
Technical description of the Waves

Enterprise platform
Release master

https://wavesenterprise.com

Apr 09, 2020

BLOCKCHAIN-PLATFORM WAVES ENTERPRISE

i

ii

CHAPTER

ONE

FEATURES OVERVIEW

The Waves Enterprise Blockchain Platform is a scalable digital infrastructure solution that combines the
features of public and private blockchains for corporate and government use. The platform uses operation
protocol, rather than business logic, to solve the problem of trust between parties. The Proof-of-Stake
(PoS) and Proof-of-Authority (PoA) consensus mechanisms guarantee the correctness of data added to the
blockchain, while decentralization provides counterparty independence for data access.

1.1 Waves Enterprise Blockchain Highlights

• Built on Scala programming language.

• Includes technologies and best use practices of use proven on the Waves public blockchain platform.

• Adapted for corporate and government use.

• Supports PoS and PoA consensus algorithms, and allows administrators to choose the most fitting one
during deployment.

• Ensures high throughput rate.

• Supports two types of smart contracts: Turing-incomplete RIDE contracts and Turing-complete Docker
contracts.

• Delivered as a set of microservices.

• Uses cryptographic algorithms certified by state regulators.

• Supports confidential and direct data exchange via private groups without loading data onto external
networks.

• Implements the permission management system at the consensus level.

• Waves Enterprise web client features transactions explorer, wallet, creation of transactions, smart
contract development, blockchain status monitoring, and permission management.

1

Technical description of the Waves Enterprise platform, Release master

1.1.1 Waves Enterprise network deployment options

1. Operating in the main public network.

2. Operating in a private network anchored to the main network.

3. Operating in an independent private network.

1.2 Main network

The main network is supported by a consortium of companies from various economic sectors including
banking, industrial, real estate, logistics, etc. Companies which use the main network may use public
blockchain for their projects or for supplying blockchain processes, e.g. banking enterprises delivering fiat
gateways, and state registrars granting access to cloud-based GOST cryptography.

1.3 Independent private network

Independent private networks may be used by companies that do not want to share their processes publicly.
Waves Enterprise allows such companies to deploy a stand-alone private network out of the box and configure
it in accordance with their business needs.

Following features are configurable:

• Consensus type.

• Cryptography provider.

• Number of nodes.

• Blockchain operating parameters.

1.4 Private network with block hashes broadcast to main network

This solution combines the advantages of public and private networks. Private networking allows companies
to conceal private information from the public blockchain, while the broadcast of private block hashes to the
main network ensures reliability of information, thanks to the scalability of the main network.

2 Chapter 1. Features overview

CHAPTER

TWO

OFFICIAL RESOURCES

• Official site of the blockchain-platform Waves Enterprise

• Github project

• Official site of the blockchain-platform Waves

3

https://wavesenterprise.com/
https://github.com/waves-enterprise/WE-releases
https://wavesplatform.com

Technical description of the Waves Enterprise platform, Release master

4 Chapter 2. Official resources

CHAPTER

THREE

ARCHITECTURE

The Waves Enterprise platform is based on distributed ledger technology and represents a fractal network
consisting of:

• A master blockchain, Waves Enterprise Mainnet, which secures the operation of the network, serving
as a global arbiter and a reference chain, and

• A number of custom, separated sidechains that can be tuned easily according to specific business needs.

This construction principle optimizes the platform for higher speeds, large volumes of calculations, consis-
tency and availability of data, and resistance to malicious changes in information.

The Anchoring mechanism uses the strengths of both consensus algorithms to create a net configuration. The
main Waves Enterprise blockchain is based on the Proof-of-Stake consensus algorithm, which is supported
by independent participants. At the same time, enterprise sidechains do not need to interact with miners
and can use the Proof-of-Authority algorithm. Sidechains are embedded in the main blockchain using the
anchoring mechanism, placing cryptographic proof of transactions in the main blockchain network.

Fig. 1: Network topology including Waves Enterprise and sidechains

5

Technical description of the Waves Enterprise platform, Release master

3.1 Node architecture and additional services

The node component is mandatory, since it ensures the functioning of and interaction within the blockchain
network. Other components serve auxiliary purposes that significantly simplify user interaction with the
blockchain platform. The Waves Enterprise Blockchain Platform instance consists of five basic modules and
several additional microservices. The main modules include:

• Node - The main software, which is installed on the computer and works directly with the blockchain.

• Waves Enterprise corporate client – A web-application that provides contemporary and multifunctional
user interface for the blockchain platform.

• Smart-contracts module – An environment for deploying and executing of Turing-complete Docker
smart-contracts. Docker containers with smart-contracts are deployed on remote virtual machine for
additional security.

• Data service – A service that aggregates data from the blockchain in RDBMS (PostrgreSQL) storage
and provides full-text search on any information within the blockchain via the RESTfull web service.

• Private store - A PostgreSQL database provides private information processing and storing mechanisms,
along with an encrypted peer-to-peer communication service.

Additional services include:

• Authorization service – A single authorization service for system components.

• Data crawler - A service that extracts data from blockchain node and loads it into data-service com-
ponent.

• Generator - A service that generates key pairs for new accounts and creates api-key-hash.

• Custom microservice plugins - A set of plugins for processing and customizing data transferred to and
from external systems.

• Monitoring Service – An external monitoring service that uses an open-source database (InfluxDB) to
store time rows with application data and metrics. The database is installed by the client separately.

Node components

The node includes the following internal components:

• Node API – A REST API node interface which can receive data from the blockchain, sign and send
transactions, send private data, and create and call smart contracts.

• Node storage – A system component that provides key-value storage (based on LevelDB) for a full set
of validated and confirmed transactions and blocks, same as the current state of objects.

• Unconfirmed transaction pool – A component that provides a temporary storage and queue service for
validated transactions until they are included into a block.

• Consensus and cryptolibraries – Configurable and customizable logical components responsible for
achieving agreement between nodes and cryptographic algorithms.

• Key store - A component used to store key pairs for the node itself and node users (optional). All keys
are secured by passwords.

• Miner – A component responsible for creating transaction blocks that are recorded in the blockchain.
The miner component is in charge of interaction with Docker-smart contracts.

• Network layer – A logic layer that provides interaction between nodes on the application level via
network protocol over the TCP.

6 Chapter 3. Architecture

Technical description of the Waves Enterprise platform, Release master

Fig. 2: A detailed diagram of the node architecture and additional microservices

3.1. Node architecture and additional services 7

Technical description of the Waves Enterprise platform, Release master

• Validation logic – A logic layer containing such transaction verification rules as basic sign verification
and advanced scripted verification.

• Config – A set of node configuration parameters specified in the node-name.conf file.

• Monitoring Service – An external monitoring service that uses an open-source database (InfluxDB) to
store time rows with application data and metrics. The InfluxDB database is installed by the client
separately.

8 Chapter 3. Architecture

CHAPTER

FOUR

WAVES-NG PROTOCOL

The Waves Enterprise Operation Protocol provides performance advantages relative to other blockchains.

4.1 Terms

• Block — A set of transactions registered in the blockchain, signed by the miner, and containing a link
to the proof of the previous block. Limited to 1 MB or 6000 transactions.

• Round — A period of time between the issuance of key blocks. This floating value is controlled by the
consensus algorithm depending on the load on the network, averaging 40 seconds.

• Proof of ownership — The acquisition of mining rights in the PoS consensus.

• Node — A network host that runs the Waves Enterprise blockchain application.

• Miner — A node whose address has sufficient balance and a “mining” permission.

• Key block — A block that contains no transactions, only service information such as:

– Miner public key — to verify proof of microblocks.

– Amount of miner’s fee for the previous block.

– Miner’s proof.

– Link to previous key block.

• Liquid Block — A service term to describe the state of a block before issuing the next key block, i.e.
completing its mining.

• Microblock — A service term for a set of transactions applied to the state of blockchain every 5 seconds.
Limited to 500 transactions. Each microblock is signed by the miner’s private key.

4.2 Protocol description

The Waves-NG protocol was developed by Waves Platform based on Bitcoin-NG to increase the throughput
of the Waves blockchain based on the architecture on which Waves Enterprise is implemented. The idea
of the protocol is to create microblocks continuously, rather than create one large block in each round of
mining. Small blocks can be forwarded and checked more quickly.

Mining rounds begin with generation of the key block. Each key block, along with the address of the miner
identified in it, are determined by consensus. (For more details, see Consensus.) A key block containing
only a proof with no transactions is generated quickly. Before the next block is generated, microblocks with
transactions are generated every five seconds without proof of stake, which increases the speed of processing.

9

https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

Technical description of the Waves Enterprise platform, Release master

Each microblock is linked to the previous one, and the key block is added to the blockchain as soon as the
next miner generates its key block.

This approach reduces the time to confirm a transaction compared to other blockchains.

4.2.1 1. Process for Creating a Liquid Block

1. The mining address is determined by consensus.

2. A miner creates and distributes a key block on the network.

3. Every 5 seconds, the miner creates a microblock containing transactions and sends it out to the network.
Each microblock must be linked to the previous microblock or key block.

4. The process continues until a new valid key block appears on the network.

4.2.2 2. Miner reward mechanism in Waves-NG

The Waves Enterprise protocol offers financial incentive for participants to comply with the rules of the
blockchain. 40 % of the block transaction fee is distributed to the miner who created the block, and 60 % of
the fee is given to the miner of the following block. The fee credit transaction is performed after 100 blocks
to ensure a trust interval of checks.

Fig. 1: Fee distribution diagram

4.2.3 3. Conflict resolution

A miner that continues the chain by creating two microblocks with the same parent is punished and loses
income from fees; the discoverer of the fraud receives the miner’s award for the block. The distributed nature
of blockchain means each node stores a copy of the blockchain. When the next microblock appears, the node
applies changes to its copy of the blockchain and checks it against other nodes of the network. At this point,
inconsistencies in transactions can be detected.

10 Chapter 4. Waves-NG Protocol

CHAPTER

FIVE

CONSENSUS ALGORITHMS

Blockchain is a decentralized system with no central authority. This makes the system non-corrupt, but it
also creates difficulties with final decision-making and organization of work. These problems are solved by
a consensus mechanism, which allows the blockchain’s participants to reach agreement. Voting takes into
account the majority opinion without the interests of the minority, but it also guarantees an agreement that
benefits the entire network.

You can choose the consensus mechanism during the initial configuration of the network. The description of
available mechanisms, as well as their pros and cons, are described below.

5.1 LPoS consensus algorithm

Proof of ownership with the right to lease. In PoS systems, the creation of a block does not require energy-
intensive calculations, the miner’s task is to create a digital block proof.

5.1.1 Proof of Stake

The mechanism for allocating block creation rights is based on the number of tokens in the user’s account.
The more tokens a user has, the more likely he or she can create a block.

In Proof of Stake consensus the right to generate a block is determined by pseudo-random way, because by
knowing the previous miner and balances of all users in the system the following miner can be identified.
This is possible due to a deterministic computation of a block’s generating signature, which can be obtained
by SHA256 hashing of current block’s generating signature and the account’s public key. The first 8 bytes
of the resulting hash is converted to a number, referred to as the account hit - Xn and will be a pointer to
the following miner. The time of block generation for account i is calculated as:

𝑇𝑖 = 𝑇𝑚𝑖𝑛 + 𝐶1 log(1− 𝐶2

log 𝑋𝑛

𝑋𝑚𝑎𝑥

𝑏𝑖𝐴𝑛
)

where:

• bi - a stake (stake of participant’s balance of overall balance of the system)

• An - baseTarget, the adaptive ratio, regulating the average time of issue of the block;

• Xn - an account hit;

• Tmin - 5 seconds, a constant defining the minimum time interval between blocks;

• C1 - a constant, which equals 70 and adjusts the form of allocation of the interval between blocks;

• C2 - a constant which equals 5E17 and adjusts the baseTarget value (complexity).

11

Technical description of the Waves Enterprise platform, Release master

Based on this formula, the probability of selecting the participant to be rewarded depends on the participant’s
stake of assets in the system. The bigger the stake, the higher the chance of reward. The minimum number of
tokens needed for mining is 50000 WEST. BaseTarget is a parameter that maintains the block generation
time within a given range. BaseTarget in its turn is calculated as:

(𝑆 > 𝑅𝑚𝑎𝑥 → 𝑇𝑏 = 𝑇𝑝 +𝑚𝑎𝑥(1,
𝑇𝑝

100
)) ∧ (𝑆 < 𝑅𝑚𝑖𝑛 ∧ ∧𝑇𝑏 > 1 → 𝑇𝑏 = 𝑇𝑝 −𝑚𝑎𝑥(1,

𝑇𝑝

100
))

where

• R max = 90 - a maximum reduction of complexity when the block generation time in the network
exceeds 40 seconds;

• Rmin = 30 - a minimal increase of complexity when the block generation time in the network is less
than 40 seconds;

• S - the average generation time, at least for the last three blocks;

• Tp - the previous baseTarget value;

• Tb - the computed baseTarget value.

For an advanced description of technical features and enhancements of the classic PoS algorithm, see this
article.

Advantages Over Proof of Work

The absence of complex calculations allows PoS networks to lower the hardware requirements for system
participants, which reduces the cost of deploying private networks. No additional emission is required, which
in PoW systems is used for rewarding miners for finding a new block. In PoS systems, a miner receives a
reward in the form of fees for transactions which appeared in its block.

5.1.2 Leased Proof of Stake

A user who has an insufficient stake for effective mining may transfer his balance for lease to another
participant and receive a portion of the income from mining. Leasing is a completely safe operation, as
tokens do not leave the user’s wallet, but are delegated to another miner, which gives the miner a greater
opportunity to earn mining rewards.

5.2 Proof of Authority

In a private blockchain, tokens are not always needed. For example, a blockchain can be used to store hashes
of documents exchanged by organizations. In this case, in the absence of tokens and fees from transactions,
a solution based on the PoS consensus algorithm is redundant. The Waves Enterprise Blockchain Platform
offers the option of a Proof of Authority (PoA) consensus algorithm. Mining permission is issued centrally in
the PoA algorithm, which simplifies the decision-making compared to the PoS algorithm. The PoA model is
based on a limited number of block validators, which makes it scalable. Blocks and transactions are verified
by pre-approved participants who act as moderators of the system.

12 Chapter 5. Consensus algorithms

https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/
https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/

Technical description of the Waves Enterprise platform, Release master

5.2.1 Algorithm description

An algorithm determining the miner of the current block is formed based on the parameters below. The
parameters of the consensus are specified in the consensus block of the node configuration file.

• t - the duration of a round in seconds (the parameter of the node configuration file: round-duration).

• ts - the duration of a synchronization period, calculated as t*0.1, but not more than 30 seconds (the
parameter of the node configuration file: sync-duration).

• Nban - a number of missed consecutive rounds for issuing the ban for the miner (the parameter of the
node configuration file: warnings-for-ban);

• Pban - a share of the maximum number of banned miners, in percentage from 0 to 100 (the parameter
of the node configuration file: max-bans-percentage);

• tban - the duration of the miner ban in blocks (the parameter of the node configuration file: ban-
duration-blocks).

• T0 - the unix time for generation the Genesis block.

• TH - the unix time for generation of H Block, a key block for NG.

• r - the round number, calculated as (TCurrent -T0) div (t+ ts).

• Ar - the leader of round r, which has the right to create key blocks and microblocks for NG in the
round r.

• H - the height of the chain in which the key block and microblocks for NG are created. The leader of
round Ar has the right to generate a block at height H.

• MH - the miner issuing block at height H.

• QH - the queue of miners active at height H.

The QH queue is generated using addresses which are given mining permissions by a permission transaction,
which was not revoked until height H and did not expire until the time TH .

The queue is sorted by the time stamp of the mining rights transaction. The node which was granted the
rights earlier will be higher in the queue. To keep the network consistent, this queue will be the same on
each node.

A new block is created at each round r. A round lasts t seconds. After each round, ts seconds count down
to complete data synchronization in the network. During the synchronization period, microblocks and key
blocks are not generated. For each round, a single leader, Ar , has the right to create a block in this round.
A leader can be defined on each node of the network with the same result. The leader of the round is defined
as follows:

1. Miner MH-1 is defined, which created the previous key block at height H-1.

2. The QH queue of active miners is calculated.

3. Inactive miners are excluded from the queue (see more in Exclusion of inactive miners).

4. If the H-1 block miner (MH-1) is in the QH queue, the following miner becomes the leader A r .

5. If the H-1 block miner (M H-1) is not in the Q H queue the miner following the H-2 block miner (M

H-2) becomes the leader A r and so on.

6. If no miners of blocks (H-1..1) are in the queue, the first miner in the queue becomes the leader.

This algorithm identifies and checks the miner, which creates each block of the chain by calculating the list of
authorized miners for each moment of time. If the block was not created by the designated leader within the
allotted time, no blocks are generated within that round, and the round is skipped. Leaders who skip block

5.2. Proof of Authority 13

Technical description of the Waves Enterprise platform, Release master

generation are temporarily excluded from the queue by the algorithm described in the paragraph Exclusion
of inactive miners.

The block generated by the leader Ar with the time of the block TH from the half-interval (T0 +(r-1)*(t+ts
); T0 +(r-1)*(t+ts)+t] is determined to be valid. The block created by the miner out of its turn or not in
time is considered invalid. After a round of t duration, the network synchronizes the data for ts . The leader
Ar has ts seconds to propagate the validation block over the network. If any node of the network during ts
has not received a block from the leader Ar , this node recognizes the round as “skipped” and expects a new
H block in the next round r+1, from the following leader Ar+1 .

Several consensus parameters — type (PoS or PoA), t, t s— are specified in the configuration file of the host
network. The parameter T should be the same for all network participants, otherwise the network will fork.

5.2.2 Synchronization of time between network hosts

Each host should synchronize the application time with a trusted NTP server at the beginning of each round.
The server address and port are specified in the node configuration file. The server must be available to each
network node.

5.2.3 Exclusion of inactive miners

If any miner has missed the block creation Nban times in a row, this miner is excluded from the queue at
tban subsequent blocks, which is determined by (ban-duration-blocks parameter in the configuration file).
The exception is made by each node on its own based on the calculated queue QH and information about
block H and miner MH . The Pban parameter specifies the maximum allowable share of excluded miners
in the network relative to all active miners at any given time. If at achievement of Nban round passes, the
maximum share of the excluded miners Pban is reached, the exception of the next miner is not made.

5.2.4 Monitoring

The PoA consensus monitoring helps to identify how non-valid blocks are created and distributed, as well
as how miners skip the queue. Network administrators perform additional troubleshooting and blocking of
malicious nodes.

To monitor the process of generating blocks using the PoA algorithm, the following details are entered in
InfluxDB:

• Active list of miners sorted by granting of mining rights.

• Scheduled round timestamp.

• Actual round timestamp.

• Current miner.

14 Chapter 5. Consensus algorithms

Technical description of the Waves Enterprise platform, Release master

5.2.5 Changing consensus settings

Changing consensus parameters (time of round and synchronization period) is performed based on the node
configuration file (see the insert) at the height from-height. If a node fails to specify new parameters, the
transaction will fork.

Sample configuration:

// specifying inside of the blockchain parameter

consensus {

type = poa

sync-duration = 10s

round-duration = 60s

ban-duration-blocks = 100

changes = [

{

from-height = 18345

sync-duration = 5s

round-duration = 60s

},

{

from-height = 25000

sync-duration = 10s

round-duration = 30s

}]

}

5.2. Proof of Authority 15

Technical description of the Waves Enterprise platform, Release master

16 Chapter 5. Consensus algorithms

CHAPTER

SIX

CRYPTOGRAPHY

The Waves Enterprise platform provides the possibility to choose the cryptography used depending on the
specifics of the project under implementation and the jurisdiction of the customer.

6.1 Hashing

Hashing operations in the platform are performed by Blake2b256 and Keccak256 functions sequentially,
or by “Stribog” function in accordance with GOST R 34.11-2012 “Information Technology. Cryptographic
protection of information. Hash function”. The output data block size is 256 bits.

6.2 Electronic signature

Algorithms for key generation, formation and verification of electronic signature are implemented on the
basis of Curve25519 elliptic curve (ED25519 with X25519 keys), or in accordance with GOST R 34.10-
2012 “Information technology. Cryptographic protection of information. The processes of formation and
verification of electronic digital signature”.

6.3 Data encryption

The platform implements the ability to encrypt data using session keys based on the Diffi-Helman protocol.
This operation is used to encrypt any type of text information, such as smart contract data, which should not
be available to other blockchain participants. Encryption can be performed individually for each recipient,
with the formation of a unique instance of ciphertext, or with the formation of a single ciphertext for a group
of recipients.

The algorithms used for symmetric encryption comply with the AES standard or GOST R 34.12-2015
“Information technology. Cryptographic protection of information. Block cipher”.

Symmetric CEK and KEK keys are used to encrypt/decrypt data. CEK (Content Encryption Key) is the
key for the encrypting text data, KEK (Key Encryption Key) is the key for encrypting the CEK. The CEK
key is generated by a node randomly using the appropriate hashing algorithms. The KEK key is generated
by a node based on Diffie-Hellman algorithm, using public and private keys of sender and recipients, and is
used to encrypt the CEK key.

For a description of encryption methods and their use, see Data encryption operations.

17

Technical description of the Waves Enterprise platform, Release master

18 Chapter 6. Cryptography

CHAPTER

SEVEN

ROLE MODEL

The blockchain platform implements a mechanism limiting actions of participants based on the role model
which allows the platform owner to protect participants from threats, such as:

• attacks of unscrupulous miners on blockchain network;

• unauthorized issue of tokens;

• unauthorized access to confidential information;

• other illegal actions of intruders.

The procedure for issuing and revoking permissions is given in module Role management .

7.1 Roles list

The following table provides a list of possible platform roles:

Role name Authority

permissioner Add transactions to modify the permission list
blacklister Add transactions to modify the black list
miner Create new blocks
issuer Add transactions for issuing, reissuing, and burning tokens
dex Add the exchange transaction (deprecated)
con-
tract_developer

Add the transaction to create a docker contract

connection-
manager

Add the transaction for registering/deleting node in the blockchain network

banned It is forbidden to send any transactions to the blockchain. A group of all participants
with this role forms a blacklist

7.2 Permission model

Permission model describes a mechanism for applying different types of permissions when validating opera-
tions in a blockchain.

Hint: The node with the permissioner role can assign to itself any existing role in the system.

19

Technical description of the Waves Enterprise platform, Release master

Action Action permission condition

Assign or remove a role Available permissioner role
Add or Remove from blacklist Available blacklister role
Registration of the new node to the net Available contract_developer role
Generation and issue of blocks Available miner role
Token operations (issue, reissue, burn) Available issuer role
Token transfer (transfer, mass transfer) User not in the blacklist
Token leasing (lease, lease cancel) User not in the blacklist
Creating an alias (alias) User not in the blacklist
Create a docker contract Available contract_developer role
Execution of docker contract User not in the blacklist

7.3 Update the permission list

A permission transaction is used to modify the permission list.

JSON description:

• Transaction Type

• Version

• Sender PublicKey

• Target Address or Alias

• Timestamp

• Operation Byte

• Role Byte

• Timestamp

• Due Timestamp Defined Byte (0 - None, 1 - Defined)

• Due Timestamp Bytes

The following diagram shows the sequence of actions when updating a permission list.

20 Chapter 7. Role model

Technical description of the Waves Enterprise platform, Release master

When modifying the permission list, the platform performs the following checks:

1. Sender is not in the blacklist.

2. Sender has the role of permissioner.

3. DueTimestamp (role duration) > Timestamp (current time).

4. This role is not active (if added) or active (if removed).

7.3. Update the permission list 21

Technical description of the Waves Enterprise platform, Release master

22 Chapter 7. Role model

CHAPTER

EIGHT

ACCESS MANAGING

The Waves Enterprise Blockchain Platform implements a closed blockchain model where the addition of new
participants is controlled by an individual user with authority. The closed model also supports the restriction
for the data access for all participants. This model offers increased security compared to open blockchains
and added flexibility in configuring access levels and distribution of rights.

Only a user with the “Connection Manager” role can add new participants to the Waves Enterprise blockchain.
The 111 RegisterNode transaction is used to connect a new node to the network. This transaction contains
the credentials of the connected node. Each node creates and updates the table, which includes all approved
network participants.

A handshake-message.

The process of disconnecting a participant from the network is similar to the process of connection, except
that the “Connection Manager” user sends the 111 RegisterNode transaction with the "opType": "remove"

23

Technical description of the Waves Enterprise platform, Release master

parameter. Since the handshake request is executed once every 30 seconds, the next request after the partic-
ipant is removed from the network will be denied, as the connected participant would now lack credentials
in the blockchain node table.

24 Chapter 8. Access managing

CHAPTER

NINE

DATA PRIVACY

The Waves Enterprise Blockchain Platform provides confidential data transfer and storage between partic-
ipants interacting on the network. The protection of confidential data during its transfer and storage is
provided by a set of groups, which contain a list of participants that can interact with private data.

9.1 Access groups

Access groups are created by network participants who need to arrange a private data exchange. Any
participant can create an access group and add into it any number of other participants. Only nodes can
exchange information within a group.

The group contains the following parameters:

• name (policyName);

• description (policyDescription);

• duaration (policyDueDate);

• the list of confidential data recipients (policyRecipients);

• the list of the policy owners with editing rights (policyOwners).

The access group is created by sending a CreatePolicy transaction (type = 112, group creation) to the
blockchain.

Owners can change the access group by sending the UpdatePolicy transaction (type = 113, group editing)
to the blockchain.

For external access and getting the information about groups there are using specified API Node requests: GET
/privacy/{policy}/recipients, GET /privacy/{policy}/getHashes, GET /privacy/getInfo/{hash}.

25

Technical description of the Waves Enterprise platform, Release master

9.2 Sending and receiving the data

The data is sent via POST /privacy/sendData request through its own node of the organization, which
checks whether the sender is a member of the specified group. If that check is successful, the data is written
to the node store, and the PolicyDataHash transaction (type = 114, sending the data hash) is initiated with
the calculated hash sum of the data. The size limit for transferring data to the network is 20 MB.

When a receiving party receives a transaction with the hash sum from the transmitted data, it checks
whether the blockchain node is involved in the group specified in the transaction. If the participant belongs
to the group, the getPrivateData request for confidential data is executed at the network address of the
group participant via P2P connection. To ensure the security of data transmission over an unprotected
communication channel, a set of encryption algorithms and the Diffey-Hellman protocol are used.

26 Chapter 9. Data Privacy

CHAPTER

TEN

CLIENT

Waves Enterprise client is a convenient way to manage your blockchain. Client is intended for operations in
the Waves Enterprise public network .

The client includes sections for use of all blockchain features:

• “Data” — allows to find information about transactions or users through flexible search and advanced
filter system.

• “Tokens” — allows to transfer, issue, lease tokens.

• “Contracts” — provides tools for publishing and calling docker contracts. Contracts are available for
publishing from the repository, the address of which was specified when the client was built.

• “Enter Data” — allows sending data transactions and files from the interface.

• “Settings” — allows managing permissions for user actions in the blockchain.

The client supports the following browsers:

• Google Chrome.

• Mozilla Firefox.

• Opera.

• Apple Safari.

27

https://client.wavesenterprise.com

Technical description of the Waves Enterprise platform, Release master

• Microsoft Edge.

If the client web interface does not work properly, or if you see any errors during loading pages, please,
update your browser to the latest version.

Data

This section contains information about blockchain transactions. For information, use the filter and the
search string to specify the transaction fields to search for.

Available transaction filters:

• All transactions - displays of all transactions.

• Data transactions - displays of the data transactions.

• Tokens - a selection of transactions with tokens. When this value is selected, an additional option
of contextual filtering by types of token operations (for example, transfer, lease or issue of tokens)
appears.

• Permissions - a transactions selection by operations with aliases and by user permissions. When
selected, context filters are available by permission type (for example, mining, contract publishing, or
access control).

• Groups - a selection of privacy data access groups transactions. When this value is selected, an
additional option of contextual filtering by operation types (for example, a creation or an update of
the access group) appears.

• Contracts - a selection of the contracts transactions. When this value is selected, an additional option
of contextual filtering by contracts types (for example, Docker or RIDE) appears.

• Unconfirmed transactions - a selection of the unconfirmed transactions.

• Users - users info. When this value is selected, an additional option of contextual filtering by permissions
types (for example, mining, publish smart-contract or access control) appears.

Tokens

This section shows the balance of authorized account. Allows transferring tokens to other network partici-
pants, transfer tokens for lease and manage tokens. Token management requires the “Token Management”
permission.

