management
	List of loggers

	Precise platform configuration: anchoring
	Anchoring parameters
	Authorization parameters for anchoring
	Targetnet access parameters
	Key pair file parameters for signing anchoring transactions in Targetnet (wallet section)
	Fee parameters

	Precise platform configuration: snapshot
	Precise platform configuration: node in the watcher mode
	Configuration

	Precise platform configuration: setting the fee for the transactions sent to the blockchain
	Zero fee

	Obtaining a private network license and associated files
	Genesis block signing
	Launching the network
	Attaching the Client application to the private network

	Examples of node configuration files
	node.conf
	accounts.conf
	api-key-hash.conf
	Additional examples

	System errors
	gRPC tools
	Preconfiguring the gRPC interface
	What the gRPC interface is for
	gRPC: monitoring of blockchain events
	Information about events
	Information about errors

	gRPC: obtaining node information
	gRPC: obtaining node configuration parameters
	gRPC: retrieving data about the node owner

	gRPC: obtaining information on the results of the execution of a smart contract call
	Information on the results of the execution of a smart contract call

	gRPC: obtaining information about UTX pool size
	gRPC: retrieving certificates
	Authorization of methods for obtaining certificates
	Retrieving a certificate by its DN
	Retrieving a certificate by its DN hash
	Retrieving a certificate by its public key
	Retrieving a certificate by its fingerprint

	gRPC: handling transactions
	Sending transactions into the blockchain
	Broadcast
	BroadcastWithCerts

	Retrieving data from a transaction
	Retrieving data from a transaction that is in the UTX pool

	gRPC: handling confidential data
	PrivacyEventsService and PrivacyPublicService methods authorization
	PrivacyEventsService
	Information on receiving or deleting confidential data

	PrivacyPublicService
	Retrieving confidential data hash sum
	Downloading big data from a node
	Retrieving metadata for a confidential data package
	Confidential data package existence verification
	Sending confidential data to the blockchain
	broadcast_tx parameter
	Sending confidential data stream to the blockchain
	Obtaining the addresses of all the members of a confidential data access group
	Obtaining the addresses of the owners of a confidential data access group
	Obtaining an array of identification hashes
	Synchronization of data on the specified confidential data access group

	gRPC: transfer of confidential smart contract data
	gRPC: retrieving auxiliary information
	Obtaining the current node time

	gRPC: information about network participants
	gRPC: information about the network members’ addresses
	Retrieving all participants’ addresses
	Retrieving data from a specified address
	Retrieving data from a specified address by a key

	gRPC: retrieving information about network participants by alias
	Retrieving an address by alias
	Retrieving alias by address

	REST API methods
	REST API usage
	What the platform REST API is for

	Development and usage of smart contracts
	Preparing to work
	Smart contract development
	Example of a smart contract with gRPC
	Program description and listing
	Authorization of a smart contract with gRPC
	Development of a smart contract
	How a smart contract with gRPC works

	Constructing smart contracts with JS Contract SDK
	Requirements
	Quickstart
	Configuration
	Default configuration
	Network configuration

	Deploy contract
	Contract SDK Toolkit
	Core concepts
	Methods
	Methods to manage smart contract state
	Write
	Read
	Write Actions
	Init Actions
	Сontract version update

	Constructing smart contracts with Java/Kotlin Contract SDK
	Requirements
	Dependencies
	Quickstart
	1. Create contract handler
	2. Add @ContractInit and @ContractAction methods to handle contract transactions
	3. Dispatch the contract with the specified contract handler and settings
	4. Create Docker image
	5. Push the image to the Docker repository used by WE node mining contract transactions
	6. Sign and broadcast transactions for creating and invoking the published contract

	Notes on usage
	Usage with Java 11 and higher

	WE Contract SDK (Java/Kotlin Contract SDK) Client
	Main abstractions
	Quickstart
	1. Create and configure services to work with the node:
	2. Form transaction data:
	3. Create a client contract factory and configure it:
	4. Create TxSigner:
	5. Create and invoke client methods:

	Uploading a smart contract into a registry
	Installing a smart contract into the blockchain
	Smart contract execution

	JavaScript SDK
	How the JavaScript SDK works
	Authorization in the blockchain
	Seed phrase generation
	Signing and sending transactions
	Cryptographic node methods used by the JavaScript SDK