Contracts

The section displays information on existing contracts in the network and allows you to run the selected
contracts. You can use the search string with transaction parameters for the filtration. Contract publishing
requires the “contract-developer” role.

Data transactions

The section allows to create data transactions and view information about existing data transactions.

Settings

The section contains basic information about the user’s account (public and private keys, secret phrase),
also the current version of the client and allows you to change the language of the interface. Also you can
add permissions to another users. This option requires the “permissioner” role.

28 Chapter 10. Client

CHAPTER

ELEVEN

BLOCKS, TRANSACTIONS, MESSAGES

11.1 Blocks

This module contains the structure of block storage in the Waves Enterprise blockchain.

Field order number Field Type Field size in bytes

1 Version (0x02 for Genesis block, 0x03 for common block) Byte 1
2 Timestamp Long 8
3 Parent block signature Bytes 64
4 Consensus block length (always 40 bytes) Int 4
5 Base target Long 8
6 Generation signature* Bytes 32
7 Transactions block length (N) Int 4
8 Transaction #1 bytes Bytes M1
.
8 + (K - 1) Transaction #K bytes Bytes MK
9 + (K - 1) Generator’s public key Bytes 32
10 + (K - 1) Block’s signature Bytes 64

Generation signature is calculated based on the hash (Blake2b256) of the following fields:

Field order number Field Type Field size in bytes

1 Previous block’s generation signature Bytes 32
2 Generator’s public key Bytes 32

The block signature is calculated based on the following data:

Field order number Field Type Field size in bytes

1 Version (0x02 for Genesis block„ 0x03 for common block) Byte 1
2 Timestamp Long 8
3 Parent block signature Bytes 64
4 Consensus block length (always 40 bytes) Int 4
5 Base target Long 8
6 Generation signature* Bytes 32
7 Transactions block length (N) Int 4
8 Transaction #1 bytes Bytes M1
.
8 + (K - 1) Transaction #K bytes Bytes MK
9 + (K - 1) Generator’s public key Bytes 32

29

Technical description of the Waves Enterprise platform, Release master

11.2 Transactions

In this section we can see the structure of transaction storage in the blockchain platform of Waves Enterprise.
For some types of transactions, versioning is introduced.

Important: All transactions use the timestamp field containing a time stamp in the Unix Timestamp
format in milliseconds.

Table 1: Transaction types

№ Transaction type Description

1 Genesis transaction Initial binding of the balance to the addresses of nodes created at the
start of the blockchain

3 Issue Transaction Tokens issue
4 Transfer Transaction Tokens transfer
5 Reissue Transaction Tokens reissue
6 Burn Transaction Tokens burn
8 Lease Transaction Tokens lease
9 Lease Cancel Transaction Cancel of the tokens lease
10 Create Alias Transaction Alias creation
11 MassTransfer Transac-

tion
Mass tokens transfer. Minimum commission is specified

12 Data Transaction Transaction with the data in the key-value pairs format. Minimum
commission is specified

13 SetScript Transaction Transaction which is binding a script with a RIDE contract to an ac-
count

14 Sponsorship Transaction Transaction which is signing a sponsorship asset
15 SetAssetScript Transaction which is binding a script with a RIDE contract to an asset
101 Genesis Permission

Transaction
Assignment of the first network administrator for further distribution
of rights

102 Permission Transaction Issuance/withdrawal of rights from the account
103 CreateContract Transac-

tion
Docker-contract creation

104 CallContract Transac-
tion

Docker-contract call

105 ExecutedContract Trans-
action

Docker-contract execution

106 DisableContract Transac-
tion

Docker-contract disable

107 UpdateContract Transac-
tion

Docker-contract update

110 GenesisRegisterNode
Transaction

Node registration in the genesis block with the blockchain start

111 RegisterNode Transac-
tion

A new node registration

112 CreatePolicy Transaction Access group creation
113 UpdatePolicy Transac-

tion
Update the access group

114 PolicyDataHash Trans-
action

A data hash sending to the net

30 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

For more information, see Commissions on the network “Waves Enterprise Mainnet”

11.2.1 1. Genesis transaction

Field Broadcasted JSON Blockchain state Type

type + + Byte
id + Byte
fee + Long
timestamp + + Long
signature + ByteStr
recipient + + ByteStr
amount + + Long
height +

11.2.2 3. Issue Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
assetId + ByteStr
name + + + Array[Byte]
quantity + + + Long
reissuable + + + Boolean
decimals + + + Byte
description + + + Array[Byte]
chainId + + Byte
script + (opt) + + Bytes
password + (opt) String
height +

JSON to sign

{

"type": 3,

"version":2,

"name": "Test Asset 1",

"quantity": 100000000000,

"description": "Some description",

"sender": "3FSCKyfFo3566zwiJjSFLBwKvd826KXUaqR",

"password": "",

"decimals": 8,

"reissuable": true,

"fee": 100000000

}

11.2. Transactions 31

Technical description of the Waves Enterprise platform, Release master

Broadcasted JSON

{

"type": 3,

"id": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"sender": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": 100000000,

"timestamp": 1549378509516,

"proofs": [

→˓"NqZGcbcQ82FZrPh6aCEjuo9nNnkPTvyhrNq329YWydaYcZTywXUwDxFAknTMEGuFrEndCjXBtrueLWaqbJhpeiG"],

"version": 2,

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"name": "Token Name",

"quantity": 10000,

"reissuable": true,

"decimals": 2,

"description": "SmarToken",

"chainId": 84,

"script": "base64:AQa3b8tH",

"height": 60719

},

11.2.3 4. Transfer Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
recipient + + + ByteStr
assetId + (opt) + + ByteStr
fee assetId + (opt) + + Bytes
amount + + + Long
attachment + (opt) + + Bytes
password + (opt) String
height +

JSON to sign

{

"type": 4,

"version": 2,

"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"password": "",

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"amount": 40000000000,

"fee": 100000

}

32 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

Broadcasted JSON

{

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"amount": 200000000,

"fee": 100000,

"type": 4,

"version": 2,

"attachment": "3uaRTtZ3taQtRSmquqeC1DniK3Dv",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"feeAssetId": null,

"proofs": [

"2hRxJ2876CdJ498UCpErNfDSYdt2mTK4XUnmZNgZiq63RupJs5WTrAqR46c4rLQdq4toBZk2tSYCeAQWEQyi72U6"

],

"assetId": null,

"recipient": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL",

"id": "757aQzJiQZRfVRuJNnP3L1d369H2oTjUEazwtYxGngCd",

"timestamp": 1558952680800

}

11.2.4 5. Reissue Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
chainId + + Byte
assetId + + + ByteStr
quantity + + + Long
reissuable + + + Boolean
password + (opt) String
height

JSON to sign

{

"type": 5,

"version":2,

"quantity": 10000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"reissuable": true,

"fee": 100000001

}

Broadcasted JSON

11.2. Transactions 33

Technical description of the Waves Enterprise platform, Release master

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"quantity": 10000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"3gmgGM6rYpxuuR5QvJkugPsERG7yWYF7JN6QzpUGJwT8Lw6SUHkzzk8R22A7cGQz7TQQ5NifKxvAQzwPyDQbwmBg"],

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee": 100000001,

"id": "GsNvk15Vu4kqtRmMSpYW21WzgJpZrLBwjCREHWuwnvh5",

"type": 5,

"version": 2,

"reissuable": true,

"timestamp": 1551447859299,

"height": 1190

}

11.2.5 6. Burn Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
chainId + + Byte
assetId + + + ByteStr
quantity + + Long
amount + Long
password + (opt) String
height

JSON to sign

{

"type": 6,

"version": 2,

"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",

"password": "",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"quantity": 1000,

"fee": 100000,

"attachment": "string"

}

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

(continues on next page)

34 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"amount": 1000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"kzTwsNXjJkzk6dpFFZZXyeimYo6iLTVbCnCXBD4xBtyrNjysPqZfGKk9NdJUTP3xeAPhtEgU9hsdwzRVo1hKMgS"],

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee": 100000,

"id": "3yd2HZq7sgun7GakisLH88UeKcpYMUEL4sy57aprAN5E",

"type": 6,

"version": 2,

"timestamp": 1551448489758,

"height": 1190

}

11.2.6 8. Lease Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
amount + + + Long
recipient + + + ByteStr
status +
password + (opt) String
height +

JSON to sign

{

"type": 8,

"version": 2,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",

"amount": 1000,

"fee": 100000

}

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"amount": 1000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"proofs": [

→˓"5jvmWKmU89HnxXFXNAd9X41zmiB5fSGoXMirsaJ9tNeyiCAJmjm7MR48g789VucckQw2UExaVXfhsdEBuUrchvrq"],

"fee": 100000,

(continues on next page)

11.2. Transactions 35

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",

"id": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"type": 8,

"version": 2,

"timestamp": 1551449299545,

"height": 1190

}

11.2.7 9. Lease Cancel Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
chainId + + Byte
leaseId + (txId) + + Byte
leaseId +
password + (opt) String
height +

JSON to sign

{

"type": 9,

"version": 2,

"fee": 100000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"txId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp"

}

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"leaseId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [

→˓"2Gns72hraH5yay3eiWeyHQEA1wTqiiAztaLjHinEYX91FEv62HFW38Hq89GnsEJFHUvo9KHYtBBrb8hgTA9wN7DM"],

"fee": 100000,

"id": "9vhxB2ZDQcqiumhQbCPnAoPBLuir727qgJhFeBNmPwmu",

"type": 9,

"version": 2,

"timestamp": 1551449835205,

"height": 1190

}

36 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.8 10. Create Alias Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
alias + + + Bytes
password + (opt) String
height +

JSON to sign

{

"type": 10,

"version": 2,

"fee": 100000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"alias": "hodler"

}

Broadcasted JSON

{

"type": 10,

"id": "DJTaiMpb7eLuPW5GcE4ndeE8jWsWPjx8gPYmbZPJjpag",

"sender": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": 0,

"timestamp": 1549290335781,

"signature":

→˓"2qYepod9DhpxVad1yQDbv1QzU4KLKcbjjdtGY7De2272K76nbQfaXsRnyd31hUE8bhvLjjpHRdtoLVzbBDzRZYEY",

"proofs": [

→˓"2qYepod9DhpxVad1yQDbv1QzU4KLKcbjjdtGY7De2272K76nbQfaXsRnyd31hUE8bhvLjjpHRdtoLVzbBDzRZYEY"],

"version": 1,

"alias": "testperson4",

"height": 59245

}

11.2. Transactions 37

Technical description of the Waves Enterprise platform, Release master

11.2.9 11. MassTransfer Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
assetId + (opt) + + ByteStr
attachment + (opt) + +
number of transfers + + + List[Transfer]
transferCount + +
totalAmount +
password + (opt) String
height +

JSON to sign

{

"type": 11,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 2000000,

"version": 1,

"transfers":

[

{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000 },

{ "recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc", "amount": 100000 }

],

"height": 1190

}

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"fee": 2000000,

"type": 11,

"transferCount": 2,

"version": 1,

"totalAmount": 200000,

"attachment": "",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"proofs": [

→˓"2gWpMWdgZCjbygCX5US3aAFftKtGPRSK3aWGJ6RDnWJf9hend5sBFAgY6u3Mp4jN8cqwaJ5o8qrKNedGN5CPN1GZ"],

"assetId": null,

"transfers":

[

{

"recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB",

"amount": 100000

},

(continues on next page)

38 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

{

"recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc",

"amount": 100000

}

],

"id": "D9jUSHHcJqVAvkFMiRfDBhQbUzoSfQqd9cjaunMmtjdu",

"timestamp": 1551450279637

}

11.2.10 12. Data Transaction

Warning: The transaction has limits:

1. "key":"value" pairs count no more than 100,

"data": [

{

"key": "objectId",

"type": "string",

"value": "obj:123:1234"

}, {...}

]

2. The byte composition of the signed transaction should not exceed more than 150 KB.

Hint: You do not need to specify the senderPublicKey parameter if you are signing a transaction where
the author and the sender are the same.

Field JSON to
sign

Broadcasted
JSON

Blockchain
state

Type Size
(Bytes)

type + + + Byte 1
id + Byte 1
sender + + PublicKeyAc-

count
3264

sender’s public
key

+ (opt) + + PublicKeyAc-
count

3264

fee + + + Long 8
timestamp + (opt) + + Long 8
proofs + + List[ByteStr] 32767
version + + Byte 1
authorPublicKey + + PublicKeyAc-

count
3264

author + + 3264
data + + + 3264
password + (opt) String 32767
height + 8

JSON to sign

11.2. Transactions 39

Technical description of the Waves Enterprise platform, Release master

{

"type": 12,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"author": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"data": [

{

"key": "objectId",

"type": "string",

"value": "obj:123:1234"

}

],

"fee": 100000

}

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"authorPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"data":

[

{

"type": "string",

"value": "obj:123:1234",

"key": "objectId"

}

],

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"proofs": [

→˓"2T7WQm5XW8cFHfiFkdDEic9oNiT7aFiH3TyKkARERopr1VJvzRKqHAVnQ3eiYZ3uYN8uQnPopQEH4XV8z5SgSwsf"],

"author": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"fee": 100000,

"id": "7dMMCQNTusahZ7DWtNGjCwAhRYpjaH1hsepRMbpn2BkD",

"type": 12,

"version": 1,

"timestamp": 1551680510183

}

40 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.11 13. SetScript Transaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
chainId + + Byte
version + + + Byte
script + (opt) + + Bytes
name + + + Array[Byte]
description + (opt) + + Array[Byte]
password + (opt) String
height +

JSON to sign

{

"type": 13,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 1000000,

"name": "faucet",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="

}

Broadcasted JSON

{

"type": 13,

"id": "HPDypnQJHJskN8kwszF8rck3E5tQiuiM1fEN42w6PLmt",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"fee": 1000000,

"timestamp": 1545986757233,

"proofs": [

→˓"2QiGYS2dqh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzojmR2kjppvGNj4tDPsYPbcDunqBaqhaudLyMeGFgG"],

"chainId": 84,

"version": 1,

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",

"name": "faucet",

"description": "",

"height": 3805

}

11.2. Transactions 41

Technical description of the Waves Enterprise platform, Release master

11.2.12 14. SponsorshipTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
assetId + (opt) + + ByteStr
fee + + + Long
isEnabled + + + Boolean
timestamp + (opt) + + Long
proofs + + List[ByteStr]
chainId + + Byte
version + + + Byte
script + (opt) + + Bytes
name + + + Array[Byte]
description + (opt) + + Array[Byte]
password + (opt) String
height +

JSON to sign

{

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"fee": 100000000,

"isEnabled": false,

"type": 14,

"password": "1234",

"version": 1

}

Broadcasted JSON

{

"type": 14,

"id": "Ht6kpnQJHJskN8kwszF8rck3E5tQiuiM1fEN42wGfdk7",

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"senderPublicKey": "Gt55fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUophy89",

"fee": 100000000,

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"timestamp": 1545986757233,

"proofs": [

→˓"5TfgYS2dqh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzojmR2kjppvGNj4tDPsYPbcDunqBaqhaudLyMeGFh7"],

"chainId": 84,

"version": 1,

"isEnabled": false,

"height": 3865

}

42 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.13 15. SetAssetScriptTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
chainId + + Byte
assetId + + + ByteStr
script + (opt) + + Bytes
password + (opt) String
height +

JSON to sign

{

"type": 15,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 100000000,

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",

"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg"

}

Broadcasted JSON

{

"type": 15,

"id": "CQpEM9AEDvgxKfgWLH2HxE82iAzpXrtqsDDcgZGPAF9J",

"sender": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": 100000000,

"timestamp": 1549448710502,

"proofs": [

→˓"64eodpuXQjaKQQ4GJBaBrqiBtmkjSxseKC97gn6EwB5kZtMr18mAUHPRkZaHJeJxaDyLzGEZKqhYoUknWfNhXnkf"],

"version": 1,

"chainId": 84,

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ==",

"height": 61895

}

11.2. Transactions 43

Technical description of the Waves Enterprise platform, Release master

11.2.14 101. GenesisPermitTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + Byte
id + Byte
fee + Long
timestamp + + Long
signature + ByteStr
target + + ByteStr
role + + String
height

11.2.15 102. PermissionTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + Byte
target + + + ByteStr
PermissionOp + PermissionOp
opType + + String
role + + String
dueTimestamp + (opt) + Option[Long]
password + (opt) String
height +

JSON to sign

{

"type":102,

"sender":"3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"password": "",

"senderPublicKey":"4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"fee":0,

"proofs":[""],

"target":"3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL",

"opType":"add",

"role":"contract_developer",

"dueTimestamp":null

}

Broadcasted JSON

{

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"role": "contract_developer",

(continues on next page)

44 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"proofs": [

"5ABJCRTKGo6jmDZCRWcLQc257CCeczmcjmtfJmbBE7TP3KsVkwvisH9kEkfYPckVCzEMKZTCd3LKAPcN8o4Git3j"

],

"fee": 0,

"opType": "add",

"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7Q23FW1KWepB9EZcFG6",

"type": 102,

"dueTimestamp": null,

"timestamp": 1559048837487,

"target": "3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL"

}

11.2.16 103. CreateContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

The contractVersion field specifies the contract version, the 1 value is for the new contract, and the 2

value is for the updated contract. The contract is updated by using the 107 transaction. When you create
a contract, the 104 transaction is automatically created, this transaction is calling the contract to validate
it. If the contract fails or runs with error, transactions 103 and 104 will be discarded and will not fall into
the block.

The feeAssetId field is optional and used only for gRPC contracts (the field value version = 2).

Field JSON to
sign

Broadcasted
JSON

Blockchain
state

Type Size(Bytes)

type + + + Byte 1
id + Byte 1
sender + + PublicKeyAc-

count
3264

sender’s public
key

+ + PublicKeyAc-
count

3264

password + (opt) String 32767
fee + + + Long 8
timestamp + (opt) + + Long 8
proofs + + List[ByteStr] 32767
version + + Byte 1
fee assetId + (opt) Byte 1
image + + + Array[Bytes] 32767
imageHash + + + Array[Bytes] 32767
contractName + + + Array[Bytes] 32767
params + + + List[DataEntry[_]] 32767
height + 8

JSON to sign

{

"fee": 100000000,

(continues on next page)

11.2. Transactions 45

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2",

"password": "",

"params": [],

"type": 103,

"version": 1,

}

Broadcasted JSON

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

}

11.2.17 104. CallContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

Field JSON to
sign

Broadcasted
JSON

Blockchain
state

Type Size(Bytes)

type + + + Byte 1
id + Byte 1
sender + + PublicKeyAc-

count
3264

sender’s public
key

+ + PublicKeyAc-
count

3264

fee + + + Long 8
timestamp + (opt) + + Long 8
proofs + + List[ByteStr] 32767
version + + Byte 1
contractVersion + + + Byte 1
contractId + + + ByteStr 32767
params + + + List[DataEntry[_]] 32767
height + 8
password + (opt) String 32767

46 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

JSON to sign

{

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"fee": 10,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"params":

[

{

"type": "integer",

"key": "a",

"value": 1

},

{

"type": "integer",

"key": "b",

"value": 100

}

],

"version": 1,

"contractVersion": 1

}

Broadcasted JSON

{

"type": 104,

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 10,

"timestamp": 1549365736923,

"proofs": [

→˓"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v"],

"version": 1,

"contractVersion": 1,

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"params":

[

{

"key": "a",

"type": "integer",

"value": 1

},

{

"key": "b",

"type": "integer",

"value": 100

}

]

}

11.2. Transactions 47

Technical description of the Waves Enterprise platform, Release master

11.2.18 105. ExecutedContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

Field Broadcasted JSON Blockchain state Type

type + + Byte
id + Byte
sender + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + Long
timestamp + + Long
proofs + + List[ByteStr]
version + + Byte
tx + + ExecutableTransaction
results + + List[DataEntry[_]]
height +
password + (opt) String

Broadcasted JSON

{

"type": 105,

"id": "38GmSVC5s8Sjeybzfe9RQ6p1Mb6ajb8LYJDcep8G8Umj",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"password": "",

"fee": 500000,

"timestamp": 1550591780234,

"proofs": [

→˓"5whBipAWQgFvm3myNZe6GDd9Ky8199C9qNxLBHqDNmVAUJW9gLf7t9LBQDi68CKT57dzmnPJpJkrwKh2HBSwUer6"],

"version": 1,

"tx":

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

},

"results": [],

"height": 1619

}

48 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.19 106. DisableContractTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + Byte
contractId + + + ByteStr
height +
password + (opt) String

JSON to sign

{

"sender":"3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"password": "",

"contractId":"Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4ZwMpg",

"fee":500000,

"type":106

}

Broadcasted JSON

{

"type": 106,

"id": "8Nw34YbosEVhCx18pd81HqYac4C2pGjyLKck8NhSoGYH",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"proofs": [

→˓"5GqPQkuRvG6LPXgPoCr9FogAdmhAaMbyFb5UfjQPUKdSc6BLuQSz75LAWix1ok2Z6PC5ezPpjqzqnr15i3RQmaEc"],

"version": 1,

"contractId": "Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4ZwMpg",

"height": 1632

}

11.2. Transactions 49

Technical description of the Waves Enterprise platform, Release master

11.2.20 107. UpdateContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

Field JSON to
sign

Broadcasted
JSON

Blockchain
state

Type Size(Bytes)

type + + + Byte 1
id + Byte 1
sender + + PublicKeyAc-

count
3264

sender’s public
key

+ + PublicKeyAc-
count

3264

image + + + Array[Bytes] 32767
imageHash + + + Array[Bytes] 32767
fee + + + Long 8
timestamp + (opt) + + Long 8
proofs + + List[ByteStr] 32767
version + + + Byte 1
contractId + + + ByteStr 32767
height + 8
password + (opt) String 32767

JSON to sign

{

"image" : "registry.wvservices.com/we-sc/tdm-increment3:1028.1",

"sender" : "3Mxxz9pBYS5fJMARJNQmzYUHxiWAtvMzSRT",

"password": "",

"fee" : 100000000,

"contractId" : "EnsihTUHSNAB9RcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",

"imageHash" : "0e5d280b9acf6efd8000184ad008757bb967b5266e9ebf476031fad1488c86a3",

"type" : 107,

"version" : 1

}

Broadcasted JSON

{

"senderPublicKey":

→˓"5qBRDm74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEyJwW",

"tx":

{

"senderPublicKey":

→˓"5qBRDm74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEyJwW",

"image":"registry.wvservices.com/we-sc/tdm-increment3:1028.1",

"sender":"3Mxxz9pBYS5fJMARJNQmzYUHxiWAtvMzSRT",

"proofs":[

→˓"3tNsTyteeZrxEbVSv5zPT6dr247nXsVWR5v7Khx8spypgZQUdorCQZV2guTomutUTcyxhJUjNkQW4VmSgbCtgm1Z"],

"fee":0,

"contractId":"EnsihTUHSNAB9RcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",

"id":"HdZdhXVveMT1vYzGTviCoGQU3aH6ZS3YtFpYujWeGCH6",

"imageHash":"17d72ca20bf9393eb4f4496fa2b8aa002e851908b77af1d5db6abc9b8eae0217",

(continues on next page)

50 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"type":107,"version":1,"timestamp":1572355661572},

"sender":"3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG",

"proofs":[

→˓"28ADV8miUVN5EFjhqeFj6MADSXYjbxA3TsxSwFVs18jXAsHVaBczvnyoUSaYJsjRNmaWgXbpbduccRxpKGTs6tro"],

"fee":0,"id":"7niVY8mjzeKqLBePvhTxFRfLu7BmcwVfqaqtbWAN8AA2",

"type":105,

"version":1,

"results":[],

"timestamp":1572355666866

}

}

11.2.21 110. GenesisRegisterNodeTransaction

Field Broadcasted JSON Blockchain state Type

type + + Byte
id + Byte
fee + Long
timestamp + + Long
signature + Bytes
version + Byte
targetPubKey + +
height +

11.2.22 111. RegisterNodeTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + Byte
targetPubKey + + + PublicKeyAccount
nodeName + + + String
opType + + +
height +
password + (opt) String

JSON to sign

{

"type": 111,

"opType": "add",

"sender":"3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"password": "",

(continues on next page)

11.2. Transactions 51

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"targetPubKey": "apgJP9atQccdBPAgJPwH3NBVqYXrapgJP9atQccdBPAgJPwHapgJP9atQccdBPAgJPwHDKkh6A8",

"nodeName": "Node #1",

"fee": 500000,

}

11.2.23 112. CreatePolicyTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + + Byte
sender + + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
policyName + + + String
recipients + + + Array[Byte]
owners + + + Array[Byte]
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
height + Long
description + + + String
password + (opt) String

JSON to sign

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()*%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112

}

52 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.24 113. UpdatePolicyTransaction

Field JSON to sign Broadcasted JSON Blockchain state Type

type + + + Byte
id + + Byte
sender + + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
policyName + + + String
recipients + + + Array[Byte]
owners + + + Array[Byte]
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
height + Long
opType + + +
description + + + String
password + (opt) String

JSON to sign

{

"policyId": "7wphGbhqbmUgzuN5wzgqwqtViTiMdFezSa11fxRV58Lm",

"password":"sfgKYBFCF@#$fsdf()*%",

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"proofs": [],

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"3NwJfjG5RpaDfxEhkwXgwD7oX21NMFCxJHL"

],

"fee": 15000000,

"opType": "add",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 113,

}

11.2. Transactions 53

Technical description of the Waves Enterprise platform, Release master

11.2.25 114. PolicyDataHashTransaction

When the user sends confidential data to the network using POST /privacy/sendData, the node automati-
cally will create the 114 transaction.

Field Broadcasted JSON Blockchain state Type

type + + Byte
id + + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
policyId + + String
dataHash + + String
fee + + Long
timestamp + + Long
proofs + + List[ByteStr]
height + Long

11.3 Network messages

This section describes the structure of network messages in the Waves Enterprise blockchain platform.

11.3.1 Network message

All network messages, except Handshake, are based on the following structure:

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Payload Bytes N

Magic Bytes are 0x12, 0x34, 0x56, 0x78. Payload checksum is first 4 bytes of_FastHash_of Payload bytes.
FastHash is hash function Blake2b256(data).

11.3.2 Handshake message

Handshake message is intended for primary data exchange between two nodes. An authorized Handshake
contains the node owner’s blockchain address and signature. Unsigned Handshakes are not accepted.

54 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

Authorized Handshake

Field order num-
ber

Field Type Field size in
bytes

1 HandshakeType byte 1
2 Application name length (N) Byte 1
3 Application name (UTF-8 encoded bytes) Bytes N
4 Application version major Int 4
5 Application version minor Int 4
6 Application version patch Int 4
7 Consensus name lenght (P) Byte 1
8 Consensus name lenght (UTF-8 encoded bytes) Bytes P
9 Node name length (M) Byte 1
10 Node name (UTF-8 encoded bytes) Bytes M
12 Node nonce Long 8
13 Declared address length (K) or 0 if no declared address was

set
Int 4

14 Declared address bytes (if length is not 0) Bytes K
15 Peer port Int 4
16 Node owner address Bytes 26
17 Signature Bytes 64

11.3.3 GetPeers message

GetPeers message is sent to request network addresses of network participants.

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x01) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4

11.3.4 Peers message

Peers message is a response to a GetPeers request.

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x02) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Peers count (N) Int 4
7 Peer #1 IP address Bytes 4
8 Peer #1 port Int 4
.
6 + 2 * N - 1 Peer #N IP address Bytes 4
6 + 2 * N Peer #N port Int 4

11.3. Network messages 55

Technical description of the Waves Enterprise platform, Release master

11.3.5 GetSignatures message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x14) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Block IDs count (N) Int 4
7 Block #1 ID Bytes 64
.
6 + N Block #N ID Bytes 64

11.3.6 Signatures message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x15) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Block signatures count (N) Int 4
7 Block #1 signature Bytes 64
.
6 + N Block #N signature Bytes 64

11.3.7 GetBlock message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x16) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Block ID Bytes 64

11.3.8 Block message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x17) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Block bytes (N) Bytes N

56 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.3.9 Score message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x18) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Score (N bytes) BigInt N

11.3.10 Transaction message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x19) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Transaction (N bytes) Bytes N

11.3.11 Checkpoint message

Field order number Field Type Field size in bytes

1 Packet length (BigEndian) Int 4
2 Magic Bytes Bytes 4
3 Content ID (0x64) Byte 1
4 Payload length Int 4
5 Payload checksum Bytes 4
6 Checkpoint items count (N) Int 4
7 Checkpoint #1 height Long 8
8 Checkpoint #1 signature Bytes 64
.
6 + 2 * N - 1 Checkpoint #N height Long 8
6 + 2 * N Checkpoint #N signature Bytes 64

11.3. Network messages 57

Technical description of the Waves Enterprise platform, Release master

58 Chapter 11. Blocks, transactions, messages

CHAPTER

TWELVE

SMART CONTRACTS

12.1 RIDE Smart Contracts

A smart contract is a script that checks transactions for compliance with conditions. These scripts can
extend the logic of blockchain to meet your business tasks. The fee for a smart contract is fixed, and scripts
can be published for both an account and token assets issued by the user.

For any given account, a check is performed on all transactions originating from the account’s address. An
account with a published script is called a smart account. For any given token assets, a check is performed
on all transactions using that token asset. A token asset with a published script is called a smart asset.
Only one script can be assigned to one account. Accordingly, any installed script replaces the previous one,
including the default script.

12.1.1 RIDE

The RIDE language is used for creating scripts on the Waves Enterprise blockchain platform (you can read
more about RIDE language on the WAVES portal). Scripts written in RIDE check conditions use the
following data:

• Outgoing transaction details.

• Details of the account on behalf of which transactions are made.

• Details of the third accounts balance.

• Details of the blockchain height.

The principle of script operation is pattern matching. The script specifies transaction types and checks them
for compliance with conditions under which corresponding transactions can be executed. Scrips can also
permit or ban transactions regardless of conditions. Also there are such options:

• ban transaction regardless of conditions,

• permit regardless of conditions.

Operations with permitted and banned transactions specify transaction types and use the “everything but”
principle. The script is set by the Setscript transaction, so permission, prohibition, or verification for
compliance with conditions must be explicitly specified.

Important: Scripts do not modify transactions. They only verify that conditions are met.

59

https://docs.wavesplatform.com

Technical description of the Waves Enterprise platform, Release master

12.1.2 Complexity of scripts

RIDE is not a Turing-complete language, which imposes limitations on how complex a script’s logic can be.
This helps guarantee network performance. For complex business processes, the mechanics of which do not
fit into one script, a combination of several scripts for several addresses can be used, or a combination of
scripts for token assets and addresses. The Waves team is actively developing RIDE features, and in the
near future, nested functions that can facilitate more complex tasks will be available to developers.

12.1.3 Signatures and default script

Each transaction in the blockchain has a cryptographic proof of integrity based on the signature of the
transaction by the sender’s private key. This guarantees that transaction authorship is unalienable. For
example, a script which is installed on each address by default verifies the only condition for each outgoing
transaction — the signature of the sender’s address.

Example of a default script code:

sigVerify(tx.bodyBytes, tx.proofs[0], tx.senderPk)

These script mechanics enhance proof verification capabilities. A transaction can be signed by another user
or multiple users on behalf of the address from which it was sent. This is necessary because a contract can
only check transactions originating from its own address. Accordingly, the user generates a transaction on
behalf of the contract, signs it with his proof, and successfully passes the script test.

Important: If proof verification is not explicitly specified in your script, it is not executed. Accordingly,
when a transaction’s body is generated manually, it is possible to send transactions on behalf of an address
using a script with another address proof.

12.1.4 Account data

Data can be stored in the key-value format on addresses in the Waves Enterprise Blockchain. The data
stored on the address is available for viewing using the request return data from address by key . The data is
placed on the address when sending a data transaction. Since RIDE scripts are stateless, data transactions
update the data stored, which the script addresses. Configuring proof verification on a smart account allows
multiple users to collaborate on data on a smart account in different ways.

Important: Keys are unique for each address. Only one value corresponds to one address key. Publishing
a new value for an existing key will result in the value being overwritten. The history and the author of
changes can be tracked in the blockchain.

60 Chapter 12. Smart Contracts

Technical description of the Waves Enterprise platform, Release master

12.2 Docker Smart Contracts

In addition to contracts implemented on the basis of RIDE scripts for smart accounts and smart-assets,
the Waves Enterprise platform provides the option to develop and use Turing-complete smart contracts. To
implement Turing-complete contracts, applications are launched within an isolated Docker container envi-
ronment. Inside this isolated environment, applications can be developed using any programming language.
Each application is launched in a Docker container to ensure isolation and manage resources available to any
particular application. To store smart contracts, a Docker Registry with read-only access (Docker images)
to contracts is used for machines with nodes. The node state can be accessed through a REST API or gRPC
framework.

Important: Users must run the Docker-engine and the Docker-daemon simultaneously on the node which
is processing the Docker smart-contracts.

12.2.1 Creating a contract

Creating a smart contract starts with the preparation of a Docker image, which consists of the contract
program code, the required environment, and the special scenario Dockerfile. A prepared Docker image is
then assembled and sent to Docker Registry.

Dockerfile sample for REST API usage:

FROM python:alpine3.8

ADD contract.py /

ADD run.sh /

(continues on next page)

12.2. Docker Smart Contracts 61

https://grpc.io/

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

RUN chmod +x run.sh

RUN apk add --no-cache --update iptables

CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

Dockerfile sample for gRPC usage:

FROM python:3.9-rc-buster

RUN pip3 install grpcio-tools

ADD src/contract.py /

ADD src/protobuf/common_pb2.py /protobuf/

ADD src/protobuf/contract_pb2.py /protobuf/

ADD src/protobuf/contract_pb2_grpc.py /protobuf/

ADD run.sh /

RUN chmod +x run.sh

ENTRYPOINT ["/run.sh"]

The contract is created by publishing a special (CreateContractTransaction) transaction containing a link
to the image in Docker Registry. To use the REST API or gRPC, please, specify the transaction version
103. After the transaction is received, the node downloads the image using the link specified in the “image”
field, the image is checked and launched as a Docker container.

12.2.2 Executing a Contract

Smart contract execution is initiated by a special (CallContractTransaction) transaction containing the
contract ID and call parameters. The transaction ID defines the Docker container. The container is executed
unless it has been launched before. The contract launch parameters are transferred to the container. | Smart
contracts change their state by updating the key-value pairs.

12.2.3 Updating Contract

Only the developer of the Docker smart contract can update this contract. The developer should keep
the contract_developer role during the contract update and should be the 103 transaction creator. 107
transaction is using for the contract update. And it is necessary that the contract is active.

All the mining nodes download the contract image and run it for the checking after the 107 transaction
includes into the block. Then the 105 transaction is issued within the 107 transaction inside it.

12.2.4 Contract Call Disabling

If necessary, the contract developer can disable calling the contract. To do this, a special (DisableContract-
Transaction) transaction is published specifying the Contract ID. The contract becomes unavailable after its
disconnection, but you can get information about the contract from the the blockchain later.

62 Chapter 12. Smart Contracts

Technical description of the Waves Enterprise platform, Release master

12.2.5 Description of Transactions

The following transactions are implemented to ensure the interaction between the blockchain and the Docker
Contract:

Code Transaction
type

Purpose

103 CreateCon-
tractTransac-
tion

Initiates the Contract. Transaction is signed by a user with the role “con-
tract_developer”

104 CallContract-
Transaction

Calls the Contract. Transaction is signed by the initiator of contract execution

105 ExecutedCon-
tractTransac-
tion

Records the contract execution result in the contract state. Transaction is signed
by the block generating node

106 DisableCon-
tractTransac-
tion

Disables calling a contract. Transaction is signed by a user with the role “con-
tract_developer”

107 UpdateCon-
tractTransac-
tion

Updates a contract. Transaction is signed by a user with the role “con-
tract_developer” Only the contract developer and 103 transaction issuer can up-
date the contract

12.2.6 Node configuration

Downloading and execution of Docker Contracts initiated by transactions with codes 103-107 are performed
on nodes with enabled option docker-engine.enable = yes (for details see module “Node configuration”
> “Docker configuration”).

12.2.7 REST API

The REST API methods description for the Docker contract usage is represented on the API methods
available to smart contract page.

12.2.8 gRPC

The gRPC methods description for the Docker contract usage is represented on the gRPC services available
to smart contract page.

12.2.9 Implementation examples

• Creating a simple contract

12.2. Docker Smart Contracts 63

Technical description of the Waves Enterprise platform, Release master

64 Chapter 12. Smart Contracts

CHAPTER

THIRTEEN

ANCHORING

In a private blockchain, transactions are processed by a certain number of participants known in advance.
Thus, there is a threat of information spoofing, because the number of participants is quite small compared
to a public blockchain where anyone can join the network. When using PoS consensus algorithm in a private
blockchain, the threat of overwriting that blockchain becomes real.

The anchoring mechanism was developed to increase participant confidence in the date placed in a private
blockchain. Anchoring checks the data in a blockchain for invariability, which is achieved by publishing
data from a private blockchain to a public one, where data spoofing is unlikely due to the larger number of
participants and blocks. Published data represents a signature and a height of blocks in a private network.
This connectivity between two or more networks increases their resistance, because any attempt to forge or
alter data using a long-range attack would require attacking all connected networks.

13.1 How does anchoring work in the Waves Enterprise blockchain

Fig. 1: Targetnet anchoring scheme

Anchoring process is shown below:

1. Anchoring configurations are set in the configuration file of the private blockchain node. Users should
use recommended values for configurations to avoid anchoring malfunctioning.

65

https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/

Technical description of the Waves Enterprise platform, Release master

2. Each height-range is an anchoring transaction that contains block data at current-height -

threshold and is broadcasted to the Targetnet by the anchoring node. The Data Transaction with a
key-value list is used as an anchoring transaction. The node then requests height of the broadcasted
transaction.

3. The node then checks the Targetnet height each 30 seconds until its height reaches the height of the
created transaction + height-above.

4. When the required Targetnet height is reached and the presence of previously created data transactions
are confirmed, another anchoring data transaction is created in the private blockchain.

13.2 Transaction structure for anchoring

Targetnet transaction consists of the following fields:

• height - the height of the chosen block from the private blockchain.

• signature - the signature of the chosen block from the private blockchain.

The private blockchain transaction consists of the following fields:

• height - the height of the chosen block from the private blockchain.

• signature - the signature of the chosen block from the private blockchain.

• targetnet-tx-id - the Targetnet anchoring transaction ID.

• targetnet-tx-timestamp - the timestamp of the Targetnet anchoring transaction.

13.3 Errors during the anchoring

Errors can occur at any step during anchoring. In case of any error in the private blockchain the Data
Transaction containing the error code and the description is always published. The error transaction includes
the following data:

• height - the height of the chosen block from the private blockchain.

• signature - the signature of the chosen block from the private blockchain.

• error-code - the error code.

• error-message - the error message.

66 Chapter 13. Anchoring

Technical description of the Waves Enterprise platform, Release master

Table 1: Error types

Code Message Possible cause

0 Unknown error An unknown error occurred during the send
of the transaction to the Targetnet

1 Fail to create data transaction for

Targetnet

Creating of the transaction to be sent to the
Targetnet failed

2 Fail send transaction to Targetnet The transaction publication to the Targetnet
failed (it could be a JSON request error)

3 Invalid http status of response from

Targetnet transaction broadcast

The Targetnet has returned an HTTP code
other than 200 after the transaction publi-
cation

4 Fail to parse http body of response from

Targetnet transaction broadcast

The Targetnet has returned an unknown
JSON after the transaction publication

5 Targetnet return transaction with

id='$TargetnetTxId' but it differ from

transaction that we sent id='$sentTxId

The Targetnet has returned mismatched ID
after the transaction publication

6 Targetnet didn't respond on transaction

info request

The Targetnet has not responded to the re-
quest about the transaction info

7 Fail to get current height in Targetnet Failed to get current Targetnet height
8 Anchoring transaction in Targetnet

disappeared after height rise enough

The anchoring transaction has disappeared
from the Targetnet after its height evened
height-above value

9 Fail to create sidechain anchoring

transaction

Fail to public the anchoring transaction in
the private blockchain

10 Anchored transaction in sidechain was

changed during Targetnet height arise

await, looks like a rollback has happened

Anchored transaction in sidechain was
changed during Targetnet height arise await,
looks like a rollback has happened

13.3. Errors during the anchoring 67

Technical description of the Waves Enterprise platform, Release master

68 Chapter 13. Anchoring

CHAPTER

FOURTEEN

INTEGRATION SERVICES

14.1 Authorization service

The authorization service is an external service that provides authorization for all components of the
blockchain network. This service is built using the OAuth 2.0 authorization protocol. OAuth 2.0 is an open
framework for realization of the authorization mechanism, allowing third parties limited access to protected
resources without transferring credentials to the third party. The data flow scheme between participants
sharing information using OAuth 2.0 is presented below.

Fig. 1: Basic authorization scheme based on OAuth 2.0 protocol

A JSON Web Token is used to authorize each request from the client to the server and has a limited lifetime.
The client can receive two types of tokens: access and refresh. The access token is used to authorize requests
for access to protected resources and to store additional information about the user. The refresh token is
used to obtain a new access token and to refresh the refresh token.

69

https://en.wikipedia.org/wiki/OAuth
https://jwt.io/

Technical description of the Waves Enterprise platform, Release master

Fig. 2: The authorization scheme of the Waves Enterprise blockchain platform

In general, the authorization scheme includes the following operations:

1. The client (which could be any blockchain network component like the web client, data service, or an
external application) provides its authentication data to the authorization service once.

2. If the initial authentication procedure is successful, the authorization service stores the client’s au-
thentication data in the database, generates and sends signed access, and refresh tokens to the client.
Tokens include the lifetime info and basic customer data, such as an ID and a role. Client authentica-
tion data is stored in the authorization service configuration file. The client checks the lifetime of the
access token each time before sending a request to a third-party service. In case the token is expired,
the client refers to the authorization service to obtain a new access token. The refresh token is used
for requests to the authorization service.

3. The client sends a request to receive data from a third-party service using the current access token.

4. The external application checks the lifetime of the access token and its integrity, then compares the
previously obtained public key of the authorization service with the key contained in the signature of
the access token. If the token is successfully verified, the service provides the requested data to the
client.

14.2 Data preparation service

This service aggregates data from a blockchain into a relational database and provides an API to access that
data. Service features are designed to meet the needs of the Waves Enterprise client. Specifying parameters
are available for requests.

Deploy your client and node using the delivery set for service usage. Currently, access to the Data Preparation
Service API is limited in the public network. The data service REST API is represented in the Data service
REST API service.

70 Chapter 14. Integration services

CHAPTER

FIFTEEN

SYSTEM REQUIREMENTS

System and hardware requirements are given below.

Optional vCPU RAM SSD JVM Operation Mode

Minimum requirements 2+ 2Gb 50Gb java -Xmx2048M -jar
Recommended requirements 2+ 4+ Gb 50+ Gb java -Xmx4096M -jar

Hint: “Xmx” - flag defining maximum size of memory available for JVM.

Waves Enterprise platform environment requirements

• JRE 1.8 (64-bit) or OpenJDK 12.0.1

• Docker CE

• Docker-compose

71

http://www.oracle.com/technetwork/java/javase/downloads/2133155
https://jdk.java.net/12/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/

Technical description of the Waves Enterprise platform, Release master

72 Chapter 15. System requirements

CHAPTER

SIXTEEN

INSTALLING AND RUNNING THE PLATFORM

Currently we support Unix-like systems (for example, popular Linux distributives and MacOS). However
Waves Enterprise platform can be run under the Windows natively in experimental mode. Also you can you
Unix virtual machines and the Docker environment for the installation and running the platform under the
Windows.

Installation of the platform in the base delivery version assumes that Docker Engine and Docker Compose
are installed in the deployment environment.

Depending on the purpose of the installation, you will need the following files:

1. docker-compose.yml – the configuration file used by Docker Compose to run applications in containers.

2. generators-Х.Х.Х.jar - an auxiliary utility used in the Waves Enterprise platform to create key pairs,
API keys, sign block genesis and other operations.

docker-compose.yml and generators-Х.Х.Х.jar you can download by clicking on the link.

3. Configuration files for generators-Х.Х.Х.jar utility:

• accounts.conf - he configuration file for the accounts creation;

• api-key-hash.conf – the configuration file for the api-key-hash and privacy-api-key-hash

values creation when you choose the api-key string hash authorization.

4. node.conf – the main node configuration file defining the operational principals and an option list.
Below are some examples of node configuration files:

• mainnet.conf - to connect to the Mainnet network;

• partnernet.conf - to connect to the Partnernet network.

Examples of configuration files for the utility generators-Х.Х.Х.jar and node.conf you can download
from the Waves Enterprise platform official page on GitHub.

Detailed information about configuration files can be found in Data preparation service module.

5. node.license - node license, not obligatory up to 30,000 blocks height.

You can find out about how to get node.license in the following module.

Purpose of installation docker-
compose.yml

generators-
X.X.X.jar

node.conf node.license

Checking platform features Required It’s not re-
quired

It’s not re-
quired

It’s not re-
quired

Connecting the node to the Mainnet
network

Required Required Required Required

Connecting the node to the Partner-
net network

Required Required Required Required

73

https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

16.1 Deploying the platform in Sandbox mode

The Waves Enterprise team offers a fully automated deployment mode to familiarize yourself with platform
capabilities. n this mode, a blockchain network of three nodes will be installed as well as additional com-
ponents - authorization service, data preparation service and corporate client . All key pairs used to sign
transactions and blocks will be generated randomly.

In the trial mode you can interact with the blockchain through the client application, or REST/gRPC node
interfaces: send transactions, receive data from the blockchain, set and call smart contracts, and transfer
confidential data between nodes.

1. To install the platform in Sandbox mode, open the terminal and go to the directory where the file
docker-compose.yml is located, and execute the following command:

docker run --rm -ti -v $(pwd):/config-manager/output wavesenterprise/config-manager:v1.2.1

Specify the latest version of the platform as the last three digits.

2. Wait for the results of the previous command and run the following command:

docker-compose up -d

Attention: On Linux, you may need to have root right to execute commands.

After launching the containers, the client application will be available at http://localhost, swagger host
of the node - http://localhost/node-0.

To stop running nodes and services, execute the following command:

docker-compose down

16.2 Connecting a single node to the Mainnet network

Using the instructions below, you can connect the node to any existing network.

To connect the node to the Mainnet network you will need the following files: docker-compose.yml, node.
license, node.conf and the key repository as a file keystores.dat.

Hint: The file keystores.dat is created when you generate a new member address.

1. Download the file docker-compose.yml.

2. Download the file mainnet.conf, rename it node.conf and edit the following options:

• owner-address, wallet.password - the address of the new participant, on whose behalf the node will
perform operations in the blockchain. The process of generating a new key pair and file keystores.dat
using the utility generators-X.X.X.jar is described in section Accounts creation;

• node-name - any name of the node;

• auth.api-api-key-hash, auth.privacy-api-key-hash - hash from a secret phrase to access REST
API node. The process of creating a hashed secret phrase using the utility generators-X.X.X.jar is
described in section Accounts creation.

74 Chapter 16. Installing and running the platform

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

3. Create empty files: postgres.env, node-0.env, nginx-proxy.env, frontend.env, data-service.
env, crawler.env, auth-service.env.

4. Open the file my-node/env/node-0.env and copy the text below to it:

LOG_LEVEL=DEBUG

WE_NODE_OWNER_PASSWORD_EMPTY=false

WE_NODE_OWNER_PASSWORD= /FILL

JAVA_OPTS=-Dwe.check-resources=false

5. In the field WE_NODE_OWNER_PASSWORD instead of /FILL enter the password from the key pair created
when generating the address of a new participant by the utility generators-X.X.X.Jar.

6. Place the downloaded and previously created files according to the structure below:

my-node (directory with any name)

|- configs (directory)

| |- nodes (directory)

| |- node-0 (directory)

| |- node.conf (file)

| |- keystores.dat (file)

| |- node.license (file, optional)

|- env (directory)

| |- postgres.env (file)

| |- node-0.env (file)

| |- nginx-proxy.env (file)

| |- frontend.env (file)

| |- data-service.env (file)

| |- crawler.env (file)

| |- auth-service.env (file)

|- docker-compose.yml (file)

7. Run the command to start the node:

docker-compose up -d node-0

After the container is launched node REST API will be available at http://localhost/node-0.

Attention: If there are errors, make sure that no other competing containers or programs are running.
To display a list of running containers and their status, type docker ps -a. To stop the selected con-
tainer, enter docker stop [myContainer]. To stop all containers, you can enter docker stop $(docker

ps -a -q). The command docker rm [myContainer] will delete the selected one, docker rm $(docker

ps -a -q) will delete all containers.

To stop running nodes and services, execute the following command:

docker-compose down

16.2. Connecting a single node to the Mainnet network 75

Technical description of the Waves Enterprise platform, Release master

76 Chapter 16. Installing and running the platform

CHAPTER

SEVENTEEN

MANUAL NODE CONFIGURATION

The node configuration includes the following steps:

17.1 Preparation of configuration files

These following configuration files are used for the configuration:

• accounts.conf – the configuration file for the accounts creation.

• api-key-hash.conf – the configuration file for the api-key-hash and privacy-api-key-hash values
creation when you choose the api-key string hash authorization.

• node.conf – the main node configuration file defining the operational principals and an option list.

17.1.1 accounts.conf configuration file for the accounts creation

When specifying a path, use the “forward slash” - / as a delimiting character for directory hierarchy levels.
During Linux using the value wallet must match the directory structure of the operating system, for
example /home/contract/we/keystore.dat. During node setting it is prohibited to use cyrillic symbols for
specifying paths to the working directory, keystore, etc.

// accounts.conf listing

accounts-generator {

waves-crypto = yes

chain-id = V

amount = 1

wallet = ${user.home}"/node/keystore.dat"

wallet-password = "some string as password"

reload-node-wallet {

enabled = false

url = "http://localhost:6862/utils/reload-wallet"

}

}

The description of the configuration file parameters is represented below.

• waves-crypto – the choice of a cryptographic algorithm (“yes” - use cryptography Waves, “no” - use
GOST-cryptography);

• chain-id – an identifying byte of the network, the value will be necessary further on for entry in
parameter address-scheme-character of the node configuration file;

• amount – a number of generated key pairs;

77

Technical description of the Waves Enterprise platform, Release master

• wallet – the path to the key storage directory on the node, the value will be required further on
for entry in parameter wallet > file of the node configuration file. For the Waves cryptography,
the path to file keystore.dat is specified (example, ${user.home}/nodeName/keystore.dat), for the
GOST-cryptography - the path to directory (${user.home}/nodeName/keystore/);

• wallet-password – a password for access to closed node keys, the value will be necessary further for
entry into the parameter wallet > password of the node configuration file;

• reload-node-wallet – an option to update the node keyStore without restarting the application,
by default it is turned off (false). url parameter specifies the path to the /utils/reload-wallet

method of the REST API node.

17.1.2 api-key-hash.conf configuration file

api-key-hash.conf configuration file is intended only for the api-key-hash and privacy-api-key-hash

values creation when you choose the api-key string authorization.

// api-key-hash.conf listing

apikeyhash-generator {

waves-crypto = no

api-key = "some string for api-key"

}

Parameters description

• waves-crypto – the choice of a cryptographic algorithm (“yes” - use cryptography Waves,
“no” - use GOST-cryptography);

• api-key – the key you need to come up with. The value of this key will need to be specified
in requests to REST API node (for more details see page REST API).

17.1.3 node.conf node configuration file

If you are planning to connect the new node to the existing network, it will be more easy to request full
configuration file from your network administrator or from any of net participants. When you are creating
the configuration file from a scratch or connecting to the “Waves Enterprise Mainnet”, you can get the
example of the file from our GitHub page. You can read on the Changes in the node configuration file page
about changes in the node configuration file.

Warning: If your node’s version is 1.0 and higher you need to specify the following parameter in the
node section of the node configuration file:

"features": {

"supported": [100]

}

This option becomes active when the total quantity of blocks from feature-check-blocks-period = 15000

and blocks-for-feature-activation = 10000 parameters is achieved (25 000 of blocks). These parame-
ters are stored in the blockchain section and can not be changed during Mainnet or Partnernet connection.
Nodes will not be able to connect to the network without activation of this option.

The example of the node configuration file is represented below. This file does not include such options like
anchoring , Docker smart contracts and private data access groups. Also there are api-key authorization
and Waves cryptography. You can find the fields description here.

78 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

Note: If you want to use additional options, set the enable field of the selected option to yes or true and
configure the option section according to the description of its setting.

Warning: Please, fill ONLY the fields with the /FILL/ word inside as a value.

node {

Type of cryptography

waves-crypto = yes

Node owner address

owner-address = " /FILL/ "

NTP settings

ntp {

server = "pool.ntp.org"

Maximum time without synchronization. Required for PoA consensus.

fatal-timeout = 5 minutes

}

Node "home" and data directories to store the state

directory = "/node"

data-directory = "/node/data"

wallet {

Path to keystore.

file = "/node/keystore.dat"

Access password

password = " /FILL/ "

}

Blockchain settings

blockchain {

type = CUSTOM

fees.enabled = false

consensus {

type = "poa"

round-duration = "17s"

sync-duration = "3s"

ban-duration-blocks = 100

warnings-for-ban = 3

max-bans-percentage = 40

}

custom {

address-scheme-character = "E"

functionality {

feature-check-blocks-period = 1500

blocks-for-feature-activation = 1000

pre-activated-features = { 2 = 0, 3 = 0, 4 = 0, 5 = 0, 6 = 0, 7 = 0, 9 = 0, 10 = 0, 100 = 0 }

}

Mainnet genesis settings

(continues on next page)

17.1. Preparation of configuration files 79

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

genesis {

average-block-delay: 60s

initial-base-target: 153722867

Filled by GenesisBlockGenerator

block-timestamp: 1573472578702

initial-balance: 1625000000000000

Filled by GenesisBlockGenerator

genesis-public-key-base-58: ""

Filled by GenesisBlockGenerator

signature: ""

transactions = [

Initial token distribution:

- recipient: target's blockchain address (base58 string)

- amount: amount of tokens, multiplied by 10e8 (integer)

#

Example: { recipient: "3HQSr3VFCiE6JcWwV1yX8xttYbAGKTLV3Gz", amount:␣

→˓3000000000000000 }

#

Note:

Sum of amounts must be equal to initial-balance above.

#

{ recipient: " /FILL/ ", amount: 100000000000000 },

{ recipient: " /FILL/ ", amount: 150000000000000 },

{ recipient: " /FILL/ ", amount: 50000000000000 },

]

network-participants = [

Initial participants and role distribution

- public-key: participant's base58 encoded public key;

- roles: list of roles to be granted;

#

Example: {public-key: "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1Tt", roles:␣

→˓[permissioner, miner, connection_manager, contract_developer, issuer]}

#

Note:

There has to be at least one miner, one permissioner and one connection_manager for␣

→˓the network to start correctly.

Participants are granted access to the network via GenesisRegisterNodeTransaction.

Role list could be empty, then given public-key will only be granted access to the␣

→˓network.

#

{ public-key: " /FILL/ ", roles: [permissioner, miner, connection_manager, contract_

→˓developer, issuer]},

{ public-key: " /FILL/ ", roles: [miner]},

{ public-key: " /FILL/ ", roles: []},

]

}

}

}

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value is INFO.

logging-level = DEBUG

(continues on next page)

80 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

P2P Network settings

network {

Network address

bind-address = "0.0.0.0"

Port number

port = 6864

Peers network addresses and ports

Example: known-peers = ["node-1.com:6864", "node-2.com:6864"]

known-peers = [/FILL/]

Node name to send during handshake. Comment this string out to set random node name.

Example: node-name = "your-we-node-name"

node-name = " /FILL/ "

How long the information about peer stays in database after the last communication with it

peers-data-residence-time = 2h

String with IP address and port to send as external address during handshake. Could be set␣

→˓automatically if uPnP is enabled.