	JS SDK installation and initialization
	Creating and sending transactions with the use of the JS SDK
	Principles of transaction creation
	Broadcasting a transaction

	Examples of JavaScript SDK usage
	Token transfer (4)
	Creation of a confidential data group (112)
	Permission adding and removing (102)
	Smart contract creation (103)
	Smart contract call (104)
	Atomic transaction (120)
	Token issue/burning (3 / 6)

	Using the JS SDK in a node with oAuth authorization
	Variants of generation of a seed phrase and work with it in the JS SDK
	1. Creating a new randomized seed phrase
	2. Creating a seed phrase from an existing one
	3. Encrypting the seed phrase with a password and decrypting it

	Confidential data exchange
	Creating a confidential data group
	Updating a confidential data group
	Confidential data storage
	Sending confidential data into the network

	Role management
	Connection and removing of nodes
	Connecting a new node to a private network
	Removing node from a private network

	Node start with a snapshot
	Architecture
	Platform arrangement
	Arrangement of nodes and auxiliary services

	Waves-NG blockchain protocol
	Description of a mining round
	Miner fee mechanism
	Smart contract validators fee mechanism
	Conflict resolution while generating blocks

	Data immutability in a blockchain
	Tokens of the Waves Enterprise blockchain platform
	Connection of a new node to blockchain network
	Activation of blockchain features
	Voting parameters
	Voting procedure
	Usage of activated features
	Preliminary activation of features
	List of available feature identifiers

	Anchoring
	How the Waves Enterprise anchoring works
	Anchoring data transaction structure
	Errors that can occur during anchoring

	Snapshooting
	Components of the snapshooting mechanism
	Generation and broadcasting of a snapshot in an operating blockchain
	Snapshot REST API methods
	Network messages

	Smart contracts
	Confidential smart contracts
	Confidential smart contract data
	Storage of confidential smart contract data
	Control of confidential smart contract data integrity and its protection

	Creation of a confidential smart contract
	Confidential smart contract call
	Updating confidential smart contracts
	Obtaining confidential smart contract result

	Smart contract operation chart
	Handling tokens from a smart contract
	Development and installation of smart contracts
	Calling a smart contract and saving the results of its operation
	Restriction of smart contract calls
	Updating of smart contracts
	Validation of smart contracts
	Parallel operation of smart contracts
	API methods available for smart contracts
	gRPC services used by smart contracts
	Versions of smart contract API
	Protobuf files of the methods
	contract_address_service.proto
	contract_block_service.proto
	contract_contract_service.proto
	contract_permission_service.proto
	contract_pki_service.proto
	contract_privacy_service.proto
	contract_transaction_service.proto
	contract_util_service.proto

	Transactions of the blockchain platform
	Signing and sending of transactions
	Processing of transactions in the blockchain
	Description of transactions
	1. Genesis Transaction
	3. Issue Transaction
	4. Transfer Transaction
	5. Reissue Transaction
	6. Burn Transaction
	8. Lease Transaction
	9. LeaseCancel Transaction
	10. CreateAlias Transaction
	11. MassTransfer Transaction
	12. Data Transaction
	13. SetScript Transaction
	14. Sponsorship Transaction
	15. SetAssetScript Transaction
	101. GenesisPermission Transaction
	102. Permission Transaction
	103. CreateContract Transaction
	Version 4
	Version 5
	Version 6

	104. CallContract Transaction
	Version 5
	Version 6

	105. ExecutedContract Transaction
	Version 3
	Version 4

	106. DisableContract Transaction
	107. UpdateContract Transaction
	Version 4
	Version 5

	110. GenesisRegisterNode Transaction
	111. RegisterNode Transaction
	112. CreatePolicy Transaction
	113. UpdatePolicy Transaction
	114. PolicyDataHash Transaction
	120. Atomic Transaction

	Actual versions of transactions

	Atomic transactions
	Processing of atomic transactions
	Generating of atomic transactions

	Consensus algorithms
	LPoS consensus algorithm
	Proof of Stake
	Advantages over the Proof of Work (PoW)

	Leased Proof of Stake

	PoA consensus algorithm
	Algorithm description
	Synchronization of time between network hosts
	Exclusion of inactive miners
	Monitoring
	Changing consensus settings