Example: declared-address = "your-node-address.com:6864"

declared-address = "0.0.0.0:6864"

}

New blocks generator settings

miner {

enable = yes

Important: use quorum = 0 only for testing purposes, while running a single-node network;

In other cases always set quorum > 0

quorum = 0

interval-after-last-block-then-generation-is-allowed = 10d

micro-block-interval = 5s

min-micro-block-age = 3s

max-transactions-in-micro-block = 500

minimal-block-generation-offset = 200ms

}

Nodes REST API settings

rest-api {

Enable/disable REST API

enable = yes

Network address to bind to

bind-address = "0.0.0.0"

Port to listen to REST API requests

port = 6862

auth {

type: "api-key"

Hash of API key string

You can obtain hashes by running ApiKeyHash generator

api-key-hash: " /FILL/ "

(continues on next page)

17.1. Preparation of configuration files 81

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

Hash of API key string for PrivacyApi routes

privacy-api-key-hash: " /FILL/ "

}

}

#Settings for Privacy Data Exchange

privacy {

storage {

enabled = false

url = "jdbc:postgresql://postgres:5432/node-1?user=postgres&password=wenterprise"

driver = "org.postgresql.Driver"

profile = "slick.jdbc.PostgresProfile$"

user = "postgres@postgres&password=wenterprise"

password = "wenterprise"

connectionPool = HikariCP

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 20

schema = "public"

migration-dir = "db/migration"

}

}

Docker smart contracts settings

docker-engine {

Docker smart contracts enabled flag

enable = no

Basic auth credentials for docker host

#docker-auth {

username = "some user"

password = "some password"

#}

Optional connection string to docker host

docker-host = "unix:///var/run/docker.sock"

Optional string to node REST API if we use remote docker host

node-rest-api = "node-0"

gRPC server settings for docker contracts with the gRPC API

grpc-server {

gRPC server port

port = 6865

Optional node host

host = “192.168.65.2”

}

Execution settings

execution-limits {

Contract execution timeout

timeout = 10s

(continues on next page)

82 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

Memory limit in Megabytes

memory = 512

Memory swap value in Megabytes (see https://docs.docker.com/config/containers/resource_

→˓constraints/)

memory-swap = 0

}

Reuse once created container on subsequent executions

reuse-containers = yes

Remove container with contract after specified duration passed

remove-container-after = 10m

Allows net access for all contracts

allow-net-access = yes

Remote registries auth information

remote-registries = []

Check registry auth on node startup

check-registry-auth-on-startup = yes

Contract execution messages cache settings

contract-execution-messages-cache {

Time to expire for messages in cache

expire-after = 60m

Max number of messages in buffer. When the limit is reached, the node processes all messages␣

→˓in batch

max-buffer-size = 10

Max time for buffer. When time is out, the node processes all messages in batch

max-buffer-time = 100ms

}

}

}

17.2 Changes in the node configuration file

This section provides information to help you identify changes in the configuration file depending on the
node version.

Warning: If you are updating a node version, you must also update the node configuration file. The
node will not run without updating the configuration file!

17.2. Changes in the node configuration file 83

Technical description of the Waves Enterprise platform, Release master

17.2.1 Changes in the node configuration file of the 1.2.0 version

docker-engine section

In the section docker-engine added parameter grpc-server, responsible for setting up gRPC server to
work docker contracts with gRPC API:

grpc-server {

gRPC server port

port = 6865

Optional node host

host = “192.168.65.2”

}

17.2.2 Changes in the node configuration file for earlier versions

Node version 1.1.2

Node version 1.1.0

17.3 Description of the node configuration file parameters and sec-
tions

Several types of values are used for parameters in the configuration file:

• Integer data which used to specify the exact number of elements. It can be the number of transactions,
blocks or connections.

• Integer data including measuring units to specify the time periods or memory volume. You typi-
cally specify the time periods in days, hours, or seconds, or the cache memory volume, for example,
leveldb-cache-size = 256M or connection-timeout = 30s.

• String which used to specify the addresses, directory paths, passwords and so on. The directory path
is specifying in the acceptable format of your current OS and the value is quoted.

• Array for the list of values like addresses or public keys. The value is specified in square brackets
separated by commas.

• Boolean no or yes which used for option activation.

An example of the node configuration file is represented on the configuration files prepare page. It includes
the following sections:

• node - general section, which includes all sections of blockchain settings.

• synchronization.transaction-broadcaster - synchronization parameters settings for sending unconfirmed
transactions to the blockchain.

• ntp - NTP server parameters settings.

• blockchain - common blockchain settings.

• features - network settings.

• network - network settings.

• wallet - settings of the private keys access.

• miner - mining settings.

84 Chapter 17. Manual node configuration

https://docs.wavesenterprise.com/en/1.1.2/how-to-setup/configuration/config-changelog.html
https://docs.wavesenterprise.com/en/1.1.0/how-to-setup/configuration/config-changelog.html

Technical description of the Waves Enterprise platform, Release master

• rest-api - REST API settings.

• privacy - confidential information access groups settings.

• docker-engine - Docker smart contracts settings.

17.3.1 node section

Additional section parameters:

• waves-crypto - cryptography type in the blockchain. Possible values: yes - Waves cryptography, no -
GOST cryptography.

• directory - the main directory for the storage of the node software.

• data-directory - the main directory for the storage of the node software.

• logging-level - logging level. Possible values: DEBUG, INFO, WARN, ERROR, default value is INFO.

• owner-address - the node address, the future owner of the configuration file.

17.3.2 synchronization.transaction-broadcaster section

• max-batch-size and max-batch-time – technical parameters that allow you to adjust the speed of
reducing the transaction queue.

• min-broadcast-count – a minimum number of connections that can be used to send each transaction
to the blockchain. The value should not exceed the number of nodes in the network minus one (the
sender should not be taken into account).

• retry-delay – an interval for resending a transaction if the number of current connections was not
enough, or errors occurred during sending.

17.3.3 ntp section

• server - an NTP server addresses list. The recommended value is [«0.pool.ntp.org», «1.pool.

ntp.org», ... «10.pool.ntp.org»].

• request-timeout - the timeout of the one request to an NTP server. The recommended value is 10
seconds.

• expiration-timeout - the timeout of the NTP server requests synchronization. The recommended
value is 1 minute.

• fatal-timeout - the timeout of the connection to an NTP server. The recommended value is 1 minute.

17.3.4 blockchain section

• type - the blockchain type. Possible values are MAINNET or CUSTOM. The MAINNET value allows you to
use the genesis block, consensus and Mainnet settings. When you select MAINNET in the configuration
file of the node which connects to the Mainnet network, you do not need to specify the parameters of
custom, genesis and consensus blocks.

• consensus.type - consensus type. Possible values are pos or poa. You can read more here about
consensus settings.

fees unit

17.3. Description of the node configuration file parameters and sections 85

Technical description of the Waves Enterprise platform, Release master

• enabled - the option of using fees for the transaction release. Possible values are false or true.

custom unit

• address-scheme-character - the address feature character which is used to prevent mixing up ad-
dresses from different networks. For the “Waves Enterprise Mainnet” - V and for the “Waves Enterprise
Partnernet” - P. You can use any letter you like for the sidechain or test versions of the Waves Enterprise
blockchain platform. Nodes must have the same network byte on the same blockchain network.

• functionality - main blockchain settings.

• genesis - genesis block settings.

functionality unit

• feature-check-blocks-period - the blocks period for feature checking and activation.

• blocks-for-feature-activation - the number of blocks required to accept feature.

• pre-activated-features - a set of blockchain options.

genesis unit

• average-block-delay - an average delay between the blocks creation. This parameter is used only
for the PoS consensus.

• initial-base-target - an initial base number for the managing the mining process. This parameter
is used for the PoS consensus . The frequency of the block creation depends on the parameter value
therefore the higher the value, the more often blocks are created. Also, the value of the miner’s
balance affects the use of this parameter in mining - the larger the miner’s balance, the less the value
of initial-base-target is used. When setting a value for this parameter, it is recommended to take
into account the combination of miners balances and the expected interval between blocks.

• block-timestamp - a time and data code. The time is specified in milliseconds and the value must
consist of 13 digits. If you specify the standard value timestamp consisting of 10 digits, then you need
to add any three digits at the end.

• initial-balance - an initial balance in smallest units. The parameter value affects on the mining
process with the PoS consensus. The larger the miner’s balance, the smaller the initial-base-target
value is used for the mining node determination for the current round.

• genesis-public-key-base-58 - the public key hash of the genesis block, encrypted in Base58.

• signature - the genesis block signature, encrypted in Base58.

• transactions - a list of network participants with an initial balance, the creation of which will be
included in the genesis block.

• network-participants - a list of network participants with specified roles, the creation of which will
be included in the genesis block.

17.3.5 network section

• bind-address - the node network address.

• port - the port number.

• known-peers - a list of known nodes network addresses. This parameter should be filled in. The list
of addresses is passed to the user by the network administrator before the new node is connected.

• declared-address - a string with IP address and port to send as external address during the hand-
shake.

86 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

• max-simultaneous-connections - a maximum number of simultaneously supported connections. This
parameter is limited by the number of nodes in the blockchain, i.e. the maximum number of simulta-
neous connections will not exceed the number of nodes in the network.

• peers-request-interval - an interval for requesting a list of peers. The value is specified in seconds
or minutes. The recommended value is 1-2 minutes.

17.3.6 wallet section

• file - a path to the private keys storage.

• password - a password for the private keys file access.

17.3.7 miner section

• enable - a miner option activation.

• quorum - required number of connections (both incoming and outgoing) to attempt block generation.
Setting this value to 0 enables offline generation. When you are specifying the value, it is necessary to
consider that the own mining node is not summed with the parameter value, i.e., if it is quorum = 2,
then you need at least 3 mining nodes in the network.

• interval-after-last-block-then-generation-is-allowed - enable block generation only if the
last block is not older the given period of time.

• micro-block-interval - an interval between microblocks.

• min-micro-block-age - a minimal age of the microblock.

• max-transactions-in-micro-block - a maximum number of transaction in the microblock.

• minimal-block-generation-offset - a minimal time interval between blocks.

17.3.8 features section

• supported - a list of supported options.

17.4 Accounts creation

The user account includes an address and a key pair which consists of public and private keys. The address
and public key are shown to the user during account creation on the command line. The private key is
written to the keystore.dat.

17.4.1 Key pairs generating

Public and private keys for initial participants are creating by the generator. You can get the last version
of the generator on our GitHub page. Before running the utility you need to specify the accounts.conf

configuration file which contains parameters for keys creating. During the creation think up and enter a
password, then save it for later configuration. The given password will be used at creation of a global
variable WE_NODE_OWNER_PASSWORD further. Press enter key if you do not want to use this password. Use
the following command to run the generator:

java -jar generators-x.x.x.jar AccountsGeneratorApp accounts.conf

17.4. Accounts creation 87

https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

17.4.2 Global variables

We recommend to use a password for the keys pair to increase security. The Waves Enterprise platform
supports two ways of the password usage:

1. Enter the password manually at the each start of the node.

2. Create global variables in your OS.

If you are using the manual enter the password there is no need to create global variables. But when you are
planning to use containers or any similar services to run the node then create the following global variables
in the OS for your convenience:

1. WE_NODE_OWNER_PASSWORD - the keys pair password specified during the key pair creation.

2. WE_NODE_OWNER_PASSWORD_EMPTY - true or false, specify the true value if you do not want to
use the keys pair password, in this case it is not necessary to create the WE_NODE_OWNER_PASSWORD

variable. When you are using the password than specify the false value and write into the
WE_NODE_OWNER_PASSWORD variable the keys pair password.

17.5 Signing the genesis block

Sign the genesis block using utility generators-x.x.x.jar. Command for signing: java -jar generators-x.

x.x.jar GenesisBlockGenerator node.conf, where Name.conf is the edited in this section node configu-
ration file. After signing genesis-public-key-base-58 and signature fields of the configuration file will
be filled with values of the public key and the proof of the genesis block.

Example:

genesis-public-key-base-58: "4ozcAj...penxrm"

signature: "5QNVGF...7Bj4Pc"

17.6 Consensus settings

Waves Enterprise blockchain platform supports two types of consensus - PoS and PoA. The consensus
settings are located in the blockchain section.

17.6.1 PoS configuration

The PoS consensus will be used by default if you have not specified the consensus type in the consensus.

type field of the blockchain section. Here are the mining responsible parameters which are located in the
genesis unit of the blockchain section:

• average-block-delay - an average delay between the blocks creation. The default value is 60 seconds.
The value of this parameter is ignored if PoA consensus is selected.

• initial-base-target - an initial base number for the managing the mining process. The frequency
of the block creation depends on the parameter value therefore the higher the value, the more often
blocks are created. Also, the value of the miner’s balance affects the use of this parameter in mining -
the larger the miner’s balance, the less the value of initial-base-target is used.

• initial-balance - an initial balance in smallest units. The greater the share of the miner’s balance
from the network initial balance, the smaller becomes the value of initial-base-target to determine
the node miner of the current round.

88 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

We recommend to use the default parameter values specified in the configuration files examples which are
represented on the GitHub page.

17.6.2 PoA settings

Please, uncomment or add the consensus unit of the blockchain section for the PoA consensus usage:

consensus {

type = "poa"

round-duration = "17s"

sync-duration = "3s"

ban-duration-blocks = 100

warnings-for-ban = 3

max-bans-percentage = 40

}

Represented in the consensus unit parameters are used only for the PoA consensus.

• type - the consensus type. Possible values are pos or poa. If you will specify the pos value, than other
parameters will not be considered.

• round-duration - a round length of the block mining in seconds.

• sync-duration - a block mining synchronization period in seconds. The total time of the round is the
sum of round-duration and sync-duration.

• ban-duration-blocks - a blocks quantity of the ban period for the mining node.

• warnings-for-ban - a number of rounds which is used for ban warnings for miner nodes.

• max-bans-percentage - a percentage of mining nodes from the total number of nodes in the network
that can be placed in the ban.

Using the PoA consensus allows to adjust the order of blocks creation by limiting the mining function for
certain nodes. The reason is to distribute evenly the network load, if any mining nodes left the network or
became inactive. Mining node can get banned for the following reasons:

• if a node will miss its queue for mining;

• if a node provides an invalid block;

• if a node went offline.

Before getting into the blacklist the mining node receives warnings about the ban possibility during the
number of rounds that is specified in the warnings-for-ban parameter. The mining node will be back to
the mining after the ban-duration-blocks parameter value will end.

17.6.3 Consensus settings in the miner section

When you are configuring consensus settings, please, consider the following settings of the miner section:

• micro-block-interval - an interval between microblocks. The value is specified in seconds.

• min-micro-block-age - a minimal age of the microblock. The value is specified in seconds and should
not be more than the micro-block-interval parameter value.

• minimal-block-generation-offset - a minimal time interval between blocks. The value is specified
in milliseconds.

17.6. Consensus settings 89

https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

The values of the microblock creation parameters should not conflict with the parameters values of the
average-block-delay for PoS and round-duration for PoA. The number of microblocks in a block is not
limited, but depends on the transactions size in the microblock.

17.7 Docker configuration

Installation and execution of docker smart contracts configures in the docker-engine of the node configu-
ration file.

Docker smart contracts settings

docker-engine {

Docker smart contracts enabled flag

enable = no

Basic auth credentials for docker host

docker-auth {

username = "some user"

password = "some password"

}

Optional connection string to docker host

docker-host = "unix:///var/run/docker.sock"

Optional string to node REST API if we use remote docker host

node-rest-api = "https://clinton.wavesenterprise.com/node-0"

Run for integration tests

integration-tests-mode-enable = no

Execution settings

execution-limits {

gRPC contract startup timeout

startup-timeout = 10s

Contract execution timeout

timeout = 60s

Memory limit in Megabytes

memory = 512

Memory swap value in Megabytes (see https://docs.docker.com/config/containers/resource_

→˓constraints/)

memory-swap = 0

}

Reuse once created container on subsequent executions

reuse-containers = yes

Remove container with contract after specified duration passed

remove-container-after = 10m

Allows net access for all contracts

allow-net-access = no

Remote registries auth information

remote-registries = [

{

domain = "myregistry.com:5000"

username = "user"

password = "password"

}

]

Check registry auth on node startup

check-registry-auth-on-startup = yes

#Authorization timeout for the contract

contract-auth-expires-in = 1m

Contract execution messages cache settings

contract-execution-messages-cache {
(continues on next page)

90 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

Time to expire for messages in cache

expire-after = 60m

Max number of messages in buffer. When the limit is reached, the node processes all messages␣

→˓in batch

max-buffer-size = 10

Max time for buffer. When time is out, the node processes all messages in batch

max-buffer-time = 100ms

}

remove-container-on-fail = yes

grpc-server {

host = "192.168.65.2"

port = 6865

akka-http-settings {

akka {

http.server.idle-timeout = infinite

http.client.idle-timeout = infinite

http.host-connection-pool.idle-timeout = infinite

http.host-connection-pool.client.idle-timeout = infinite

}

}

}

}

Parameters:

• enable - the Docker smart contracts option activation (yes/no).

• docker-auth - the authorization parameters with login/password section.

• docker-host - a Docker host URL address.

• node-rest-api - the REST API address if you are using the remote Docker host.

• integration-tests-mode-enable - the integration tests run option (yes/no).

• execution-limits - the Docker contracts run limits section:

– startup-timeout - a timeout for creating a gRPC contract container and registering it in the
node (in seconds);

– timeout - a timeout for the smart contract execution;

– memory - a memory limit for a smart contract in megabytes;

– memory-swap - a memory swap value in megabytes.

• reuse-containers - reuse option for the existing Docker contract.

• remove-container-after - container remove option after contract execution (yes/no).

• allow-net-access - the option which allows network access for all smart contracts (yes/no).

• remote-registries - a list of remote registry repositories with credentials.

• check-registry-auth-on-startup - the option which checks the registry repositories authorization
during the node start (yes/no).

• contract-auth-expires-in - a timeout for the Docker contract authorization token.

• contract-execution-messages-cache - the contract execution messages cache settings section. When
the limit is reached, the node processes all messages in batch:

– expire-after - a time period to expire for messages in cache;

17.7. Docker configuration 91

Technical description of the Waves Enterprise platform, Release master

– max-buffer-size - a maximum number of messages in buffer;

– max-buffer-time - a maximum time period in milliseconds of messages in buffer.

• remove-container-on-fail – deleting the container if an error occurred when starting it. This
parameter can be useful during searching for errors when working with contracts (yes/no).

gRPC server

Section of gRPC server settings for working with smart contracts with the gRPC API.

• host – a node network address (optional parameter).

• port – a gRPC server port.

• akka-http-settings - a section of settings for the Akka HTTP framework used for the gRPC server.

17.8 Authorization type configuration for the REST API access

The Waves Enterprise blockchain platform supports the following two types of authorization for the node’s
REST API access:

• api-key string hash authorization;

• authorization via the authorization service.

The authorization type is specified in the REST API configuration section of the node configuration file.
api-key string hash authorization type is a simple method of the access management to a node with a low
level security. If the api-key hash is leaking out to the attacker, he is getting the full access to the node.
When you utilize the separate authorization service with access tokens, you increase the security level of
your blockchain network to the high level. You can read more information about the authorization service
in the Authorization service section.

17.8.1 rest-api section of the node configuration file

The rest-api section allows to bound the node network address to the REST API interface, to choose and
configure the authorization type, also to specify the limits for some REST API methods.

Node's REST API settings

rest-api {

Enable/disable REST API

enable = yes

Network address to bind to

bind-address = "127.0.0.1"

Port to listen to REST API requests

port = 6862

Authorization strategy should be either 'oauth2' or 'api-key', default is 'api-key'
auth {

type = "api-key"

Hash of API key string

api-key-hash = "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tC1zjjLXqsu"

Hash of API key string for PrivacyApi routes

(continues on next page)

92 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

privacy-api-key-hash = "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tC1zjjLXqsu"

}

For OAuth2:

auth {

type: "oauth2"

OAuth2 service public key to verify auth tokens

public-key: "AuthorizationServicePublicKeyInBase64"

}

Enable/disable CORS support

cors = yes

Enable/disable X-API-Key from different host

api-key-different-host = no

Max number of transactions

returned by /transactions/address/{address}/limit/{limit}

transactions-by-address-limit = 10000

distribution-address-limit = 1000

}

Parameters description

• enable - REST API option activation.

• bind-address - a network address to bind the REST API interface.

• port - a port to listen to REST API requests.

• cors - enable/disable CORS support.

• transactions-by-address-limit - a maximum number of transactions returned by /transactions/

address/{address}/limit/{limit} method.

• distribution-address-limit - GET /assets/{assetId}/distribution/{height}/limit/

{limit}.

auth section for the api-key type

• auth-type - the authorization type, specify the api-key value - the string hash authorization.

• api-key-hash- a hash of API key string.

• privacy-api-key-hash - a hash of API key string for privacy methods.

auth section for the oauth2 type

• auth-type - the authorization type, specify the oauth2 value - the token authorization.

• public-key - a public key of the authorization service.

17.8. Authorization type configuration for the REST API access 93

Technical description of the Waves Enterprise platform, Release master

17.8.2 When you use the key string hash for the authorization

Specify the api-key value for the auth-type parameter. Create the api-key-hash for the REST API access
by using the generators-x.x.x.jar utility. To run the utility, you need to specify the api-key-hash.conf file
as one of the parameters, which defines the parameters of creating the api-key-hash. Use the following
command to run the generator:

java -jar generators-x.x.x.jar ApiKeyHash api-key-hash.conf

Specify the value obtained as a result of the utility execution in the parameter api-key-hash in the node
configuration file.

Create the privacy-api-key-hash by the same way as the api-key-hash to get the privacy methods access.
Specify the value obtained as a result of the utility execution in the parameter privacy-api-key-hash in
the node configuration file.

17.8.3 When you use the token authorization

Specify the oauth2 value for the auth-type parameter, write the public key of the authorization service into
the public-key parameter.

17.9 Anchoring settings

If you are using the anchoring option, please, configure the anchoring unit. targetnet is the blockchain
network which will be used by the sidechain node to send anchoring transactions.

anchoring {

enable = yes

height-range = 50

height-above = 10

threshold = 1

targetnet-authorization {

type = "oauth2" # "api-key" or "oauth2"

authorization-token = "PawC6b86r2pNRTR5e88wvcL3gfkG87w2Lqkvk4Jph2PUG3zPLedCTjnjh2ZTw3Rf

→˓"

authorization-service-url = "https://washington.testnet.com/authServiceAddress/v1/auth/

→˓token"

token-update-interval = "60s"

api-key-hash = "5M7C14rf3TAaWHvU6Kqo97iscd8fJFpvFwyQ3Q6vfztS"

privacy-api-key-hash = "5M7C14rf3TAaWHvU6Kqo97iscd8fJFpvFwyQ3Q6vfztS"

}

targetnet-scheme-byte = "K"

targetnet-node-address = "http://node.weservices.com:6862/NodeAddress"

targetnet-node-recipient-address = "3JWveBpXS1EcDpxcoAwVNAjFfUMrxaALgZt"

targetnet-private-key-password = ""

wallet {

file = "node-1_mainnet-wallet.dat"

password = "small"

}

targetnet-fee = 500000

(continues on next page)

94 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

sidechain-fee = 500000

}

Anchoring parameters

• height-range - the number of blocks which is used as an interval between anchoring transactions to
the Targetnet.

• height-above - the number of blocks in the Targetnet after which the private blockchain node cre-
ates the confirming data-transaction containing data from the first data-transaction. We recommend
specifying this value that does not exceed the Targetnet maximum rollback depth max-rollback.

• threshold - the number of blocks subtracted from the current height of the private blockchain. The
anchoring transaction sent to the Targetnet includes the data from the block at height current-height
- threshold. When the value is 0, the current block is anchored. We recommend specifying this value
close to the private blockchain maximum rollback depth max-rollback.

The distance between anchoring transactions may change depending on the mining settings in the Targetnet
network. The specified value height-range sets the approximate interval between anchoring transactions.
The real time of falling anchoring transactions into the mined block of the Targetnet may exceed the time
spent on the mining of the height-range number of blocks.

Anchoring authorization parameters

• type - authorization type for anchoring. api-key - api-key-hash authorization , auth-service -
authorization by a special security token.

For authorization by api-key-hash necessary a current key-value as api-key. For authorization by a special
security token you must use a type = "auth-service" and comment config-file structure values:

• authorization-token - a constant authorization token.

• authorization-service-url - URL address authorization service.

• token-update-interval - data interval for a token refresh.

Targetnet access parameters

A separate keystore.dat file with a key pair for the Targetnet access is generated for the node that will
send the anchoring transaction to the Targetnet.

• targetnet-scheme-byte - the Targetnet network byte.

• targetnet-node-address - the full node network address including the port number in the Targetnet
for the sending of anchoring transactions. The address should be specified along with the connection
type (http/https), the port number and the NodeAddress parameter as in the example http://node.
weservices.com:6862/NodeAddress.

• targetnet-node-recipient-address - the node address in the Targetnet for the recording of anchor-
ing transactions signed with a key pair of this address.

• targetnet-private-key-password - the node private key password for the anchoring transactions
signing.

The network address and the port for the Targetnet/Partnernet networks anchoring can be obtained from
Waves Enterprise technical support staff. If multiple private blockchains with mutual anchoring are used,
you should use the appropriate private network settings.

Parameters of key pair file for the Targetnet anchoring transactions signing, wallet unit

• file - a file name and a path to the key pair file for the Targetnet anchoring transactions signing. The
file is located on the private network node.

17.9. Anchoring settings 95

Technical description of the Waves Enterprise platform, Release master

• password - a password of the key pair file.

Fee parameters

• targetnet-fee - the fee for the anchoring transaction issue in the Targetnet.

• sidechain-fee - the fee for the anchoring transaction issue in the private blockchain.

17.10 Privacy data access groups configuration

When using the privacy methods activate the option and fill in the storage block with database settings
for storing the private data:

privacy {

storage {

enabled = true

url = "jdbc:postgresql://"${POSTGRES_ADDRESS}":"${POSTGRES_PORT}"/"${POSTGRES_DB}

driver = "org.postgresql.Driver"

profile = "slick.jdbc.PostgresProfile$"

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

connectionPool = HikariCP

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 20

schema = "public"

migration-dir = "db/migration"

}

}

Parameters description

• enabled - the option activation;

• url - the PostgreSQL DB address;

• driver - the JDBC driver name;

• profile - a profile name for the JDBC access;

• user - a user name for the DB access;

• password - a password for the DB access;

• connectionPool - a connection pool name, default is HikariCP;

• connectionTimeout - a connection timeout;

• connectionTestQuery - a query name for the connection test;

• queueSize - a requests queue size;

• numThreads - a number of parallel connections;

• schema - an interaction scheme;

• migration-dir - a path to the data migration directory.

DB PostgreSQL is using as a database for the confidential data storage. The database should be installed
on the same machine with the node and should have an DB access account. You can use the PostgreSQL
tutorial for download and install the database according with your operation system type.

96 Chapter 17. Manual node configuration

https://www.postgresql.org/
http://www.postgresqltutorial.com/install-postgresql/

Technical description of the Waves Enterprise platform, Release master

During the installation the system will offer to create an access account. These credentials must be entered
into the appropriate user/password parameters.

Specify the URL for the PostgreSQL connection into the url parameter. URL consists of:

• POSTGRES_ADDRESS - адрес хоста PostgreSQL;

• POSTGRES_PORT - a PostgreSQL host port number;

• POSTGRES_DB - a PostgreSQL name.

You can specify the PostgreSQL credentials with the URL in the same string. The
example is represented bellow, where user=user_privacy_node_0@we-dev is a login,
password=7nZL7Jr41qOWUHz5qKdypA&sslmode=require - a password with require option during the
authorization.

Example

privacy.storage.url = "jdbc:postgresql://vostk-dev.postgres.database.azure.com:5432/

→˓privacy_node_0?user=user_privacy_node_0@we-dev&password=7nZL7Jr41qOWUHz5qKdypA&

→˓sslmode=require"

You can download the latest distributives and configuration files examples from the GitHub Waves Enterprise
release page.

17.10. Privacy data access groups configuration 97

https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

98 Chapter 17. Manual node configuration

CHAPTER

EIGHTEEN

OBTAINING A LICENSE

The Waves Enterprise blockchain platform is commercial and is designed primarily for use in large companies
and the public sector. To use the technology, you must purchase a license for the platform. Quick and easy
access to the list of licenses is provided by the licensing service.

Fig. 1: Waves Enterprise blockchain platform license acquisition scheme

You do not need a product license to learn about the platform’s features. The platform retains full function-
ality until the blockchain height of 30,000 blocks is reached, which at block round time of 30 seconds is 10
days of operation without restrictions.

Waves Enterprise blockchain platform users are offered the following license types:

• Commercial license - allows you to use the platform to implement commercial projects. It is issued
for the period determined by the contractual relations with the partner.

• Non-commercial license - allows using the platform for implementing non-commercial projects. It
is issued for the period determined by the contractual relations with the partner.

• Trial license - allows you to familiarize yourself with the platform and the technology. It is issued for
the duration of the pilot project by contract, or for the time of product development and debugging.

• The Mainnet network license is a special license that allows you to run the node in the Mainnet
network. To work in the network you should have at least 50,000 WEST on your balance or in
leasing. If the specified balance is reduced, restrictions on block formation and access to the node API
are introduced. Sending an application for registration of new members is performed in the Service
Desk system.

99

https://client.wavesenterprise.com/admin-license/auth
https://support.wavesenterprise.com/servicedesk
https://support.wavesenterprise.com/servicedesk

Technical description of the Waves Enterprise platform, Release master

Attention: One license applies to one node!

To formalize a license request, follow these steps:

1. Go to license management service and create a new account, if it has not been created before.

2. Send your license request to Waves Enterprise support. A support representative will contact you to
agree on the details, create a company profile, and link the created account to it.

3. After activating the license, specify the address of your node (node_owner_address).

4. Send the specified license file as JSON in the request POST /licenses/upload to the node.

5. To view the license status, use the request GET /licenses/status.

100 Chapter 18. Obtaining a license

https://wavesenterprise.com/license
https://support.wavesenterprise.com/servicedesk

CHAPTER

NINETEEN

MAINNET AND PARTNERNET CONNECTION

19.1 Working inside the “Waves Enterprise Mainnet”

19.1.1 Connection of the node to the “Waves Enterprise Mainnet”

Warning: The account balance must be at least 50,000 WEST if you want to connect your node to
the network “Waves Enterprise Mainnet” and do mining!

Follow these steps for the node connection to the “Waves Enterprise Mainnet”:

1. Go to the Waves Enterprise website and create an account following the web-interface hints.

2. Transfer tokens to the “Waves Enterprise Mainnet” network.

3. Transfer for leasing any number of tokens to the 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu address
and keep the transaction ID. Further you can withdraw tokens from the lease, because this operation
is necessary to verify your ownership of this address and the balance.

4. Deploy a single node.

5. Perform the node manual configuration. An example of a node configuration file can be found on the
project page on GitHub. To add a node to the Mainnet network, the name of the configuration file
is mainnet-example.conf. Please, fill only the fields with the /FILL/ word inside as a value in the
mainnet-example.conf node configuration file.

6. Go to the Waves Enterprise support website and perform the registration.

7. Select the type of request “Participant connection” for legal or natural person.

8. Register on the resource by filling in all the required fields of the form. If you want to mine, check the
box Please grant mining rights.

9. Enter the transaction ID of the token lease transfer in the Proof of WEST token ownership field.

10. Please, wait for the connection application consideration. You can start working in the “Waves Enter-
prise Mainnet” after successful registration.

11. Run the node after obtaining permission to connect to the network “Waves Enterprise Mainnet”, public
key of which you specified in the application.

12. Transfer or lease tokens to the address of the connected node for the mining and work in the network.

101

https://client.wavesenterprise.com/
https://github.com/waves-enterprise/WE-releases/tree/master/configs
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release master

102 Chapter 19. Mainnet and Partnernet connection

Technical description of the Waves Enterprise platform, Release master

19.1.2 Fees in the “Waves Enterprise Mainnet”

Transaction
type

Fee Description

1 Genesis
transaction

no
fee

Initial binding of the balance to the addresses of nodes created at the start
of the blockchain

3 Issue Trans-
action

1
WEST

Tokens issue

4 Transfer
Transaction

0.1
WEST

Tokens transfer

5 Reissue
Transaction

1
WEST

Tokens reissue

6 Burn Trans-
action

1
WEST

Tokens burn

8 Lease Trans-
action

0.1
WEST

Tokens lease

9 Lease Cancel
Transaction

0.1
WEST

Cancel of the tokens lease

10 Create Alias
Transaction

1
WEST

Alias creation

11 MassTransfer
Transaction

0.1
WEST

Mass tokens transfer. Minimum commission is specified

12 Data Trans-
action

0.1
WEST

Transaction with the data in the key-value pairs format. The fee is always
charged to the transaction author. Minimum commission is specified, the
fee depends on data volume

13 SetScript
Transaction

0.5
WEST

Transaction which is binding a script with a RIDE contract to an account

14 Sponsorship 1
WEST

Transaction which is signing a sponsorship asset

15 SetAs-
setScript

1
WEST

Transaction which is binding a script with a RIDE contract to an asset

101 Genesis
Permission
Transaction

no
fee

Assignment of the first network administrator for further distribution of
rights

102 Permission
Transaction

0.05
WEST

Issuance/withdrawal of rights from the account

103 Create-
Contract
Transaction

1
WEST

Docker-contract creation

104 CallContract
Transaction

0.1
WEST

Docker-contract call

105 Executed-
Contract
Transaction

no
fee

Docker-contract execution

106 Disable-
Contract
Transaction

0.05
WEST

Docker-contract disable

107 Update-
Contract
Transaction

1
WEST

Docker-contract update

110 GenesisReg-
isterNode
Transaction

no
fee

Node registration in the genesis block with the blockchain start

111 RegisterNode
Transaction

0.05
WEST

A new node registration

112 CreatePolicy
Transaction

1
WEST

Access group creation

113 UpdatePolicy
Transaction

0.5
WEST

Update the access group

114 PolicyData-
Hash Trans-
action

0.1
WEST

A data hash sending to the net

19.1. Working inside the “Waves Enterprise Mainnet” 103

Technical description of the Waves Enterprise platform, Release master

19.1.3 Examples of the “Waves Enterprise Mainnet” configuration files

You can read here about the node configuration.

The accounts.conf file example

// accounts.conf listing

accounts-generator {

waves-crypto = yes

chain-id = V

amount = 1

wallet = ${user.home}"/node/keystore.dat"

wallet-password = "some string as password"

reload-node-wallet {

enabled = false

url = "http://localhost:6869/utils/reload-wallet"

}

}

The chain-id parameter contains the identification network byte, for the “Waves Enterprise Mainnet” in is
V.

The api-key-hash file example

// api-key-hash.conf listing

apikeyhash-generator {

waves-crypto = no

api-key = "some string"

}

The node configuration file example

node {

Type of cryptography

waves-crypto = yes

Node owner address

owner-address = ""

ntp {

fatal-timeout = "1 minute"

server = "pool.ntp.org"

}

Node "home" and data directories to store the state

directory = ${user.home}"/node"

data-directory = ${node.directory}"/data"

Settings for Privacy Data Exchange

Uncomment and fill to enable

privacy {

storage {

url = "jdbc:postgresql://"${POSTGRES_ADDRESS}":"${POSTGRES_PORT}"/"${POSTGRES_DB}

(continues on next page)

104 Chapter 19. Mainnet and Partnernet connection

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

driver = "org.postgresql.Driver"

profile = "slick.jdbc.PostgresProfile$"

#

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

connectionPool = HikariCP

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 20

schema = "public"

migration-dir = "db/migration"

}

}

Blockchain settings

Mainnet blockchain settings (should match on all nodes for consistency)

blockchain {

type = CUSTOM

consensus.type = pos

custom {

address-scheme-character = "V"

functionality {

feature-check-blocks-period = 15000

blocks-for-feature-activation = 10000

pre-activated-features = {

2 = 0

3 = 0

4 = 0

5 = 0

6 = 0

7 = 0

9 = 0

10 = 0

}

}

Mainnet genesis settings

genesis {

average-block-delay: 40s

initial-base-target: 10000000000

block-timestamp: 1559320391040

initial-balance: 100000000000000000

genesis-public-key-base-58: "D7tDsKd7DQ7H9m6fPRyk1GsNQxjAQXsETtuVgqSaaXDs"

signature:

→˓"P7kwe3dWSWgUYL8FZu5kccPfPzoxGgLuKjTCkeapTxoDbdpo6EtcqndXoSjqKUUVS67xXfogGmaNroLgNocWcBg

→˓"

transactions = [

{recipient: "3Nnq14SGqeYETSd1SJ6z8LsgBRYB2ya1yRC", amount: 99990000000000000}

{recipient: "3Nrysx7J1TN6vB1eYdHgug2nfxA7um918zy", amount: 1000000000000},

{recipient: "3NuiCzDhmeSKL5QFa5sqZzzm9zTL4max4fZ", amount: 1500000000000},

{recipient: "3NqaDWdEgGsqJj1HjznDQMtk6v5KVxmRceg", amount: 2000000000000},

{recipient: "3Nckru7f8Y8vS3PXGyy5iwoheRrKvqW5u8x", amount: 2500000000000},

{recipient: "3NmHrYoC8S2SUosy6UJp47bBwq2Cr2X6Yq1", amount: 3000000000000}

(continues on next page)

19.1. Working inside the “Waves Enterprise Mainnet” 105

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

]

network-participants = [

{public-key: "GasRtAUXMhifrUUmgU66rRZPii68tE4QxdQmtCcrV3xL", roles: [permissioner,

→˓ connection_manager]},

{public-key: "Er29kgV3yeumEAtPxBAk5fXPERYYa1wmAcPgzWw4mxHi", roles: [miner]},

{public-key: "9eoVBycnr2m8bgu1WvYySoFJ1QqFLPAMzhnmErp291f6", roles: [miner]},

{public-key: "9ngXJ3d1XSQgXcYbgZm2wH4QHS8CTc5mtf9M4XDoz5db", roles: [miner]},

{public-key: "2cvrBT6jePt6mjinE1EdLLymoqRHFhWwepM3E5gRuSeL", roles: [miner]},

{public-key: "87ZVwBTeBiKYdF2Q5hxGazwhR1pKy9VYgun8rLFMEmoW", roles: [miner]}

]

}

fees {

genesis = 0

genesis-permit = 0

issue = 100000000

transfer = 1000000

reissue = 100000000

burn = 5000000

exchange = 500000

lease = 1000000

lease-cancel = 1000000

create-alias = 100000000

mass-transfer = 5000000

data = 5000000

set-script = 50000000

sponsor-fee = 100000000

set-asset-script = 100000000

permit = 1000000

create-contract = 100000000

call-contract = 10000000

executed-contract = 0

disable-contract = 1000000

update-contract = 100000000

register-node = 1000000

create-policy = 100000000

update-policy = 50000000

policy-data-hash = 5000000

additional {

mass-transfer = 1000000

data = 1000000

}

}

}

}

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value is␣

→˓INFO.

logging-level = DEBUG

features {

supported = [] # NG

}

P2P Network settings

network {

(continues on next page)

106 Chapter 19. Mainnet and Partnernet connection

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

Network address

bind-address = "0.0.0.0"

Port number

port = 6864

Peers network addresses and ports

Example: known-peers = ["node-0.wavesenterprise.com:6864", "node-1.wavesenterprise.

→˓com:6864"]

known-peers = []

Node name to send during handshake. Comment this string out to set random node name.

node-name = "node"

String with IP address and port to send as external address during handshake. Could␣

→˓be set automatically if uPnP is enabled.

declared-address = "0.0.0.0:6864"

}

wallet {

Path to keystore. In case of GOST cryptography keys stored in a './keystore/' folder.␣

→˓In case of Waves-cryptography keys stored in a 'keystore.dat' file.

file = ${user.home}"/node/keystore.dat"

Access password

password = ""

}

Node's REST API settings

rest-api {

enable = yes

bind-address = "0.0.0.0"

port = 6862

Hashed secret Api-Key to access node's REST API

api-key-hash = ""

Api-key hash for Privacy Data Exchange REST API methods

privacy-api-key-hash = ""

}

New blocks generator settings

miner {

enable = no

quorum = 2

interval-after-last-block-then-generation-is-allowed = 35d

micro-block-interval = 5s

min-micro-block-age = 3s

max-transactions-in-micro-block = 500

minimal-block-generation-offset = 200ms

}

Anchoring settings

scheduler-service.enable = no

Docker smart-contracts engine config

docker-engine {

enable = no

(continues on next page)

19.1. Working inside the “Waves Enterprise Mainnet” 107

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

execution-limits {

timeout = 10s

memory = 512

memory-swap = 512

}

grpc-server {

gRPC server port

port = 6865

Optional node host

host = “192.168.65.2”

}

}

}

19.2 Working inside the “Waves Enterprise Partnernet”

19.2.1 Connection of the node to the “ Waves Enterprise Partnernet”

Follow these steps for the node connection to the “Waves Enterprise Partnernet”:

1. Deploy a single node.

2. Create the accounts.conf configuration file before the generator start.

3. Download the current release of the node and generator in the jar format.

4. Generate a key pair for the connected node using the generator. For your convenience it is recommended
to create one key pair for one node, please, specify the number of nodes 1 in the amount field of the
accounts.conf configuration file. Enter the node address password during the key pair creation and
keep it for the following steps. Press enter key if you do not want to use this password.

5. Create the node configuration file using the template from the project GitHub. Please, fill all the fields
marked with #FILL string. If you want the node to be a miner specify the value yes of the enable
parameter of the miner block and request the miner rights inside the connection application. Otherwise
specify the no value. Also specify the PostgreSQL DB address as a value of the url parameter of the
privacy {storage {}} block.

6. If you do not want to enter the password each time when node is starting, create the
WE_NODE_OWNER_PASSWORD and WE_NODE_OWNER_PASSWORD_EMPTY global variables in your OS.

7. Go to the ‘Waves Enterprise support website <https://support.wavesenterprise.com/servicedesk>_
and perform the registration.

8. Select the type of request “Participant connection” for legal or natural person.

9. Register on the resource by filling in all the required fields of the form. If you want to mine, check the
box Please grant mining rights.

10. Please, wait for the connection application consideration. You can start working in the “Waves Enter-
prise Partnernet” after successful registration.

11. Run the node after getting the application approve.

108 Chapter 19. Mainnet and Partnernet connection

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/blob/master/configs/partnernet.conf
https://support.wavesenterprise.com/servicedesk

Technical description of the Waves Enterprise platform, Release master

19.2.2 Examples of the “Waves Enterprise Partnernet” configuration files

You can read here about the node configuration.

The accounts.conf file example

// accounts.conf listing

accounts-generator {

waves-crypto = yes

chain-id = P

amount = 1

wallet = ${user.home}"/node/keystore.dat"

wallet-password = "some string as password"

reload-node-wallet {

enabled = false

url = "http://localhost:6869/utils/reload-wallet"

}

}

The chain-id parameter contains the identification network byte, for the “Waves Enterprise Partnernet” in
is P. If you want to use the GOST cryptography specify the no value of the waves-crypto parameter inside
all the configuration files. Also install the CryptoPro JCP 2.0.40035 software before the node configuration.
You can find full info about installation here.

The api-key-hash file example

// api-key-hash.conf listing

apikeyhash-generator {

waves-crypto = yes

api-key = "some string"

}

The node configuration file example

node {

waves-crypto = yes

Blockchain settings

blockchain {

type: CUSTOM

consensus.type = PoS

custom {

address-scheme-character: "P"

functionality {

feature-check-blocks-period = 1

blocks-for-feature-activation = 1

pre-activated-features { 1 = 0, 2 = 0, 3 = 0, 4 = 0, 5 = 0, 6 = 0, 7 = 0, 8 = 0, 9 =␣

→˓0, 10 = 0 }

double-features-periods-after-height = 100000000

}

genesis {

average-block-delay: 60s

(continues on next page)

19.2. Working inside the “Waves Enterprise Partnernet” 109

https://www.cryptopro.ru/sites/default/files/private/jcp/jcp-2.0.40035.zip

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

initial-base-target: 153722867

block-timestamp: 1559260800000

initial-balance: 1625000000000000

genesis-public-key-base-58: "8RbU8qKWWxLuVk49LgeE39y83LUTVp1zHEJwMM7zKaMC"

signature:

→˓"2dKzduxL9bdWz1B9wBPnGALfowrPDSidEoGAQEoRogGuBB4sQanCr4JySXvWoAmpu1EmcU8MsCQTL3TaSMnFxG2U

→˓"

transactions = [

{ recipient: "3LWg4n6VmN6DKBSwGF1hwnaCzXdjMkQCFrn", amount: 1250000000000000 },

{ recipient: "3LPPZNhakdm9ZPiGShNvWGCshFqsQXFjUQ1", amount: 300000000000000 },

{ recipient: "3LEpXfh7XmCRias92swo6LUJqyo9MA7SaFc", amount: 75000000000000 }

]

network-participants = [

{public-key: "CaFrRzAv7B3DrECR4i2Los1DwxHj4yKAEKCT3zEke9U4", roles: [permissioner,␣

→˓miner, connection_manager]},

{public-key: "Vxb6LQ8Qt9Afs6VJuyiMbMN5qM2pm1EEcWdoZo3WmkN", roles: [miner,␣

→˓permissioner]},

{public-key: "FmzyByBePwbKDjSdnYjwF9G12zGrQc7Gcr8WvQ5ybejC", roles: [miner]}

]

}

}

}

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value is␣

→˓INFO.

logging-level = DEBUG

P2P Network settings

network {

Network address

bind-address = "0.0.0.0"

Port number

port = 6864

known-peers = [

"node0-partnernet.wavesenterprise.com:6864",

"node1-partnernet.wavesenterprise.com:6864",

"node2-partnernet.wavesenterprise.com:6864"

]

Node name to send during handshake. Comment this string out to set random node name.

String with IP address and port to send as external address during handshake. Could␣

→˓be set automatically if uPnP is enabled.

declared-address = "0.0.0.0:6864"

}

wallet {

file = "" #FILL

password = "" #FILL

}

Privacy network settings: node owner address is used to sign handshakes

owner-address = "" #FILL

ntp {

fatal-timeout = "1 minute"

server = "pool.ntp.org"

}

Matcher settings

matcher.enable = no

Node's REST API settings

(continues on next page)

110 Chapter 19. Mainnet and Partnernet connection

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

rest-api {

enable = yes

bind-address = "0.0.0.0"

port = 6862

api-key-hash = "" #api-key for all api #FILL

privacy-api-key-hash = "" #api-key for SendData api #FILL

}

New blocks generator settings

miner {

enable = yes

interval-after-last-block-then-generation-is-allowed = 15d

quorum = 1

minimal-block-generation-offset = 200ms

}

Anchoring

scheduler-service.enable = no

For docker smart-contracts

docker-engine {

enable = yes

Optional connection string to docker host

docker-host = "unix:///var/run/docker.sock"

Optional string to node REST API if we use remote docker host

node-rest-api = "https://clinton.weservices.com/node-0"

execution-limits {

timeout = 10s

memory = 512

memory-swap = 512

}

allow-net-access = yes

grpc-server {

gRPC server port

port = 6865

Optional node host

host = “192.168.65.2”

}

}

privacy {

DB connection config

storage {

url = "" #FILL insert DB connection string here, example "jdbc:postgresql://db_

→˓hostname:5432/_____?user=_____________&password=____"

driver = "org.postgresql.Driver"

profile = "slick.jdbc.PostgresProfile$"

connectionPool = HikariCP

connectionTimeout = 5000

connectionTestQuery = "SELECT 1"

queueSize = 10000

numThreads = 10

schema = "public"

migration-dir = "db/migration"

}

}

}

19.2. Working inside the “Waves Enterprise Partnernet” 111

Technical description of the Waves Enterprise platform, Release master

112 Chapter 19. Mainnet and Partnernet connection

CHAPTER

TWENTY

REST API

The Waves Enterprise blockchain platform provides an opportunity to interact with blockchain both in terms
of receiving data (transactions, blocks, balances, etc.) and in terms of writing information to blockchain
(signing and sending transactions) via RESTful API of the node. REST API allows users to interact remotely
with the node using requests and responses in JSON format. HTTPS protocol is using to work with API
and as an interface it is utilized the Swagger framework.

20.1 Node REST API methods

Full description of the REST API methods you can find on the API Docs page. Almost all REST API
methods are closed by the authorization. If a method is opened, you’ll see the badge .

20.1.1 Activation

Hint: The rules for generating requests to the node are given in module How to use REST API .

GET /activation/status

Returns the activation status of the new functionality in the node(s).

Method Response:

{"height": 47041,

"votingInterval": 1,

"votingThreshold": 1,

"nextCheck": 47041,

"features": [

{"id": 1,

"description": "Minimum Generating Balance of 1000 WEST",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 2,

"description": "NG Protocol",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

(continues on next page)

113

https://docs-out.vostokservices.com/en/1.2.1/api.html

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"activationHeight": 0 },

{"id": 3,

"description": "Mass Transfer Transaction",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 4,

"description": "Smart Accounts",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 5,

"description": "Data Transaction",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 6,

"description": "Burn Any Tokens",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 7,

"description": "Fee Sponsorship",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 8,

"description": "Fair PoS",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 },

{"id": 9,

"description": "Smart Assets",

"blockchainStatus": "VOTING",

"nodeStatus": "IMPLEMENTED",

"supportingBlocks": 0 },

{"id": 10,

"description": "Smart Account Trading",

"blockchainStatus": "ACTIVATED",

"nodeStatus": "IMPLEMENTED",

"activationHeight": 0 }]

}

20.1.2 Addresses

Hint: The rules for generating queries to the node are given in module How to use REST API .

114 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /addresses/info/{address}

Getting a public key by the address. The method returns only those public keys that are stored in the
keystore.dat file of the node.

Method Response:

{

"address": "3JFR1pmL6biTzr9oa63gJcjZ8ih429KD3aF",

"publicKey": "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1Tt"

}

GET/addresses

Get all addresses of participants whose key pairs are stored in the node keystore.

Method Response:

[

"3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"

]

GET/addresses/seq/{from}/{to}

Gets all addresses of participants whose key pairs are stored in node keystore in the specified range.

Method Response:

[

"3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"

]

GET/addresses/balance/{address}

Get the balance for the address {address}.

Method Response:

{

"address": "3N3keodUiS8WLEw9W4BKDNxgNdUpwSnpb3K",

"confirmations": 0,

"balance": 100945889661986

}

20.1. Node REST API methods 115

Technical description of the Waves Enterprise platform, Release master

POST/addresses/balance/details

Get balances for the address list.

Method Query:

{

"addresses": [

"3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ", "3N11u447zghwj9MemYkrkt9v9xDaMwTY9nG"

]

}

GET/addresses/effectivebalance/{address}/{confirmations}

Get the balance for the address {address} after a number of confirmations > = value {confirmations}.
Returns the total balance of the participant, including assets transferred to the participant for the leasing.

Method Response:

{

"address": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

"confirmations": 1,

"balance": 0

}

GET /addresses/effectiveBalance/{address}

Get the effective balance of the specified address.

Method Response

{

"address": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"confirmations": 0,

"balance": 1240001592820000

}

GET/addresses/balance/details/{address}

Returns detailed information about balance of address {address}.

Method Query:

{

"addresses": [

"3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ"

]

}

Method Response:

[

{

"address": "3N65yEf31ojBZUvpu4LCo7n8D73juFtheUJ",

(continues on next page)

116 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"regular": 0,

"generating": 0,

"available": 0,

"effective": 0

}

]

Response Options

• Regular - total balance of participant, including assets transferred for leasing

• Available - total balance of participant, except for assets transferred for leasing

• Effective — total balance of participant, including assets transferred to participant for leasing (Available
+ assets transferred to you for leasing)

• Generating - minimum balance of participant, including assets transferred to participant for leasing,
for the last 1000 blocks (used for mining)

GET/addresses/scriptInfo/{address}

Get information about the script installed on the address {address}.

Method Response:

{

"address": "3N3keodUiS8WLEw9W4BKDNxgNdUpwSnpb3K",

"script":

→˓"3rbFDtbPwAvSp2vBvqGfGR9nRS1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmyTmvHPxYf34SocMRkRKFgzTtXXnnv7upRHXJzZrLSQo8tUW6yMtEiZ

→˓",

"scriptText": "ScriptV1(BLOCK(LET(x,CONST_LONG(1)),FUNCTION_CALL(FunctionHeader(==,List(LONG,␣

→˓LONG)),List(FUNCTION_CALL(FunctionHeader(+,List(LONG, LONG)),List(REF(x,LONG), CONST_LONG(1)),

→˓LONG), CONST_LONG(2)),BOOLEAN),BOOLEAN))",

"complexity": 11,

"extraFee": 10001

}

Response Options

• “address” - address in Base58 format

• “script” - Base64 representation of the script

• “scriptText” - source code of the script

• “complexity” - complexity of the script

• “extraFee” - fee for outgoing transactions set by the script

20.1. Node REST API methods 117

Technical description of the Waves Enterprise platform, Release master

POST/addresses/sign/{address}

Returns the message encoded in BASE58 format signed by address private key {address}, stored in node
keystore. The message is first signed and then converted.

Method Query:

{

"message": "mytext"

}

Method Response:

{

"message": "wWshKhJj",

"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":

→˓"62PFG855ThsEHUZ4N8VE8kMyHCK9GWnvtTZ3hq6JHYv12BhP1eRjegA6nSa3DAoTTMammhamadvizDUYZAZtKY9S"

}

POST/addresses/verify/{address}

Validates signature of a message executed by address {address}, including the one created through POST
method/addresses/sign/{address}.

Method Query:

{

"message": "wWshKhJj",

"publickey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":

→˓"5kwwE9sDZzssoNaoBSJnb8RLqfYGt1NDGbTWWXUeX8b9amRRJN3hr5fhs9vHBq6VES5ng4hqbCUoDEsoQNauRRts"

}

Method Response:

{

"valid": true

}

POST/addresses/signtext/{address}

Returns a message signed by address private key {address} stored in the node keystore.

Method Query:

{

"message": "mytext"

}

Method Response:

{

"message": "message",

"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

(continues on next page)

118 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"signature":

→˓"5kVZfWfFmoYn38cJfNhkdct5WCyksMgQ7kjwHK7Zjnrzs9QYRWo6HuJoGc8WRMozdYcAVJvojJnPpArqPvu2uc3u"

}

POST/addresses/verifytext/{address}

Validates signature of a message executed by address {address}, including the one created through the
POSTmethod /addresses/signtext/{address}.

Method Query:

{

"message": "message",

"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":

→˓"5kVZfWfFmoYn38cJfNhkdct5WCyksMgQ7kjwHK7Zjnrzs9QYRWo6HuJoGc8WRMozdYcAVJvojJnPpArqPvu2uc3u"

}

Method Response:

{

"valid": true

}

GET /addresses/validate/{addressOrAlias}

Validates correctness of specified address or its alias {addressOrAlias} in a network blockchain of operating
node.

Method Response:

{

addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7Aa1Ac",

valid: true

}

POST /addresses/validateMany

Checks the validity of addresses or aliases.

Method Query:

{

addressesOrAliases: [

"3HSVTtjim3FmV21HWQ1LurMhFzjut7Aa1Ac",

"alias:T:asdfghjk",

"alias:T:1nvAliDAl1ass99911%^&$$$ "

]

}

Method Response:

20.1. Node REST API methods 119

Technical description of the Waves Enterprise platform, Release master

{

validations: [

{

addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7Aa1Ac",

valid: true

},

{

addressOrAlias: "alias:T:asdfghjk",

valid: true

},

{

addressOrAlias: "alias:T:1nvAliDAl1ass99911%^&$$$ ",

valid: false,

reason: "GenericError(Alias should contain only following characters: -.0123456789@_

→˓abcdefghijklmnopqrstuvwxyz)"

}

]

}

GET /addresses/publicKey/{publicKey}

Returns participant address based on its public key.

Method Response:

{

"address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq"

}

GET/addresses/data/{address}

Returns all data recorded to address account {address}.

Method Response:

[

{

"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4Ggi1N36aWnY",

"type": "integer",

"value": 1500000

}

]

GET/addresses/data/{address}/{key}

Returns data recorded to address account {address} by key {key}.

Method Response:

{

"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4Ggi1N36aWnY",

"type": "integer",

"value": 1500000

}

120 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.1.3 Alias

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET/alias/by-alias/{alias}

Gets participant address by its alias {alias}.

Method Response:

{

"address": "address:3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"

}

GET /alias/by-address/{address}

Gets alias {alias} of participant by its address {address}.

Method Response:

[

"alias:HUMANREADABLE1",

"alias:HUMANREADABLE2",

"alias:HUMANREADABLE3",

]

20.1.4 Anchoring

GET /anchoring/config

Hint: Rules of the creating requests to a node, see How to use REST API section.

Get the anchoring section of the node configuration file.

Method answer

{

"enabled": true,

"currentChainOwnerAddress": "3FWwx4o1177A4oeHAEW5EQ6Bkn4Lv48quYz",

"mainnetNodeAddress": "https://clinton-pool.wavesenterpriseservices.com:443",

"mainnetSchemeByte": "L",

"mainnetRecipientAddress": "3JzVWCSV6v4ucSxtGSjZsvdiCT1FAzwpqrP",

"mainnetFee": 8000000,

"currentChainFee": 666666,

(continues on next page)

20.1. Node REST API methods 121

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"heightRange": 5,

"heightAbove": 3,

"threshold": 10

}

20.1.5 Assets

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET/assets/balance/{address}

Returns balance of all address {address} assets.

Method Response:

{

"address": "3Mv61qe6egMSjRDZiiuvJDnf3Q1qW9tTZDB",

"balances": [

{

"assetId": "Ax9T4grFxx5m3KPUEKjMdnQkCKtBktf694wU2wJYvQUD",

"balance": 4879179221,

"quantity": 48791792210,

"reissuable": true,

"minSponsoredAssetFee" : 100,

"sponsorBalance" : 1233221,

"issueTransaction" : {

"type" : 3,

...