	CFT consensus algorithm
	Algorithm description
	Voting
	Defining of round validators and their voting
	Voting of current round miners

	Mining features
	Selecting a channel for synchronization
	Changing consensus parameters

	Cryptography
	Hash coding
	Electronic signature
	Protecting confidential data

	Permissions
	Description of permissions
	Permission management

	Client
	Use Ledger Nano Devices with Waves Enterprise Client
	Introduction
	Prerequisites
	Install Waves Enterprise App on Ledger Device
	Open Waves Enterprise App on Your Ledger Nano Device
	Use Ledger Nano Device with Waves Enterprise App
	Transferring tokens

	Network stats
	Explorer
	Tokens
	Contracts
	Contract call

	Data transfer
	Network settings
	Write to us

	Generators
	AccountsGeneratorApp
	GenesisBlockGenerator
	ApiKeyHash

	Authorization and data services
	Authorization service
	Authorization service: authorization variants
	Api-key string hash authorization
	JWT token authorization

	Data service
	API methods of the integration services
	REST API: authorization service methods
	GET ​/status
	POST ​/v1​/user
	GET ​/v1​/user​/profile
	POST ​/v1​/user​/address
	GET /v1​/user​/address​/exists
	POST ​/v1​/user​/password​/restore
	POST ​/v1​/user​/password​/reset
	GET ​/v1​/user​/confirm​/{code}
	POST ​/v1​/user​/resendEmail
	POST ​/v1​/auth​/login
	POST ​/v1​/auth​/token
	POST ​/v1​/auth​/refresh
	GET​ /v1​/auth​/publicKey

	REST API: methods of the data service
	Assets method group
	GET /assets
	POST /assets/count
	GET /assets/{id}

	Blocks method group
	GET /blocks/at/{height}

	Contracts method group
	GET /contracts
	GET /contracts/count
	GET /contracts/info/{contractId}
	GET /contracts/id/{id}/versions
	GET /contacts/history/{id}/key/{key}
	GET /contracts/senders-count
	GET /contracts/calls

	Privacy method group
	GET /privacy/groups
	GET /privacy/groups/count
	GET /privacy/groups/{address}
	GET /privacy/groups/by-recipient/{address}
	GET /privacy/groups/{address}/count
	GET /privacy/groups/id/{id}
	GET /privacy/groups/id/{id}/history
	GET /privacy/groups/id/{id}/history/count
	GET /privacy/nodes
	GET /privacy/nodes/count
	GET /privacy/nodes/publicKey/{targetPublicKey}
	GET /privacy/nodes/address/{address}

	Transactions method group
	GET /transactions
	GET /transactions/count
	GET /transactions/{id}

	Users method group
	GET /users
	GET /users/count
	GET /users/{userAddressOrAlias}
	GET /users/contract-id/{contractId}
	POST /users/by-addresses

	Methods for obtaining of information about data transactions (12)
	GET /api/v1/txIds/{key}
	GET /api/v1/txIds/{key}/{value}
	GET /api/v1/txData/{key}
	GET /api/v1/txData/{key}/{value}

	Leasing method group
	GET /leasing/calc

	Stats method group
	GET /stats/transactions
	GET /stats/contracts
	GET /stats/tokens
	GET /stats/addresses-active
	GET /stats/addresses-top
	GET /stats/nodes-top
	GET /stats/contract-calls
	GET /stats/contract-last-calls
	GET /stats/contract-types
	GET /stats/monitoring

	Anchoring method group
	GET /anchoring/rounds
	GET /anchoring/round/at/{height}
	GET /anchoring/info

	Auxiliary methods of the data service
	GET /info
	GET /status

	Differences between the opensource and the commercial versions of the Waves Enterprise blockchain platform
	External components of the platform
	External proprietary components of the platform
	External open-source components of the platform

	Official resources and contacts
	Blockchain platform official resources
	How to contact with us

	Glossary
	What is new at Waves Enterprise
	1.13.0
	1.12.3
	1.12.2
	1.12.1
	1.12.0
	1.11.0
	1.8.4
	1.8.2
	1.8.0
	1.7.3
	1.7.2
	1.7.0
	1.6.2
	1.6.0
	1.5.2
	1.5.0
	1.4.0
	1.3.1
	1.3.0
	1.2.3
	1.2.2
	1.2.0
	1.1.2
	1.1.0
	1.0.0