}

},

{

"assetId": "49KfHPJcKvSAvNKwM7CTofjKHzL87SaSx8eyADBjv5Wi",

"balance": 10,

"quantity": 10000000000,

"reissuable": false,

"issueTransaction" : {

"type" : 3,

...

}

}

]

}

Method Parameters:

• “Address” - participant address

• “balances” - object with participant balance

• “assetId” - asset ID

• “balance” - asset balance

122 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

• “quantity” - number of issued assets

• “reissuable” - indicator whether asset can be reissued or not

• “issueTransaction” - asset creation transaction

• “minSponsoredAssetFee” - minimum value of fee for sponsorship transactions

• “sponsorBalance” - assets allocated for payment of sponsored asset transactions

GET /assets/balance/{address}/{assetId}

Returns address {address} balance by asset {assetId}.

Method Response:

{

"address": "3Mv61qe6egMSjRDZiiuvJDnf3Q1qW9tTZDB",

"assetId": "Ax9T4grFxx5m3KPUEKjMdnQkCKtBktf694wU2wJYvQUD",

"balance": 4879179221

}

GET /assets/details/{assetId}

Returns description of asset {assetId}.

Method Response:

{

"assetId" : "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ",

"issueHeight" : 140194,

"issueTimestamp" : 1504015013373,

"issuer" : "3NCBMxgdghg4tUhEEffSXy11L6hUi6fcBpd",

"name" : "name",

"description" : "Sponsored asset",

"decimals" : 1,

"reissuable" : true,

"quantity" : 1221905614,

"script" : null,

"scriptText" : null,

"complexity" : 0,

"extraFee": 0,

"minSponsoredAssetFee" : 100000 // null assume no sponsorship, number - amount of assets for␣

→˓minimal fee

}

GET /assets/{assetId}/distribution

Returns distribution of asset {assetId}.

Method Response:

{

"3P8GxcTEyZtG6LEfnn9knp9wu8uLKrAFHCb": 1,

"3P2voHxcJg79csj4YspNq1akepX8TSmGhTE": 1200

}

20.1. Node REST API methods 123

Technical description of the Waves Enterprise platform, Release master

POST /assets/balance

Returns the assets balance for one or few addresses.

Method Response

{

"3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG": [],

"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn": []

}

20.1.6 Blocks

Hint: The rules for generating queries to the node are given in module How to use REST API .

The last block may contain a different number of transactions during the period of its creation. It depends
on the fact that while the block is not accepted by the nodes-miners, the number of transactions in it can
constantly change. Therefore, when using methods that provide information about the last block, it should
be kept in mind that the number of transactions in the last block may change.

GET /blocks/height

Returns block number of current blockchain state.

Method Response:

{

"height": 7788

}

GET /blocks/height/{signature}

Returns height (number) of block by its signature.

GET /blocks/first

Returns contents of first block (genesis block).

GET /blocks/last

Returns contents of last block.

Method Response:

{

"version": 2,

"timestamp": 1479313809528,

"reference":

→˓"4MLXQDbARiJDEAoy5vZ8QYh1yNnDhdGhGWkDKna8J6QXb7agVpFEi16hHBGUxxnq8x4myG4w66DR4Ze8FM5dh8Gi",

(continues on next page)

124 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"nxtconsensus": {

"basetarget": 464,

"generationsignature": "7WUV2TufaRAyjiCPFdnAWbn2Q7Jk7nBmWbnnDXKDEeJv"

},

"transactions": [

{

"type": 2,

"id":

→˓"64hxaxZvB9iD1cfRf1j8KPTXs4qE7SHaDWTZKoUvgfVZotaJUtSGa5Bxi86ufAfp5ifoNAGknBqS9CpxBKG9RNVR",

"fee": 100000,

"timestamp": 1479313757194,

"signature":

→˓"64hxaxZvB9iD1cfRf1j8KPTXs4qE7SHaDWTZKoUvgfVZotaJUtSGa5Bxi86ufAfp5ifoNAGknBqS9CpxBKG9RNVR",

"sender": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",

"recipient": "3N8UPtqiy322NVr1fLP7SaK1AaCU7oPaVuy",

"amount": 1000000000

}

],

"generator": "3N5GRqzDBhjVXnCn44baHcz2GoZy5qLxtTh",

"signature":

→˓"4ZhZdLAvaGneLU4K4b2eTgRQvbBjEZrtwo1qAhM9ar3A3weGEutbfNKM4WJ9JZnV8BXenx8JRGVNwpfxf3prGaxd",

"fee": 100000,

"blocksize": 369

}

GET /blocks/at/{height}

Returns contents of block at height {height}.

GET /blocks/seq/{from}/{to}

Returns contents of blocks ranging from {from} to {to}.

GET /blocks/seqext/{from}/{to}

Returns contents of blocks with additional transactions info ranging from {from} to {to}.

GET /blocks/signature/{signature}

Returns contents of block by its signature {signature}.

20.1. Node REST API methods 125

Technical description of the Waves Enterprise platform, Release master

GET /blocks/address/{address}/{from}/{to}

Returns all blocks generated (mined) by address {address}.

GET /blocks/child/{signature}

Returns block inherited from block with signature {signature}.

GET /blocks/headers/at/{height}

Returns block header at height {height}.

GET /blocks/headers/seq/{from}/{to}

Returns block headers ranging from {from} to {to}.

GET /blocks/headers/last

Returns header of last block in the blockchain.

20.1.7 Consensus

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET /consensus/algo

Returns type of consensus algorithm used on the network.

Method Response:

{

"consensusAlgo": "Fair Proof-of-Stake (FairPoS)"

}

GET /consensus/settings

Returns consensus settings specified in node configuration file.

Method Response:

{

"consensusAlgo": "Proof-of-Authority (PoA)",

"roundDuration": "25 seconds",

"syncDuration": "5 seconds",

"banDurationBlocks": 50,

"warningsForBan": 3

}

126 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /consensus/minersAtHeight/{height}

Returns miner queue at height {height}.

Method Response:

{

"miners": [

"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",

"3N2EsS6hJPYgRn7WFJHLJNnrsm92sUKcXkd",

"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",

"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF",

"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEdZNS"

],

"height": 1

}

GET /consensus/miners/{timestamp}

Returns miner queue at timestamp {timestamp}.

Method Response:

{

"miners": [

"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",

"3N2EsS6hJPYgRn7WFJHLJNnrsm92sUKcXkd",

"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",

"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF",

"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEdZNS"

],

"timestamp": 1547804621000

}

GET /consensus/bannedMiners/{height}

Returns a list of blocked miners at height {height}.

Method Response:

{

"bannedMiners": [],

"height": 1000

}

20.1. Node REST API methods 127

Technical description of the Waves Enterprise platform, Release master

GET /consensus/basetarget/{blockId}

Returns value of ‘base complexity’ _ (basetarget) of creating block {blockId} .

GET /consensus/basetarget

Returns value of ‘base complexity’_ (basetarget) of creating last block.

GET /consensus/generatingbalance/{address}

Returns generating balance available for minning node {address} - minimum participant balance including
assets transferred to participant for leasing, for last 1000 blocks.

GET /consensus/generationsignature/{blockId}

Returns value of ‘generation signature’_ of generating block {blockId}.

GET /consensus/generationsignature

Returns value of ‘generation signature’_ of last block.

20.1.8 Contracts

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET /contracts

Returns the contracts info.

Method Response

[

{

"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCq1CCh8i",

"image": "registry.wvservices.com/wv-sc/may14_1:latest",

"imageHash": "ff9b8af966b4c84e66d3847a514e65f55b2c1f63afcd8b708b9948a814cb8957",

"version": 1,

"active": false

}

]

128 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /contracts

Returns some parameters for the one or more contract IDs specified in the query.

Method Response

{

"8vBJhy4eS8oEwCHC3yS3M6nZd5CLBa6XNt4Nk3yEEExG": [

{

"type": "string",

"value": "Only description",

"key": "Description"

},

{

"type": "integer",

"value": -9223372036854776000,

"key": "key_may"

}

]

}

GET /contracts/info/{contractId}

Returns current information about specified contract version, contract location, and the image hash.

Method Response

[

{

"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCq1CCh8i",

"image": "registry.wvservices.com/wv-sc/may14_1:latest",

"imageHash": "ff9b8af966b4c84e66d3847a514e65f55b2c1f63afcd8b708b9948a814cb8957",

"version": 1,

"active": false

}

]

GET /contracts/status/{id}

Returns the contract execution transaction status.

Method Response

[

{

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"txId": "4q5Q8vLeGBpcdQofZikyrrjHUS4pB1AB4qNEn2yHRKWU",

"status": "Success",

"code": null,

"message": "Smart contract transaction successfully mined",

"timestamp": 1558961372834,

"signature":

→˓"4gXy7qtzkaHHH6NkksnZ5pnv8juF65MvjQ9JgVztpgNwLNwuyyr27Db3gCh5YyADqZeBH72EyAkBouUoKvwJ3RQJ"

},

}

(continues on next page)

20.1. Node REST API methods 129

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"senderPublicKey": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"txId": "4q5Q8vLeGBpcdQofZikyrrjHUS4pB1AB4qNEn2yHRKWU",

"status": "Success",

"code": null,

"message": "Smart contract transaction successfully mined",

"timestamp": 1558961376012,

"signature":

→˓"3Vhqc9DvNhMvFFtWnBuV4XwQ62ZcTAvLNZYmeGc7mGzMcnGZ3RLshDs393fnQu1WTh8CmL58YnvnjyULEEi5yorV"

}

]

GET /contracts/{contractId}

Returns result of smart contract execution by its ID (contract creation transaction ID).

Method Response:

[

{

"key": "avg",

"type": "string",

"value": "3897.80146957"

},

{

"key": "buy_price",

"type": "string",

"value": "3842"

}

]

GET /contracts/executed-tx-for/{id}

Returns result of smart contract execution by ID of contract execution transaction.

Method Response:

{

"type": 105,

"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 500000,

"timestamp": 1549365523980,

"proofs": [

"4BoG6wQnYyZWyUKzAwh5n1184tsEWUqUTWmXMExvvCU95xgk4UFB8iCnHJ4GhvJm86REB69hKM7s2WLAwTSXquAs"

],

"version": 1,

"tx": {

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

(continues on next page)

130 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

},

"results": []

}

GET /contracts/{contractId}/{key}

Returns smart contract execution value by its ID (contract creation transaction ID) and key {key}.

Method Response:

{

"key": "updated",

"type": "integer",

"value": 1545835909

}

20.1.9 Crypto

Hint: The rules for generating queries to the node are given in module How to use REST API .

POST /crypto/encryptSeparate

Encrypts the text separately for the each recipient with the unique key.

Method Query

{

"sender": "3MCUfX4P4U56hoQwSqXnLJenB6cDkxBjisL",

"password": "some string as a password",

"encryptionText": "some text to encrypt",

"recipientsPublicKeys": [

→˓"5R65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHJ1VVHLp63LkrkxsNod64V1pffeiZz5i2qXc",

"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S"]

}

Method Response

{

"encryptedText": "IZ5Kk5YNspMWl/jmlTizVxD6Nik=",

"publicKey":

→˓"5R65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHJ1VVHLp63LkrkxsNod64V1pffeiZz5i2qXc",
(continues on next page)

20.1. Node REST API methods 131

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"wrappedKey":

→˓"uWVoxJAzruwTDDSbphDS31TjSQX6CSWXivp3x34uE3XtnMqqK9swoaZ3LyAgFDR7o6CfkgzFkWmTen4qAZewPfBbwR"

},

{

"encryptedText": "F9uO1ORGvSEDe6dWm1pzJQ+3xqE=",

"publicKey":

→˓"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S",

"wrappedKey":

→˓"LdzdoKadUzBTMwczGYgu1AM4YrbbLr9Uh1MvQ3MPcLZUhCD9herz4dv1m6ssaVHPiBNUGgqKnLZ6Si4Cc64UvhXBbG"

}

POST /crypto/encryptCommon

Encrypts the data with a single CEK key for all recipients and the CEK wraps into a unique KEK for the
each recipient.

Method Query

{

"sender": "3MCUfX4P4U56hoQwSqXnLJenB6cDkxBjisL",

"password": "some string as a password",

"encryptionText": "some text to encrypt",

"recipientsPublicKeys": [

→˓"5R65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHJ1VVHLp63LkrkxsNod64V1pffeiZz5i2qXc",

"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S"]

}

Method Response

{

"encryptedText": "NpCCig2i3jzo0xBnfqjfedbti8Y=",

"recipientToWrappedStructure": {

"5R65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHJ1VVHLp63LkrkxsNod64V1pffeiZz5i2qXc":

"M8pAe8HnKiWLE1HsC1ML5t8b7giWxiHfvagh7Y3F7rZL8q1tqMCJMYJo4qz4b3xjcuuUiV57tY3k7oSig53Aw1Dkkw",

"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S":

"Doqn6gPvBBeSu2vdwgFYMbDHM4knEGMbqPn8Np76mNRRoZXLDioofyVbSSaTTEr4cvXwzEwVMugiy2wuzFWk3zCiT3"

}

}

POST /crypto/decrypt

Decrypts the data. The decryption is available only if the message recipient’s key is in the node’s keystore.

Method Query

{

"recipient": "3M5F8B1qxSY1W6kA2ZnQiDB4JTGz9W1jvQy",

"password": "some string as a password",

"encryptedText": "oiKFJijfid8HkjsjdhKHhud987d",

"wrappedKey": "M5F8B1qxSY1W6kA2ZnQiDB4JTGzA2ZnQiDB4JTGz9W1jvQy"

"senderPublicKey": "M5F8B1qxSY1W6kA2ZnQiDB4JTGzA2ZnQiDB4JTGz9W1jvQy",

}

Method Response

132 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

{

"decryptedText": "some string for encryption",

}

20.1.10 Debug

Hint: The rules for generating node queries are given in module How to use REST API .

GET /debug/blocks/{howMany}

Gets sizes and full hashes for last blocks. The blocks number is specified during the request.

Method Response

[

{

"226": "7CkZxrAjU8bnat8CjVAPagobNYazyv1HASubmp7YYqGe"

},

{

"226": "GS3y9fUHAKCamq52TPsjizDVir8J7iGoe8P2XZLasxsC"

},

{

"226": "B9LmhGGDdvcfUA9JEWvyVrT9sazZE6gibpAN13xUN7KV"

},

{

"226": "Byb9MHtwYf3MFyi2tbhQ3GTdCct5phKq9REkbjQTzdne"

},

{

"226": "HSxSHbiV4tZc8RaN6jxdhgtkAhjxuLn76uHxerMRUefA"

}

]

GET /debug/info

Shows all information for the debugging and testing.

Method Response

{

"stateHeight": 74015,

"extensionLoaderState": "State(Idle)",

"historyReplierCacheSizes": {

"blocks": 13,

"microBlocks": 2

},

"microBlockSynchronizerCacheSizes": {

"microBlockOwners": 0,

"nextInventories": 0,

"awaiting": 0,

"successfullyReceived": 0

(continues on next page)

20.1. Node REST API methods 133

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

},

"scoreObserverStats": {

"localScore": 42142328633037120000,

"scoresCacheSize": 4

},

"minerState": "mining microblocks"

}

POST /debug/rollback

Removes all blocks after given height.

Sample response

{

"rollbackTo": 100,

"returnTransactionsToUtx": true

}

Method Response

{

"BlockId":

→˓"4U4Hmg4mDYrvxaZ3JVzL1Z1piPDZ1PJ61vd1PeS7ESZFkHsUCUqeeAZoszTVr43Z4NV44dqbLv9WdrLytDL6gHuv"

}

POST /debug/validate

Validates a transaction and measures time spent in milliseconds.

Query Parameters

"id" - Transaction ID

Method Response

{

"valid": false,

"validationTime": 14444

}

GET /debug/minerInfo

Shows all miner information for debugging.

Method Response

[

{

"address": "3JFR1pmL6biTzr9oa63gJcjZ8ih429KD3aF",

"miningBalance": 1248959867200000,

"timestamp": 1585923248329

}

]

134 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /debug/historyInfo

Shows all last block history for debugging.

Method Response

{

"lastBlockIds": [

"37P4fvexYHPUzNPRRqYbRYxGz7x3r5jFznck7amaS6aWnHL5oQqrqCzsSh1HvYKnd2ZhU6n6sWYPb3hxsY8FBfmZ",

"5RRu1qtesz4KvrVp4fxzQHebq2fRanNsg3HJKwD4uChqySm7vFHCdHKU6iZYXJDVmfSxiE9Maeb6sM2JireaWLbx",

"3Lo27JfjekcZnJsYEe7st7evDZ6TgmCUBtiZrSxUCobKL48DZQ4dXMfp89WYjEykH15HEHSXzqMSTQigE8vEcN2r",

"r4RuxEXAqgfDMKVXRWmZcGMaWKDsAvVxfXDtw8d6bamLR61J1gaoesargYSoZQqRbDrBcefLprk7D78fA728719",

"3F4Up46crZbpKVWUeieL6GeSrVMYm7JJ7aX6aHD6B8wedFggSKv8d3H39Qy9MLEauFBU9m3qZV1U8emhmnqwmLbg",

"QSuBkEtVe9nik5T5S33ogeCbgKy7ihBkS2pwYayK23m4ANier83ThpajEzvpbyPy9pPWZc5St8mYUKxXDscKuRC",

"4udpNnz3e1M1GbVZxtwfg8gpF6EbiKxRCRBwi6iRMyLsvh5J2Ec9Wqyu2sq2KYL75o12yiP8TszworeUfuxNmJ5g",

"5BZYZ4RZAJjM5KKCaHpyUsXnb4uunnM5kcfTojc5QzQo3vyP2w3YD4qrALizkkQQR4ziS77BoAGb56QCecUtHFFN",

"5JwfLaF1oGxRXVCdDbFuKpxrvxgLCGU3kCFwxUhLL8G3xV211MrKBuAuQ4MaC5uN574uV9U8M6HfHTMERnfr5jGJ",

"4bysMhz14E1rC7dLYScfVVqPmHqzi8jdhcnkruJmCNL86TwV2cbF7G9YVchvTrv9qbQZ7JQownV59gRRcD26zm16"

],

"microBlockIds": []

}

GET /debug/configInfo

Shows currently running node config.

Method Response

{

"node": {

"anchoring": {

"enable": "no"

},

"blockchain": {

"consensus": {

"type": "pos"

},

"custom": {

"address-scheme-character": "K",

"functionality": {

"blocks-for-feature-activation": 10,

"feature-check-blocks-period": 30,

"pre-activated-features": { ...

...

"wallet": {

"file": "wallet.dat",

"password": ""

},

"waves-crypto": "yes"

}

}

20.1. Node REST API methods 135

Technical description of the Waves Enterprise platform, Release master

DELETE /debug/rollback-to/{signature}

Rollbacks the state to the block with a given signature.

Query Parameters

"signature" - Block signature

Method Response

{

"BlockId":

→˓"4U4Hmg4mDYrvxaZ3JVzL1Z1piPDZ1PJ61vd1PeS7ESZFkHsUCUqeeAZoszTVr43Z4NV44dqbLv9WdrLytDL6gHuv"

}

GET /debug/portfolios/{address}

Gets current portfolio considering pessimistic transactions in the UTX pool.

Query Parameters

"address" - Node address

Method Response

{

"balance": 104665861710336,

"lease": {

"in": 0,

"out": 0

},

"assets": {}

}

POST /debug/print

Prints a string at DEBUG level, strips to 250 chars.

Sample response

{

"message": "string"

}

GET /debug/state

Gets current state of the node.

Method Response

{

"3JD3qDmgL1icDaxa3n24YSjxr9Jze5MBVVs": 4899000000,

"3JPWx147Xf3f9fE89YtfvRhtKWBHy9rWnMK": 17528100000,

"3JU5tCoswHH7FKPBUowySWBnQwpbZiYyNhB": 300021381800000,

(continues on next page)

136 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"3JCJChsQ2CGyHc9Ymu8cnsES6YzjjJELu3a": 75000362600000,

"3JEW9XnPC8w3qQ4AJyVTDBmsVUp32QKoCGD": 5000000000,

"3JSaKNX94deXJkywQwTFgbigTxJa36TDVg3": 6847000000,

"3JFR1pmL6biTzr9oa63gJcjZ8ih429KD3aF": 1248938560600000,

"3JV6V4JEVc3a9uSqRmdUMvMKMfZa16HbGmq": 4770000000,

"3JZtYeGEZHjb2zQ6EcSEo524PdafPn6vWkc": 900000000,

"3JMMFLX9d1rmXaBK9AF7Wuwzu4vRkkoVQBC": 4670000000,

"3JJDpPDqSPokKp5jEmzwMzmaPUyopLZjW1C": 800000000,

"3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t": 994280900000

}

GET /debug/stateWE/{height}

Gets state at specified height.

Query Parameters

"height" - Block height

Method Response

{

"3JPWx147Xf3f9fE89YtfvRhtKWBHy9rWnMK": 17528100000,

"3JU5tCoswHH7FKPBUowySWBnQwpbZiYyNhB": 300020907600000,

"3JCJChsQ2CGyHc9Ymu8cnsES6YzjjJELu3a": 75000350600000,

"3JSaKNX94deXJkywQwTFgbigTxJa36TDVg3": 6847000000,

"3JFR1pmL6biTzr9oa63gJcjZ8ih429KD3aF": 1248960085800000,

"3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t": 994280900000

}

20.1.11 Leasing

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET /leasing/active/{address}

Returns list of lease creation transactions, in which {address} was involved as sender or recipient.

Method Response:

[

{

"type": 8,

"id": "2jWhz6uGYsgvfoMzNR5EEGdi9eafyCA2zLFfkM4NP6T7",

"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",

"senderPublicKey": "DW9NKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",

"fee": 100000,

"timestamp": 1544390280347,

"signature":

→˓"25kpwh7nYjRUtfbAbWYRyMDPCUCoyMoUuWTJ6vZQrXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD",
(continues on next page)

20.1. Node REST API methods 137

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"version": 1,

"amount": 31377465877,

"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqaLtZcyzH",

"height": 1298747

}

]

[

{

"type": 8,

"id": "2jWhz6uGYsgvfoMzNR5EEGdi9eafyCA2zLFfkM4NP6T7",

"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",

"senderPublicKey": "DW9NKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",

"fee": 100000,

"timestamp": 1544390280347,

"signature":

→˓"25kpwh7nYjRUtfbAbWYRyMDPCUCoyMoUuWTJ6vZQrXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD",

"version": 1,

"amount": 31377465877,

"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqaLtZcyzH",

"height": 1298747

}

]

20.1.12 Licenses

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET /licenses

Returns a list of all downloaded licenses.

Method Response:

[

{

"license": {

"version": 1,

"id": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"license_type": null,

"issued_at": "2020-02-27T16:11:14.784Z",

"node_owner_address": "4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"valid_from": "2020-02-20",

"valid_to": "2020-02-27",

"features": [

"all_inclusive"

]

},

"signer_public_key": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCq1CCh8i",

"signature":

→˓"ff9b8af966b4c84e66d3847a514e65f55b2c1f63afcd8b708b9948a814cb8957mLT1ippM7tmfSC8u",
(continues on next page)

138 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"signer_id": "ff9b8af966b4c84e66d3847a514e65f55b2c1f63afcd8b708b9948a814cb8957"

},

{

"license": {

"version": 1,

"id": "49KfHPJcKvSAvNKwM7CTofjKHzL87SaSx8eyADBjv5Wi",

"license_type": null,

"issued_at": "2020-02-27T16:12:34.327Z",

"node_owner_address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq",

"valid_from": "2020-02-29",

"valid_to": null,

"features": [

"all_inclusive"

]

},

"signer_public_key": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":

→˓"5kwwE9sDZzssoNaoBSJnb8RLqfYGt1NDGbTWWXUeX8b9amRRJN3hr5fhs9vHBq6VES5ng4hqbCUoDEsoQNauRRts",

"signer_id": "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ"

}

]

GET /licenses/status

Returns the node license activation status

Method Response:

{

"status" : "TRIAL",

"description" : "Trial period is active. Blocks before expiration: '{num}'"
}

POST /licenses/upload

Adds a new license in JSON format in the node

Method request

{

"license": {

"version": 1,

"id": "49KfHPJcKvSAvNKwM7CTofjKHzL87SaSx8eyADBjv5Wi",

"license_type": null,

"issued_at": "2020-02-27T16:12:34.327Z",

"node_owner_address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq",

"valid_from": "2020-02-29",

"valid_to": null,

"features": [

"all_inclusive"

]

},

"signer_public_key": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":

→˓"5kwwE9sDZzssoNaoBSJnb8RLqfYGt1NDGbTWWXUeX8b9amRRJN3hr5fhs9vHBq6VES5ng4hqbCUoDEsoQNauRRts",
(continues on next page)

20.1. Node REST API methods 139

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"signer_id": "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ"

}

Method Response:

{

"message": "License upload successfully"

}

20.1.13 Node

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET /node/config

Returns main node configuration parameters.

Method Response:

{

"version": "0.6.6",

"waves-crypto": false,

"chainId": "D",

"consensus": "POS",

"minimumFee": {

"1": 0,

"3": 100000000,

"4": 100000,

"5": 100000000,

"6": 100000,

"7": 300000,

"8": 100000,

"9": 100000,

"10": 100000,

"11": 100000,

"12": 100000,

"13": 1000000,

"14": 100000000,

"15": 100000000,

"102": 0

}

}

140 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /node/stop

Query stops node.

GET /node/status

Returns main node configuration parameters.

Method Response:

{

"blockchainHeight": 47041,

"stateHeight": 47041,

"updatedTimestamp": 1544709501138,

"updatedDate": "2018-12-13T13:58:21.138Z"

}

GET /node/version

Returns version of application.

Method Response:

{

"version": "Waves Enterprise v0.9.0"

}

GET /node/owner

Возвращает адрес и публичный ключ владельца ноды.

Method Response:

{

"address": "3JFR1pmL6biTzr9oa63gJcjZ8ih429KD3aF",

"publicKey": "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1Tt"

}

20.1.14 Peers

Hint: The rules for generating queries to the node are given in module How to use REST API .

20.1. Node REST API methods 141

Technical description of the Waves Enterprise platform, Release master

POST /peers/connect

Request to connect a new host to the node.

Method Query:

{

"host":"127.0.0.1",

"port":"9084"

}

Method Response:

{

"hostname": "localhost",

"status": "Trying to connect"

}

GET /peers/connected

Returns a list of connected nodes.

Method Response:

{

"peers": [

{

"address": "52.51.92.182/52.51.92.182:6863",

"declaredAddress": "N/A",

"peerName": "zx 182",

"peerNonce": 183759

},

{

"address": "ec2-52-28-66-217.eu-central-1.compute.amazonaws.com/52.28.66.217:6863",

"declaredAddress": "N/A",

"peerName": "zx 217",

"peerNonce": 1021800

}

]

}

GET /peers/all

Returns a list of all known nodes.

Method Response:

{

"peers": [

{

"address": "/13.80.103.153:6864",

"lastSeen": 1544704874714

}

]

}

142 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /peers/suspended

Returns a list of suspended nodes.

Method Response:

[

{

"hostname": "/13.80.103.153",

"timestamp": 1544704754619

}

]

POST /peers/identity

Gets the public key of the peer which is used by the node for the connection and the confidential data
transfer.

Method Query:

{

"address": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"signature":

→˓"6RwMUQcwrxtKDgM4ANes9Amu5EJgyfF9Bo6nTpXyD89ZKMAcpCM97igbWf2MmLXLdqNxdsUc68fd5TyRBEB6nqf"

}

Parameters:

• address - the blockchain address corresponding to the “privacy.owner-address” parameter in the node
configuration file;

• signature - electronic signature of the “address” field value.

Method Response:

{

"publicKey": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8"

}

Parameters:

• publicKey - the peer public key associated with “privacy.owner-address” parameter in the configuration
file. This parameter does not appear if the mode of the handshake checking turned off.

GET /peers/hostname/{address}

Gets the hostname and IP Address of the node by its address in the Waves Enterprise net.

Method Response:

{

"hostname": "node1.we.io",

"ip": "10.0.0.1"

}

20.1. Node REST API methods 143

Technical description of the Waves Enterprise platform, Release master

GET /peers/allowedNodes

Gets the actual list of allowed participants at the request moment.

Method Response:

{

"allowedNodes": [

{

"address": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",

"publicKey": "Gt3o1ghh2M2TS65UrHZCTJ82LLcMcBrxuaJyrgsLk5VY"

},

{

"address": "3JLp8wt7rEUdn4Cca5Hp9jZ7w8T5XDAKicd",

"publicKey": "J3ffCciVu3sustgb5vxmEHczACMR89Vty5ZBLbPn9xyg"

},

{

"address": "3JRY1cp7atRMBd8QQoswRpH7DLawM5Pnk3L",

"publicKey": "5vn4UcB9En1XgY6w2N6e9W7bqFshG4SL2RLFqEWEbWxG"

}

],

"timestamp": 1558697649489

}

20.1.15 Permissions

Hint: The rules for generating queries to the node are given in module How to use REST API .

GET /permissions/{address}

Returns roles (permissions) assigned to specified address {address} which are valid at the moment.

Method Response:

{

"roles": [

{

"role": "miner"

},

{

"role": "permissioner"

}

],

"timestamp": 1544703449430

}

144 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /permissions/{address}/at/{timestamp}

Returns roles (permissions) assigned to specified address {address} which are valid at the moment {times-
tamp}.

Method Response:

{

"roles": [

{

"role": "miner"

},

{

"role": "permissioner"

}

],

"timestamp": 1544703449430

}

POST /permissions/addresses

Returns roles (permissions) assigned to specified address list which are valid at the moment.

Method Query:

{

"addresses": [

"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w", "3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7"

],

"timestamp": 1544703449430

}

Method Response:

{

"addressToRoles": [

{

"address": "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",

"roles": [

{

"role": "miner"

},

{

"role": "permissioner"

}

]

},

{

"address": "3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",

"roles": [

{

"role": "miner"

}

]

}

],

(continues on next page)

20.1. Node REST API methods 145

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"timestamp": 1544703449430

}

20.1.16 PKI

Warning: The PKI methods can be used only with GOST cryptography.

Digital signature formats listed in the table below is used in PKI. The digital signature number in the table
is consistent for the sigtype field value.

Table 1: Digital signature formats

Digital signature format

1 CAdES-BES
2 CAdES-X Long Type 1
3 CAdES-T

POST /pki/sign

Hint: The rules for generating queries to the node are given in module How to use REST API .

This method creates a detached digital signature. inputData is data for generating a digital signature as an
array of bytes in the Base64 coding, keystoreAlias is a name of the key container of the digital signature
private key. Also you need to specify a password in the password string.

Request example

{

"inputData" : "SGVsbG8gd29ybGQh",

"keystoreAlias" : "key1",

"password" : "password",

"sigType" : "CAdES_X_Long_Type_1",

}

Answer example

{

"signature" :

→˓"c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmtqaGdmamtkZmdoZmdkc2doZmQjsndjfvnksdnjfn="

}

146 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /pki/keystoreAliases

This method returns all the keystore aliases based on the GOST cryptography.

Answer example

{

[

"3Mq9crNkTFf8oRPyisgtf4TjBvZxo4BL2ax",

"e19a135e-11f7-4f0c-9109-a3d1c09812e3"

]

}

POST /pki/verify

This method checks the detached digital signature for the sent data. The extendedKeyUsageList is optional
and may contain an array of object identifiers - OID. It is useful for the determination of the scope of the
certificate. Any node with query parameters can check the certificate.

Request example

{

"inputData" : "SGVsbG8gd29ybGQh",

"signature" : "c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmtqaGdmamtkZmdoZmdkc2doZmQ=",

"sigType" : "CAdES_X_Long_Type_1",

"extendedKeyUsageList": [

"1.2.643.7.1.1.1.1",

"1.2.643.2.2.35.2"

]

}

Answer example

{

"sigStatus" : "true"

}

Working with POST /pki/verify method

Using API Post /pki/verify method you can verify qualified digital signature. You need to install the root
certificate on the node for proper using of API Post /pki/verify . The CA root certificate uniquely identifies
the certification authority and is the basis in the chain of trust.

How to install a root certificate on a node

The root certificate is installing into the following Java directory:

-keystore /Library/Java/JavaVirtualMachines/jdk1.8.0_191.jdk/Contents/Home/jre/lib/

→˓security/cacerts

The default password for the Java cacerts certificate store is changeit. You can change the password if you
wish. Install certificates using the following command:

20.1. Node REST API methods 147

Technical description of the Waves Enterprise platform, Release master

sudo keytool -import -alias testAliasCA_cryptopro -keystore /Library/Java/

→˓JavaVirtualMachines/jdk1.8.0_191.jdk/Contents/Home/jre/lib/security/cacerts -file ~/

→˓Downloads/cert.cer

20.1.17 Privacy

Hint: Rules of the creating requests to a node, see How to use REST API section.

POST /privacy/sendData

Writing the confidential data to the node store.

Method request:

{

"sender": "3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"password": "apgJP9atQccdBPA",

"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"type": "file",

"info": {

"filename":"Service contract #100/5.doc",

"size": 2048,

"timestamp": 1000000000,

"author": "AIvanov@org.com",

"comment": "some comments"

},

"data":

→˓"TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlzIHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2YgdGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGludWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRoZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4=

→˓",

"hash": "FRog42mnzTA292ukng6PHoEK9Mpx9GZNrEHecfvpwmta"

}

Parameters:

• sender - blockchain address for data broadcast (corresponds the “privacy.owner-address” parameter
value in the node configuration file);

• password - access password to the private key of the node keystore;

• policyId - the group ID managing data forwarding;

• type - the type of the data;

• info - the information about the data;

• data - binary data;

• hash - data hash.

Method answer:

{

"senderPublicKey": "Gt3o1ghh2M2TS65UrHZCTJ82LLcMcBrxuaJyrgsLk5VY",

"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

(continues on next page)

148 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"sender": "3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"dataHash": "FRog42mnzTA292ukng6PHoEK9Mpx9GZNrEHecfvpwmta",

"proofs": [

"2jM4tw4uDmspuXUBt6492T7opuZskYhFGW9gkbq532BvLYRF6RJn3hVGNLuMLK8JSM61GkVgYvYJg9UscAayEYfc"

],

"fee": 110000000,

"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQ5aa",

"type": 114,

"timestamp": 1571043910570

}

GET /privacy/{policy-id}/recipients

Getting all addresses of participants, signed to the access group {policy-id}.

Method answer:

[

"3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"

]

GET /privacy/{policy-id}/getHashes

Getting all addresses of participants, signed to the access group {policy-id}.

Method answer:

[

"3GCFaCWtvLDnC9yX29YftMbn75gwfdwGsBn",

"3GGxcmNyq8ZAHzK7or14Ma84khwW8peBohJ",

"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn",

"3GKpShRQRTddF1yYhQ58ZnKMTnp2xdEzKqW"

]

GET /privacy/{policy-id}/getHashes

Getting the array of identified hashes which are written with association to the {policy-id}.

Method answer:

[

"FdfdNBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"eedfdNBVqYXrapgJP9atQccdBPAgJPwHDKkh6A"

]

20.1. Node REST API methods 149

Technical description of the Waves Enterprise platform, Release master

GET /privacy/{policyId}/getData/{policyItemHash}

Getting the confidential data package by its identified hash.

Method answer:

c29tZV9iYXNlNjRfZW5jb2RlZF9zdHJpbmc=

GET /privacy/{policyId}/getInfo/{policyItemHash}

Getting the metadata for the confidential data package by the identified hash.

Method answer:

{

"sender": "3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"policy": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"type": "file",

"info": {

"filename": "Contract №100/5.doc",

"size": 2048,

"timestamp": 1000000000,

"author": "AIvanov@org.com",

"comment": "Comment"

},

"hash": "e67ad392ab4d933f39d5723aeed96c18c491140e119d590103e7fd6de15623f1"

}

POST /privacy/forceSync

Forced getting the confidential data package by the identified hash.

Method answer:

{

"result": "success" // or "error"

"message": "Address '3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8' not in policy 'policyName'"
}

POST /privacy/getInfos

Getting the meta information array about private data according with the provided group ID and data hash.

Request example:

{ "policiesDataHashes":

[

{

"policyId": "somepolicyId_1",

"datahashes": ["datahash_1","datahash_2"]

},

{

"policyId": "somepolicyId_2",

"datahashes": ["datahash_3","datahash_4"]

}

(continues on next page)

150 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

]

}

Method answer:

{

"policiesDataInfo":[

{

"policyId":"somepolicyId_1",

"datasInfo":[

{

"hash":"e67ad392ab4d933f39d5723aeed96c18c491140e119d590103e7fd6de15623f1",

"sender":"3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"type":"file",

"info":{

"filename":"Contract №100/5.doc",

"size":2048,

"timestamp":1000000000,

"author":"AIvanov@org.com",

"comment":"Comment"

}

},

{

"hash":"e67ad392ab4d933f39d5723aeed96c18c491140e119d590103e7fd6de15623f1",

"sender":"3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"type":"file",

"info":{

"filename":"Contract №101/5.doc",

"size":"2048",

"timestamp":1000000000,

"author":"AIvanov@org.com",

"comment":"Comment"

}

}

}

]

]

}

20.1.18 Transactions

Hint: The rules for generating node queries are given in module How to use REST API .

20.1. Node REST API methods 151

Technical description of the Waves Enterprise platform, Release master

GET /transactions/info/{id}

Query transaction information by its ID.

Query Parameters:

"id" - Transaction ID

Method Response:

{

"type": 4,

"id": "52GG9U2e6foYRKp5vAzsTQ86aDAABfRJ7synz7ohBp19",

"sender": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",

"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"assetId": "E9yZC4cVhCDfbjFJCc9CqkAtkoFy5KaCe64iaxHM2adG",

"amount": 100000,

"fee": 100000,

"timestamp": 1549365736923,

"attachment": "string",

"signature":

→˓"GknccUA79dBcwWgKjqB7vYHcnsj7caYETfncJhRkkaetbQon7DxbpMmvK9LYqUkirJp17geBJCRTNkHEoAjtsUm",

"height": 7782

}

GET /transactions/address/{address}/limit/{limit}

Returns latest {limit} transactions from address {address}.

Method Response:

[

[

{

"type": 2,

"id":

→˓"4XE4M9eSoVWVdHwDYXqZsXhEc4q8PH9mDMUBegCSBBVHJyP2Yb1ZoGi59c1Qzq2TowLmymLNkFQjWp95CdddnyBW",

"fee": 100000,

"timestamp": 1549365736923,

"signature":

→˓"4XE4M9eSoVWVdHwDYXqZsXhEc4q8PH9mDMUBegCSBBVHJyP2Yb1ZoGi59c1Qzq2TowLmymLNkFQjWp95CdddnyBW",

"sender": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",

"recipient": "3N9iRMou3pgmyPbFZn5QZQvBTQBkL2fR6R1",

"amount": 1000000000

}

]

]

152 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /transactions/unconfirmed

Returns all unconfirmed transactions from node utx-pool.

Method Response:

[

{

"type": 4,

"id": "52GG9U2e6foYRKp5vAzsTQ86aDAABfRJ7synz7ohBp19",

"sender": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",

"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"assetId": "E9yZC4cVhCDfbjFJCc9CqkAtkoFy5KaCe64iaxHM2adG",

"amount": 100000,

"fee": 100000,

"timestamp": 1549365736923,

"attachment": "string",

"signature":

→˓"GknccUA79dBcwWgKjqB7vYHcnsj7caYETfncJhRkkaetbQon7DxbpMmvK9LYqUkirJp17geBJCRTNkHEoAjtsUm"

}

]

GET /transactions/unconfirmed/size

Return the number of transactions available in UTX pool.

GET /unconfirmed/info/{id}

Query transaction details from UTX pool by its ID.

POST /transactions/calculateFee

Calculates fee amount for transferred transaction.

Query Parameters

"type" - Transaction type

"senderPublicKey" - Public key of sender

"sender" is ignored

"fee" is ignored

and all the other parameters appropriate for a transaction of the given type.

Method Query

{

"type": 10,

"timestamp": 1549365736923,

"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",

"alias": "ALIAS",

}

or

20.1. Node REST API methods 153

Technical description of the Waves Enterprise platform, Release master

{

"type": 4,

"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",

"recipient": "3P8JYPHrnXSfsWP1LVXySdzU1P83FE1ssDa",

"amount": 1317209272,

"feeAssetId": "8LQW8f7P5d5PZM7GtZEBgaqRPGSzS3DfPuiXrURJ4AJS",

"attachment": "string"

}

Method Response

{

"feeAssetId": null,

"feeAmount": 10000

}

or

{

"feeAssetId": "8LQW8f7P5d5PZM7GtZEBgaqRPGSzS3DfPuiXrURJ4AJS",

"feeAmount": 10000

}

POST /transactions/sign

Signs a transaction with sender’s private key stored in node keystore. After signing, method response must
be sent to method input Broadcast .

It is necessary to enter the password into the password field in order to sign requests with the key from
keystore node.

Sample queries

154 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

ID Transaction type

3 Issue
4 Transfer
5 Reissue
6 Burn
7 Exchange
8 Lease
9 Lease Cancel
10 Alias
11 Mass Transfer
12 Data
13 Set Script
14 Sponsorship
101 Permission (for Genesis block)
102 PermissionTransaction
103 CreateContractTransaction
104 CallContractTransaction
105 ExecutedContractTransaction
106 DisableContractTransaction
107 UpdateContractTransaction
110 GenesisRegisterNode Transaction
111 RegisterNode Transaction
112 CreatePolicy Transaction
113 UpdatePolicy Transaction
114 PolicyDataHash Transaction

3. Issue

{

"type": 3,

"version":2,

"name": "Test Asset 1",

"quantity": 100000000000,

"description": "Some description",

"sender": "3FSCKyfFo3566zwiJjSFLBwKvd826KXUaqR",

"decimals": 8,

"reissuable": true,

"fee": 100000000

}

4. Transfer

{

"type": 4,

"version": 2,

"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"password": "",

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",

"amount": 40000000000,

"fee": 100000

}

10. Alias

20.1. Node REST API methods 155

Technical description of the Waves Enterprise platform, Release master

{

"type": 10,

"version": 2,

"fee": 100000,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"alias": "hodler"

}

12. Data

{

"type": 12,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopa6H3",

"author": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"data":

[

{

"key": "objectId",

"type": "string",

"value": "obj:123:1234"

}

],

"fee": 100000

}

13. Set Script

{

"type": 13,

"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"fee": 1000000,

"name": "faucet",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="

}

.. _tx-sponsorship:

14. Sponsorship

{

"sender": "3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t",

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"fee": 100000000,

"isEnabled": false,

"type": 14,

"password": "1234",

"version": 1

}

102. PermissionTransaction

Sample query

{

"type":102,
(continues on next page)

156 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"sender":"3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"senderPublicKey":"4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"fee":0,

"proofs":[""],

"target":"3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL",

"opType":"add",

"role":"contract_developer",

"dueTimestamp":null

}

103. CreateContractTransaction

Sample query

{

"fee": 100000000,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2",

"password": "",

"params": [],

"type": 103,

"version": 1,

}

Sample response

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

}

104. CallContractTransaction

Sample query

{

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"fee": 10,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"type": 104,

"version": 1,

"contractVersion": 1

"password": "",

(continues on next page)

20.1. Node REST API methods 157

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"params": [

{

"type": "integer",

"key": "a",

"value": 1

},

{

"type": "integer",

"key": "b",

"value": 100

}

]

}

Sample response

{

"type": 104,

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 10,

"timestamp": 1549365736923,

"proofs": [

"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v"

],

"version": 1,

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"params": [

{

"key": "a",

"type": "integer",

"value": 1

},

{

"key": "b",

"type": "integer",

"value": 100

}

]

}

105. ExecutedContractTransaction

Sample response

{

"type": 105,

"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 500000,

"timestamp": 1549365523980,

"proofs": [

"4BoG6wQnYyZWyUKzAwh5n1184tsEWUqUTWmXMExvvCU95xgk4UFB8iCnHJ4GhvJm86REB69hKM7s2WLAwTSXquAs"

],

(continues on next page)

158 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"version": 1,

"tx": {

"type": 103,

"id": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 500000,

"timestamp": 1549365501462,

"proofs": [

"2ZK1Y1ecfQXeWsS5sfcTLM5W1KA3kwi9Up2H7z3Q6yVzMeGxT9xWJT6jREQsmuDBcvk3DCCiWBdFHaxazU8pbo41"

],

"version": 1,

"image": "localhost:5000/contract256",

"imageHash": "930d18dacb4f49e07e2637a62115510f045da55ca16b9c7c503486828641d662",

"params": []

},

"results": []

}

106. DisableContractTransaction

Sample query

{

"sender":"3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"password": "",

"contractId":"Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4ZwMpg",

"fee":500000,

"type":106

}

Sample response

{

"type": 106,

"id": "8Nw34YbosEVhCx18pd81HqYac4C2pGjyLKck8NhSoGYH",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"proofs": [

→˓"5GqPQkuRvG6LPXgPoCr9FogAdmhAaMbyFb5UfjQPUKdSc6BLuQSz75LAWix1ok2Z6PC5ezPpjqzqnr15i3RQmaEc"],

"version": 1,

"contractId": "Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4ZwMpg",

"height": 1632

}

107. UpdateContractTransaction

Sample query

{

"image" : "registry.wvservices.com/we-sc/tdm-increment3:1028.1",

"sender" : "3Mxxz9pBYS5fJMARJNQmzYUHxiWAtvMzSRT",

"password": "",

"fee" : 100000000,

"contractId" : "EnsihTUHSNAB9RcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",

"imageHash" : "0e5d280b9acf6efd8000184ad008757bb967b5266e9ebf476031fad1488c86a3",

(continues on next page)

20.1. Node REST API methods 159

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"type" : 107,

"version" : 1

}

Sample response

{

"senderPublicKey":

→˓"5qBRDm74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEyJwW",

"tx":

{

"senderPublicKey":

→˓"5qBRDm74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEyJwW",

"image":"registry.wvservices.com/we-sc/tdm-increment3:1028.1",

"sender":"3Mxxz9pBYS5fJMARJNQmzYUHxiWAtvMzSRT",

"proofs":[

→˓"3tNsTyteeZrxEbVSv5zPT6dr247nXsVWR5v7Khx8spypgZQUdorCQZV2guTomutUTcyxhJUjNkQW4VmSgbCtgm1Z"],

"fee":0,

"contractId":"EnsihTUHSNAB9RcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",

"id":"HdZdhXVveMT1vYzGTviCoGQU3aH6ZS3YtFpYujWeGCH6",

"imageHash":"17d72ca20bf9393eb4f4496fa2b8aa002e851908b77af1d5db6abc9b8eae0217",

"type":107,"version":1,"timestamp":1572355661572},

"sender":"3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG",

"proofs":[

→˓"28ADV8miUVN5EFjhqeFj6MADSXYjbxA3TsxSwFVs18jXAsHVaBczvnyoUSaYJsjRNmaWgXbpbduccRxpKGTs6tro"],

"fee":0,"id":"7niVY8mjzeKqLBePvhTxFRfLu7BmcwVfqaqtbWAN8AA2",

"type":105,

"version":1,

"results":[],

"timestamp":1572355666866

}

}

110. GenesisRegisterNode

Sample query

{

"type": 110,

"id": "2Xgbsqgfbp5fiq4nsaAoTkQsXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmJMgYLpvwynbxHPTFpFEfFdyLpJ",

"fee": 0,

"timestamp": 1489352400000,

"signature":

→˓"2Xgbsqgfbp5fiq4nsaAoTkQsXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmJMgYLpvwynbxHPTFpFEfFdyLpJ",

"targetPublicKey": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",

"target": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj"

}

Sample response

{

"signature":

→˓"2Xgbsqgfbp5fiq4nsaAoTkQsXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmJMgYLpvwynbxHPTFpFEfFdyLpJ",

"fee": 0,

"id": "2Xgbsqgfbp5fiq4nsaAoTkQsXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmJMgYLpvwynbxHPTFpFEfFdyLpJ",

"type": 110,

"targetPublicKey": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",

(continues on next page)

160 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"timestamp": 1489352400000,

"target": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",

"height": 1

}

111. RegisterNode

Sample query

{

"type": 111,

"opType": "add",

"sender":"3HYW75PpAeVukmbYo9PQ3mzSHdKUgEytUUz",

"password": "",

"targetPubKey": "apgJP9atQccdBPAgJPwH3NBVqYXrapgJP9atQccdBPAgJPwHapgJP9atQccdBPAgJPwHDKkh6A8",

"nodeName": "Node #1",

"fee": 500000,

}

112. CreatePolicy

Sample query

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()*%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112

}

113. UpdatePolicy

Sample query

{

"policyId": "7wphGbhqbmUgzuN5wzgqwqtViTiMdFezSa11fxRV58Lm",

"password":"sfgKYBFCF@#$fsdf()*%",

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"proofs": [],

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

(continues on next page)

20.1. Node REST API methods 161

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"3NwJfjG5RpaDfxEhkwXgwD7oX21NMFCxJHL"

],

"fee": 15000000,

"opType": "add",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 113,

}

114. PolicyDataHash

When a user sends confidential data to the network using the POST /privacy/sendData method, the node
automatically generates the 114 transaction.

POST /transactions/broadcast

Sends a signed transaction to blockchain.

Method Query

{

"type":10,

"senderPublicKey":"G6h72icCSjdW2A89QWDb37hyXJoYKq3XuCUJY2joS3EU",

"fee":100000000,

"timestamp":1550591678479,

"signature":

→˓"4gQyPXzJFEzMbsCd9u5n3B2WauEc4172ssyrXCL882oNa8NfNihnpKianHXrHWnZs1RzDLbQ9rcRYnSqxKWfEPJG",

"alias":"dajzmj6gfuzmbfnhamsbuxivc"

}

Method Response

{

"type":10,

"id":"9q7X84wFuVvKqRdDQeWbtBmpsHt9SXFbvPPtUuKBVxxr",

"sender":"3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",

"senderPublicKey":"G6h72icCSjdW2A89QWDb37hyXJoYKq3XuCUJY2joS3EU",

"fee":100000000,

"timestamp":1550591678479,

"signature":

→˓"4gQyPXzJFEzMbsCd9u5n3B2WauEc4172ssyrXCL882oNa8NfNihnpKianHXrHWnZs1RzDLbQ9rcRYnSqxKWfEPJG",

"alias":"dajzmj6gfuzmbfnhamsbuxivc"

}

162 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /transactions/signAndBroadcast

Signs and sends a signed transaction to the blockchain.

Method Query

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCF@#$fsdf()*%",

"recipients": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",

"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

],

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",

"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

],

"type": 112

}

Method Response

{

"senderPublicKey": "3X6Qb6p96dY4drVt3x4XyHKCRvree4QDqNZyDWHzjJ79",

"policyName": "Policy for sponsored v1",

"fee": 100000000,

"description": "Privacy for sponsored",

"owners": [

"3JSaKNX94deXJkywQwTFgbigTxJa36TDVg3",

"3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t"

],

"type": 112,

"version": 2,

"sender": "3JSaKNX94deXJkywQwTFgbigTxJa36TDVg3",

"feeAssetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"proofs": [

"3vDVjp6UJeN9ahtNcQWt5WDVqC9KqdEsrr9HTToHfoXFd1HtVwnUPPtJKM8tAsCtby81XYQReLj33hLEZ8qbGA3V"

],

"recipients": [

"3JSaKNX94deXJkywQwTFgbigTxJa36TDVg3",

"3JWDUsqyJEkVa1aivNPP8VCAa5zGuxiwD9t"

],

"id": "EyymzQcM2LrsgGDFFxeGn8DhahJbFYmorcBrEh8phv5S",

"timestamp": 1585307711344

}

20.1. Node REST API methods 163

Technical description of the Waves Enterprise platform, Release master

20.1.19 Utils

Hint: The rules for generating queries to the node are given in module How to use REST API .

POST /utils/hash/secure

Returns secure (double) hash of specified message.

Method query:

ridethewaves!

Method response:

{

"message": "ridethewaves!",

"hash": "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tC1zjjLXqsu"

}

POST /utils/hash/fast

Returns hash of specified message.

Method query:

ridethewaves!

Method response:

{

"message": "ridethewaves!",

"hash": "DJ35ymschUFDmqCnDJewjcnVExVkWgX7mJDXhFy9X8oQ"

}

POST /utils/script/compile

Response parameters:

"script" - Base64 script

"complexity" - script complexity

"extraFee" - the fee for outgoing transactions set by the script

Method query:

let x = 1

(x + 1) == 2

Method response:

164 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

{

"script":

→˓"3rbFDtbPwAvSp2vBvqGfGR9nRS1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmyTmvHPxYf34SocMRkRKFgzTtXXnnv7upRHXJzZrLSQo8tUW6yMtEiZ

→˓",

"complexity": 11,

"extraFee": 10001

}

or

Method query:

x == 1

Method response:

{

"error": "Typecheck failed: A definition of 'x' is not found"

}

POST /utils/script/estimate

Decoding base64 script.

Method query:

AQQAAAABeAAAAAAAAAAAAQkAAAAAAAACCQAAZAAAAAIFAAAAAXgAAAAAAAAAAAEAAAAAAAAAAAJdecYi

Method response:

{

"script":

→˓"3rbFDtbPwAvSp2vBvqGfGR9nRS1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmyTmvHPxYf34SocMRkRKFgzTtXXnnv7upRHXJzZrLSQo8tUW6yMtEiZ

→˓",

"scriptText": "FUNCTION_CALL(FunctionHeader(==,List(LONG, LONG)),List(CONST_LONG(1), CONST_

→˓LONG(2)),BOOLEAN)",

"complexity": 11,

"extraFee": 10001

}

GET /utils/time

Returns current node time.

Method response:

{

"system": 1544715343390,

"NTP": 1544715343390

}

20.1. Node REST API methods 165

Technical description of the Waves Enterprise platform, Release master

POST /utils/reload-wallet

Reloads node keystore. Runs if new key pair was created in keystore without restarting node.

Method response:

{

"message": "Wallet reloaded successfully"

}

20.2 Authorization service REST API methods

You can read more about working with REST API in this section. The authorization service REST API
methods are accessed via HTTPS protocol. Methods are closed by authorization and are marked with the

icon.

20.2.1 GET /status

Getting the authorization service status.

Method answer

{

"status": "OK"

}

20.2.2 POST /v1/user

Registering a new user.

Method request

{

"username": "string",

"password": "string",

"locale": "string"

}

Method answer

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

166 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.2.3 GET /v1/user/profile

Getting user data.

Method answer

{

"id": "string",

"name": "string",

"locale": "en",

"addresses": [

"string"

],

"roles": [

"string"

]

}

20.2.4 POST /v1/user/address

Getting an user address.

Method request

{

"address": "string",

"type": "string"

}

Method answer

{

"addressId": "string"

}

20.2.5 GET /v1/user/doesEmailExist

Checking an user email address.

Method answer

{

"exist": true

}

20.2. Authorization service REST API methods 167

Technical description of the Waves Enterprise platform, Release master

20.2.6 POST /v1/user/password/restore

Restoring an user account password.

Method request

{

"email": "string"

}

Method answer

{

"email": "string"

}

20.2.7 POST /v1/user/password/reset

Reseting an user password.

Method request

{

"token": "string",

"password": "string"

}

Method answer

{

"userId": "string"

}

20.2.8 GET /v1/user/confirm/{code}

Entering a confirmation code to reset an user account password.

20.2.9 POST /v1/user/resendEmail

Resending a password recovery code to the specified email address.

Method request

{

"email": "string"

}

Method answer

{

"email": "string"

}

168 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.2.10 POST /v1/auth/login

Registering a new user in the authorization service.

Method request

{

"username": "string",

"password": "string",

"locale": "string"

}

Method answer

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

20.2.11 POST /v1/auth/token

Registering external services and applications in the authorization service.

Method request

{

"token": "string"

}

Method answer

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

20.2.12 POST /v1/auth/refresh

Getting a new refresh token.

Method request

{

"token": "string"

}

Method answer

20.2. Authorization service REST API methods 169

Technical description of the Waves Enterprise platform, Release master

{

"access_token": "string",

"refresh_token": "string",

"token_type": "string"

}

20.2.13 GET /v1/auth/publicKey

Getting the authorization service public key.

Method answer

-----BEGIN PUBLIC KEY-----

MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA7d9Oj/ZQTkkjf4UuMfUu

QIFDTYxYf6QBKMVJnq/wXyPYYkV8HVFYFizCaEciv3CXmBH77sXnuTlrEtvK7zHB

KvV870HmZuazjIgZVSkOnOY7F8UUVNXnlzVD1dPsOGJ6orM41DnC1W65mCrP3bjn

fV4RbmykN/lk7McA6EsMcLEGbKkFhmeq2Nk4hn2CQvoTkupJUnOCP1dhO4bq1lQ7

Ffj9K/FJq73wSXDoH+qqdRG9sfrtgrhtJHerruhv3456e0zyAcDO8+sJUQFKY80B

SZMEndVzFS2ub9Q8e7BfcNxTmQPM4PhHO5wuTqL32qt3uJBx2OI4lu3OND44ZrDJ

BbVog73oPjRYXj+kTbwUZI66SP4aLcQ8sypQyLwqKk5DtLRozSN0OIrupJJ/pwZs

9zPEggL91T0rirbEhGlf5U8/6XN8GVXX4iMk2fD8FHLFJuXCD7Oj4JC2iWfFDC6a

uUkwUfqfjJB8BzIHkncoqOZbpidEE2lTWl+svuEu/wyP5rNlyMiE/e/fZQqM2+o0

cH5Qow6HH35BrloCSZciutUcd1U7YPqESJ5tryy1xn9bsMb+On1ocZTtvec/ow4M

RmnJwm0j1nd+cc19OKLG5/boeA+2zqWu0jCbWR9c0oCmgbhuqZCHaHTBEAKDWcsC

VRz5qD6FPpePpTQDb6ss3bkCAwEAAQ==

-----END PUBLIC KEY-----

20.3 REST API methods for the data service

20.3.1 Transactions

GET /transactions

Returns a list of transactions matching the search query criteria and filters applied.

Important: It is returned a maximum of 500 transactions for the API GET /transactions method
request.

Method Response:

[

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0

(continues on next page)

170 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

}

]

GET /transactions/count

Returns the number of transactions matching the search query criteria and filters applied.

Method Response:

{

"count": "string"

}

GET /transactions/id/{id}

Returns transaction by ID {id}.

Method Response:

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0

}

20.3.2 Token assets

GET /assets

Returns a list of token assets available in the blockchain (as token issue transactions).

Method Response:

[

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0,

"assetId": "string",

"name": "string",

(continues on next page)

20.3. REST API methods for the data service 171

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"description": "string",

"quantity": 0,

"decimals": 0,

"reissuable": true

}

]

20.3.3 Users

GET /users

Returns a list of users matching the search query criteria and filters applied.

Method Response:

[

{

"address": "string",

"aliases": [

"string"

],

"registration_date": "string",

"permissions": [

"string"

],

"balances": [

{

"assetId": "string",

"amount": 0

}

]

}

]

GET /users/{userAddress}

Returns information about the user as per user’s address.

Method Response:

{

"address": "string",

"aliases": [

"string"

],

"registration_date": "string",

"permissions": [

"string"

],

"balances": [

{

"assetId": "string",

"amount": 0

}

(continues on next page)

172 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

]

}

20.3.4 Blocks

GET /blocks/{height}

Returns the block at the specified height.

Method Response:

{

"version": 0,

"timestamp": 0,

"reference": "string",

"nxt-consensus": {

"base-target": 0,

"generation-signature": "string"

},

"features": [

0

],

"generator": "string",

"signature": "string",

"blocksize": 0,

"transactionCount": 0,

"fee": 0,

"height": 0,

"transactions": [

{

"id": "string",

"type": 0,

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0

}

]

}

20.3.5 Data transactions

GET /api/v1/txIds/{key}

Returns a list of data transaction ID’s containing the specified key.

Method Response:

[

{

(continues on next page)

20.3. REST API methods for the data service 173

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"id": "string"

}

]

GET /api/v1/txIds/{key}/{value}

Returns a list of data transaction ID’s containing the specified key and value.

Method Response:

[

{

"id": "string"

}

]

GET /api/v1/txData/{key}

Returns data transaction bodies containing the specified key.

Method Response:

[

{

"id": "string",

"type": "string",

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": 0,

"version": 0,

"key": "string",

"value": "string",

"position_in_tx": 0

}

]

GET /api/v1/txData/{key}/{value}

Returns data transaction bodies containing the specified key and value.

Method Response:

[

{

"id": "string",

"type": "string",

"height": 0,

"fee": 0,

"sender": "string",

"senderPublicKey": "string",

(continues on next page)

174 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"signature": "string",

"timestamp": 0,

"version": 0,

"key": "string",

"value": "string",

"position_in_tx": 0

}

]

20.4 How to use REST API

All API methods are including GET, POST or DELETE HTTPS requests to URL https://yournetwork.

com/node-N/api-docs/swagger.json using the set of parameters. The requests groups with routes and
endpoints are selected in the Swagger interface. The route is the URL of the HTTP method, and the
endpoint is the final part of the route, this is the access to the method. Example:

URL to the HTTP-method

For requests requiring the following actions, mandatory authorization by api-key-hash is required. The
authorization type is specified in the node configuration file. If api-key-hash authorization type is selected,
it is necessary to specify the value of the secret phrase, the hash of which is wrote in the node configuration
file (rest-api.api-key-hash field).

• access to the node keystore (for example, sign method);

• access to operations with confidential data access groups;

• access to the node configuration.

When authorized by token, the value of access token is specified in the corresponding field. If token
authorization is selected, then all REST API methods for node access are closed.

20.5 Authorization methods

Depending on the authorization method, different values are specified to get the access to the node REST
API.

20.4. How to use REST API 175

Technical description of the Waves Enterprise platform, Release master

• OAuth2 Bearer (apiKey) - an access token value.

• ApiKey or PrivacyApiKey (apiKey) - api-key-hash value for both access to the node REST API
and privacy methods.

20.5.1 api-key-hash authorization

The api-key-hash generation is happening during the node configuration. The value of the field rest-api.

api-key-hash can be also generated using the /utils/hash/secure method of node REST API. It is required
to specify the access password to the keystore in the password field of the POST /transaction/sign request
for signing requests by the node keystore key.

Sample query:

curl -X POST

--header 'Content-Type: application/json'
--header 'Accept: application/json'
--header 'X-API-Key: 1' -d '1' 'http://2.testnet-pos.com:6862/transactions/calculateFee'

176 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.5.2 Token authorization

If the authorization service is used, the client receives a pair of tokens - refresh and access - for the node
and other services access. Tokens can be obtained via the authorization service REST API.

20.5. Authorization methods 177

Technical description of the Waves Enterprise platform, Release master

178 Chapter 20. REST API

CHAPTER

TWENTYONE

DOCKER SMART-CONTRACTS

21.1 Smart contract run with REST API

Hint: Technical description of contracts implementation is given in module Docker Smart Contracts.

21.1.1 Description of program logic

This module reviews an example of how to create and run a simple smart contract. The contract performs
increment the number transferred to the contract entry in call-transactions.

Program listing contract.py on Python:

import json

import os

import requests

import sys

def find_param_value(params, name):

for param in params:

if param['key'] == name: return param['value']
return None

def print_success(results):

print(json.dumps(results, separators=(',', ':')))

def print_error(message):

print(message)

sys.exit(3)

def get_value(contract_id):

node = os.environ['NODE_API']
if not node:

print_error("Node REST API address is not defined")

token = os.environ["API_TOKEN"]

if not token:

print_error("Node API token is not defined")

headers = {'X-Contract-Api-Token': token}
(continues on next page)

179

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

url = '{0}/internal/contracts/{1}/sum'.format(node, contract_id)

r = requests.get(url, verify=False, timeout=2, headers=headers)

data = r.json()

return data['value']

if __name__ == '__main__':
command = os.environ['COMMAND']
if command == 'CALL':

contract_id = json.loads(os.environ['TX'])['contractId']
value = get_value(contract_id)

print_success([{

"key": "sum",

"type": "integer",

"value": value + 1}])

elif command == 'CREATE':
print_success([{

"key": "sum",

"type": "integer",

"value": 0}])

else:

print_error("Unknown command {0}".format(command))

Description of operation

• The program expects to get the data structure in json format with the field “params”.

• It reads the values of the “a” fields.

• Returns the result as a value of field “{a} + 1” in json format.

Example of incoming parameters

"params":[

{

"key":"a",

"type":"integer",

"value":1

}

]

21.1.2 Installing a smart contract

1. Download and install Docker for Developers for your operating system.

2. Prepare a contract image. In the stateful-increment-contract folder, create the following files:

• contract.py

• Dockerfile

• run.sh

Listing of run.sh file

#!/bin/sh

python contract.py

180 Chapter 21. Docker Smart-contracts

https://www.docker.com/get-started

Technical description of the Waves Enterprise platform, Release master

Dockerfile File Listing

FROM python:alpine3.8

ADD contract.py /

ADD run.sh /

RUN chmod +x run.sh

RUN apk add --no-cache --update iptables

CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

Important: It is required to install iptables into the smart contract container.

3. Install the image in Docker registry. Execute the following commands in the terminal:

docker run -d -p 5000:5000 --name registry registry:2

cd contracts/stateful-increment-contract

docker build -t stateful-increment-contract .

docker image tag stateful-increment-contract localhost:5000/stateful-increment-contract

docker start registry

docker push localhost:5000/stateful-increment-contract

4. Run the following command in the terminal to get the information about the container:

docker inspect 57c2c2d2643d

[

{

"Id": "sha256:57c2c2d2643da042ef8dd80010632ffdd11e3d2e3f85c20c31dce838073614dd",

"RepoTags": [

"wenode:latest"

],

"RepoDigests": [],

"Parent": "sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3b58edf2686e1944bcc7133f07913",

"Comment": "",

"Created": "2019-10-25T14:15:03.856072509Z",

"Container": "",

"ContainerConfig": {

"Hostname": "",

"Domainname": "",

"User": "",

"AttachStdin": false,

"AttachStdout": false,

"AttachStderr": false,

The smart contract identifier Id is the value of the imageHash field and it is used in transactions with the
created smart contract.

5. Sign a transaction to create a smart contract. In this example, the transaction is signed with the key
stored in the node keystore.

Hint: To create a key pair and the participant address, use the utility generators.jar. The procedure for
creating a key pair is given in item 1 of the module “Connecting to the Network”. The rules for generating
queries to the node are given in the module Node REST API .

Query Body

21.1. Smart contract run with REST API 181

https://en.wikipedia.org/wiki/Iptables
https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

{

"fee": 100000000,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2",

"password": "",

"params": [],

"type": 103,

"version": 1

}

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d ' { \

"fee": 100000000, \

"image": "stateful-increment-contract:latest", \

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65", \

"contractName": "stateful-increment-contract", \

"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2", \

"password": "", \

"params": [], \

"type": 103, \

"version": 1 \

}' 'http://localhost:6862/transactions/sign'

Sample response

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

}

6. Send the signed transaction to the blockchain. The response from the sign method must be transferred
to the input for the broadcast method.

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d '{ \

{

"type": 103, \

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", \

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew", \

(continues on next page)

182 Chapter 21. Docker Smart-contracts

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \

"fee": 500000, \

"timestamp": 1550591678479, \

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"], \

"version": 1, \

"image": "stateful-increment-contract:latest", \

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65", \

"contractName": "stateful-increment-contract", \

"params": [], \

"height": 1619 \

}

}' 'http://localhost:6862/transactions/broadcast'

7. Use the transaction ID to check that the contract initiation transaction is placed in the blockchain.

Sample response

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

}

21.1.3 Smart Contract Execution

1. Sign a call-transaction to call (execute) the smart contract.

In the ‘’contractID” field, specify the contract initialization transaction ID.

Query Body

{

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"fee": 10,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"version": 1,

"params": [

{

"type": "integer",

"key": "a",

"value": 1

}

(continues on next page)

21.1. Smart contract run with REST API 183

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

]

}

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d '{ \

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2", \

"fee": 10, \

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \

"password": "", \

"type": 104, \

"version": 1, \

"params": [\

{ \

"type": "integer", \

"key": "a", \

"value": 1 \

} \

] \

}' 'http://localhost:6862/transactions/sign'

Sample response

{

"type": 104,

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 10,

"timestamp": 1549365736923,

"proofs": [

"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v"

],

"version": 1,

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"params": [

{

"key": "a",

"type": "integer",

"value": 1

}

]

}

2. Send the signed transaction to the blockchain. The response from the sign method must be transferred
to the input for the broadcast method.

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d '{ \

"type": 104, \

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP", \

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq", \

"fee": 10, \

(continues on next page)

184 Chapter 21. Docker Smart-contracts

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"timestamp": 1549365736923, \

"proofs": [\

"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v" \

], \

"version": 1, \

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2", \

"params": [\

{ \

"key": "a", \

"type": "integer", \

"value": 1 \

} \

] \

}' 'http://localhost:6862/transactions/broadcast'

3. Get the result of smart contract execution by its ID.

Sample response

[

{

"key": "1+1",

"type": "integer",

"value": 2

}

]

21.2 API methods available to smart contract

Docker container-based smart contracts can use node REST API . Smart contract developers can use limited
list of REST API methods. This list is represented below, these methods are available directly from the
container.

Addresses methods

• GET /addresses

• GET /addresses/publicKey/{publicKey}

• GET /addresses/balance/{address}

• GET /addresses/data/{address}

• GET /addresses/data/{address}/{key}

Crypto methods

• POST /crypto/encryptCommon

• POST /crypto/encryptSeparate

• POST /crypto/decrypt

Privacy methods

• GET /privacy/{policy-id}/getData/{policy-item-hash}

• GET /privacy/{policy-id}/getInfo/{policy-item-hash}

• GET /privacy/{policy-id}/hashes

21.2. API methods available to smart contract 185

Technical description of the Waves Enterprise platform, Release master

• GET /privacy/{policy-id}/recipients

Transactions methods

• GET /transactions/info/{id}

• GET /transactions/address/{address}/limit/{limit}

Contracts methods

A smart contract can use Contracts methods implementing the separated /internal/contracts/ route,
which is totally identical to the regular Contracts methods.

• GET /internal/contracts/{contractId}/{key}

• GET /internal/contracts/executed-tx-for/{id}

• GET /internal/contracts/{contractId}

• GET /internal/contracts

PKI methods

• PKI /verify

21.2.1 Docker contract authorization

A smart contract requires an authorization to use the node REST API . There are following steps for the
correct REST API methods usage by the smart contract:

1. The following variables should be defined in the Docker contract environment:

• NODE_API - an URL address to the node REST API .

• API_TOKEN - an authorization token of the Docker contract.

• COMMAND - commands for the Docker contract creation and call.

• TX - a transaction which is required to the Docker contract for work (103 - 107 codes).

2. The Docker contract developer assigns the value of the variable API_TOKEN to the request header
X-Contract-Api-Token. The node specifies JWT authorization token into the variable API_TOKEN for
the contract creation and execution.

3. The contract code should pass the received token in the request header (X-Contract-Api-Token) each
time the node API is accessed.

21.3 Smart contract run with gRPC

In addition to using the REST API a smart contract can work with the node via the gRPC framework.
gRPC is a high-performance remote procedure call (RPC) framework that runs over the HTTP/2 protocol.
The protobuf protocol is used as a tool for describing of data types and serialization.

Hint: Technical description of contracts implementation is given in module Docker Smart Contracts.

gRPC framework supports 10 programming languages. You can find the list in official gRPC docs. We use
an example of creating a Python smart contract that performs an increment operation (increasing a given
number by one).

186 Chapter 21. Docker Smart-contracts

https://jwt.io/
https://grpc.io/
https://en.wikipedia.org/wiki/Protocol_Buffers
https://grpc.io/
https://grpc.io/docs/tutorials/

Technical description of the Waves Enterprise platform, Release master

21.3.1 Description of the smart contract

In our example 103 transaction initializes the initial state of the contract for the creation, keeping the
numeric key sum with 0 value in it:

{

"key": "sum",

"type": "integer",

"value": 0

}

Each next 104 call transaction increases the key value sum by one (sum = sum + 1).

How the smart contract works after the call:

1. After the program runs, it checks for the presence of environment variables. There are environment
variables which are used by the contract:

• CONNECTION_ID – connection ID passed by the contract when connecting to a node.

• CONNECTION_TOKEN – authorization token passed by the contract when connecting to a
node.

• NODE – a node IP address or a node domain name.

• NODE_PORT – a gRPC port of the service which is deployed on the node.

The values of the NODE and NODE_PORT variables are taken from :ref:‘docker-engine.grpc-server
<docker-configuration> section of the configuration file. Other variables are generated by
the node and passed to the container when creating a smart contract.

2. Using NODE and NODE_PORT variables values the contract creates gRPC connection to a node.

3. Then gRPC ContractService service’s Connect method is called (see additional info in the con-
tract.proto file). This method accepts ConnectionRequest parameter which is specifying the connec-
tion ID (CONNECTION_ID environment variable). Also in the methods metadata you need to specify
the authorization head which contains an authorization token (CONNECTION_TOKEN environment vari-
able).

4. In the case of successful result gRPC stream is return including the ContractTransactionResponse
objects for the execution. The ContractTransactionResponse object contains two fields:

• transaction – a contract creation or call transaction.

• auth_token – an authorization token, specified in the authorization head of metadata
of gRPC method being called.

If transaction contains a creation transaction (transaction type – 103), the initial state is
initialized for the contract. If transaction contains a call transaction (transaction type –
104), the following actions are performed:

• the node receives a request of the value of the sum key (the GetContractKey method of
the ContractService service);

• the key value increases by one, sum = sum + 1);

• a new key value is saved on the node (the CommitExecutionSuccess method of the
ContractService service), i.e. the contract state is updated.

21.3. Smart contract run with gRPC 187

Technical description of the Waves Enterprise platform, Release master

21.3.2 Smart contract creation

1. Download and install Docker for Developers (https://www.docker.com/get-started) for your operating
system.

2. Prepare an image of the contract. The contract folder must contain the following files:

• src/contract.py

• Dockerfile

• run.sh

• src/protobuf/contract.proto

• src/protobuf/common.proto

• src/protobuf/common_pb2.py

• src/protobuf/contract_pb2.py

• src/protobuf/contract_pb2_grpc.py

src/protobuf/common_pb2.py, src/protobuf/contract_pb2.py, src/protobuf/

contract_pb2_grpc.py files should be generated by the gRPC compiler using the
contract.proto and common.proto protobuf files.

Important: After compiling the files you need to change the import directive in the
generated files:

• it must be import protobuf.common_pb2 as common__pb2 in the contract_pb2.py

file;

• it must be import protobuf.contract_pb2 as contract__pb2 in the
contract_pb2_grpc.py file.

3. Install the image in the Docker image repository. If you are using a local repository, run the following
commands in the terminal:

docker run -d -p 5000:5000 --name registry registry:2

cd contracts/grpc-increment-contract

docker build -t grpc-increment-contract .

docker image tag grpc-increment-contract localhost:5000/grpc-increment-contract

docker start registry

docker push localhost:5000/grpc-increment-contract

4. Use docker inspect command to get more info about smart contract:

docker inspect 57c2c2d2643d

[

{

"Id": "sha256:57c2c2d2643da042ef8dd80010632ffdd11e3d2e3f85c20c31dce838073614dd",

"RepoTags": [

"wenode:latest"

],

"RepoDigests": [],

"Parent": "sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3b58edf2686e1944bcc7133f07913",

"Comment": "",

"Created": "2019-10-25T14:15:03.856072509Z",

"Container": "",

(continues on next page)

188 Chapter 21. Docker Smart-contracts

https://www.docker.com/get-started

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"ContainerConfig": {

"Hostname": "",

"Domainname": "",

"User": "",

"AttachStdin": false,

"AttachStdout": false,

"AttachStderr": false,

Important: The smart contract identifier Id is the value of the imageHash field and it is used in transactions
with the created smart contract.

5. Sign the 103 transaction for the smart contract creation. In our example the transaction is signed with
a key stored in the node’s keystore. See REST API section for a description of the rest API nodes and
rules for generating transactions.

Request sample of the contract creation transaction:

{

"fee": 100000000,

"image": "localhost:5000/grpc-increment-contract",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "grpc-increment-contract",

"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2",

"password": "",

"params": [],

"type": 103,

"version": 2,

}

Curl-request sample:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d '{ \

"fee": 100000000, \

"image": "localhost:5000/grpc-increment-contract", \

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65", \

"contractName": "grpc-increment-contract", \

"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2", \

"password": "", \

"params": [], \

"type": 103, \

"version": 2 \

}' 'http://localhost:6862/transactions/sign'

Response sample:

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 100000000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

(continues on next page)

21.3. Smart contract run with gRPC 189

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"version": 2,

"image": "localhost:5000/grpc-increment-contract",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "grpc-increment-contract",

"params": [],

"height": 1619

}

6. Send the signed transaction to the blockchain. A response from the sign method should be passed to
broadcast method input.

Request sample for sending a smart contract creation transaction to the blockchain:

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

}

Curl-request sample:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d '{ \

"type": 103, \

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", \

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew", \

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \

"fee": 100000000, \

"timestamp": 1550591678479, \

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"], \

"version": 2, \

"image": "localhost:5000/grpc-increment-contract", \

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65", \

"contractName": "grpc-increment-contract", \

"params": [], \

"height": 1619 \

}' 'http://localhost:6862/transactions/broadcast'

Response sample:

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",

(continues on next page)

190 Chapter 21. Docker Smart-contracts

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"fee": 100000000,

"timestamp": 1550591678479,

"proofs": [

→˓"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fxj4BYA4TaqYVw5qxtWzGMPQyVeKYv"],

"version": 2,

"image": "localhost:5000/grpc-increment-contract",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8f828584b65",

"contractName": "grpc-increment-contract",

"params": [],

"height": 1619

}

Compare transaction identifiers of both operations (id field) and make sure, that the initialization contract
transaction has placed in the blockchain.

21.3.3 Smart contract call

1. Sign the 104 transaction for the smart contract call.

Request sample of the contract call transaction:

{

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"fee": 15000000,

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"password": "",

"type": 104,

"version": 2,

"contractVersion": 1,

"params": []

}

2. Send the signed transaction to the blockchain. A response from the sign method should be passed to
broadcast method input.

Request sample for sending a smart contract call transaction to the blockchain:

{

"type": 104,

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 15000000,

"timestamp": 1549365736923,

"proofs": [

"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v"

],

"version": 1,

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2",

"params": []

}

Curl-request sample:

21.3. Smart contract run with gRPC 191

Technical description of the Waves Enterprise platform, Release master

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

→˓header 'X-Contract-Api-Token' -d '{ \

"type": 104, \

"id": "9fBrL2n5TN473g1gNfoZqaAqAsAJCuHRHYxZpLexL3VP", \

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq", \

"fee": 15000000, \

"timestamp": 1549365736923, \

"proofs": [\

"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCW9xVp4v"␣

→˓\

], \

"version": 1, \

"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqh5wTXvJeYGo2", \

"params": [] \

}' 'http://localhost:6862/transactions/broadcast'

Response sample:

[

{

"key": "sum",

"type": "integer",

"value": 2

}

]

Use the smart contract identifier to get info about an execution result.

21.3.4 Files samples

run.sh listing:

#!/bin/sh

eval $SET_ENV_CMD

python contract.py

Dockerfile listing:

FROM python:3.8-slim-buster

RUN apt install iptables

RUN apt update && apt install -yq dnsutils

RUN pip3 install grpcio-tools

ADD src/contract.py /

ADD src/protobuf/common_pb2.py /protobuf/

ADD src/protobuf/contract_pb2.py /protobuf/

ADD src/protobuf/contract_pb2_grpc.py /protobuf/

ADD run.sh /

RUN chmod +x run.sh

ENTRYPOINT ["/run.sh"]

Python smart contract listing:

import grpc

import os

(continues on next page)

192 Chapter 21. Docker Smart-contracts

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

import sys

from protobuf import common_pb2, contract_pb2, contract_pb2_grpc

CreateContractTransactionType = 103

CallContractTransactionType = 104

AUTH_METADATA_KEY = "authorization"

class ContractHandler:

def __init__(self, stub, connection_id):

self.client = stub

self.connection_id = connection_id

return

def start(self, connection_token):

self.__connect(connection_token)

def __connect(self, connection_token):

request = contract_pb2.ConnectionRequest(

connection_id=self.connection_id

)

metadata = [(AUTH_METADATA_KEY, connection_token)]

for contract_transaction_response in self.client.Connect(request=request,␣

→˓metadata=metadata):

self.__process_connect_response(contract_transaction_response)

def __process_connect_response(self, contract_transaction_response):

print("receive: {}".format(contract_transaction_response))

contract_transaction = contract_transaction_response.transaction

if contract_transaction.type == CreateContractTransactionType:

self.__handle_create_transaction(contract_transaction_response)

elif contract_transaction.type == CallContractTransactionType:

self.__handle_call_transaction(contract_transaction_response)

else:

print("Error: unknown transaction type '{}'".format(contract_transaction.type),␣
→˓file=sys.stderr)

def __handle_create_transaction(self, contract_transaction_response):

create_transaction = contract_transaction_response.transaction

request = contract_pb2.ExecutionSuccessRequest(

tx_id=create_transaction.id,

r esults=[common_pb2.DataEntry(

key="sum",

int_value=0)]

)

metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_token)]

response = self.client.CommitExecutionSuccess(request=request, metadata=metadata)

print("in create tx response '{}'".format(response))

def __handle_call_transaction(self, contract_transaction_response):

call_transaction = contract_transaction_response.transaction

metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_token)]

contract_key_request = contract_pb2.ContractKeyRequest(

contract_id=call_transaction.contract_id,

(continues on next page)

21.3. Smart contract run with gRPC 193

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

key="sum"

)

contract_key = self.client.GetContractKey(request=contract_key_request, metadata=metadata)

old_value = contract_key.entry.int_value

request = contract_pb2.ExecutionSuccessRequest(

tx_id=call_transaction.id,

results=[common_pb2.DataEntry(

key="sum",

int_value=old_value + 1)]

)

response = self.client.CommitExecutionSuccess(request=request, metadata=metadata)

print("in call tx response '{}'".format(response))

def run(connection_id, node_host, node_port, connection_token):

NOTE(gRPC Python Team): .close() is possible on a channel and should be

used in circumstances in which the with statement does not fit the needs

of the code.

with grpc.insecure_channel('{}:{}'.format(node_host, node_port)) as channel:

stub = contract_pb2_grpc.ContractServiceStub(channel)

handler = ContractHandler(stub, connection_id)

handler.start(connection_token)

CONNECTION_ID_KEY = 'CONNECTION_ID'
CONNECTION_TOKEN_KEY = 'CONNECTION_TOKEN'
NODE_KEY = 'NODE'
NODE_PORT_KEY = 'NODE_PORT'

if __name__ == '__main__':
if CONNECTION_ID_KEY not in os.environ:

sys.exit("Connection id is not set")

if CONNECTION_TOKEN_KEY not in os.environ:

sys.exit("Connection token is not set")

if NODE_KEY not in os.environ:

sys.exit("Node host is not set")

if NODE_PORT_KEY not in os.environ:

sys.exit("Node port is not set")

connection_id = os.environ['CONNECTION_ID']
connection_token = os.environ['CONNECTION_TOKEN']
node_host = os.environ['NODE']
node_port = os.environ['NODE_PORT']

run(connection_id, node_host, node_port, connection_token)

contract.proto listing:

syntax = "proto3";

package wavesenterprise;

option java_multiple_files = true;

option java_package = "com.wavesplatform.protobuf.service";

option csharp_namespace = "WavesEnterprise";

import "google/protobuf/wrappers.proto";

import "common.proto";

(continues on next page)

194 Chapter 21. Docker Smart-contracts

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

service ContractService {

rpc Connect (ConnectionRequest) returns (stream ContractTransactionResponse);

rpc CommitExecutionSuccess (ExecutionSuccessRequest) returns (CommitExecutionResponse);

rpc CommitExecutionError (ExecutionErrorRequest) returns (CommitExecutionResponse);

rpc GetContractKeys (ContractKeysRequest) returns (ContractKeysResponse);

rpc GetContractKey (ContractKeyRequest) returns (ContractKeyResponse);

}

message ConnectionRequest {

string connection_id = 1;

}

message ContractTransactionResponse {

ContractTransaction transaction = 1;

string auth_token = 2;

}

message ContractTransaction {

string id = 1;

int32 type = 2;

string sender = 3;

string sender_public_key = 4;

string contract_id = 5;

repeated DataEntry params = 6;

int64 fee = 7;

int32 version = 8;

bytes proofs = 9;

int64 timestamp = 10;

AssetId fee_asset_id = 11;

oneof data {

CreateContractTransactionData create_data = 20;

CallContractTransactionData call_data = 21;

}

}

message CreateContractTransactionData {

string image = 1;

string image_hash = 2;

string contract_name = 3;

}

message CallContractTransactionData {

int32 contract_version = 1;

}

message ExecutionSuccessRequest {

string tx_id = 1;

repeated DataEntry results = 2;

}

(continues on next page)

21.3. Smart contract run with gRPC 195

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

message ExecutionErrorRequest {

string tx_id = 1;

string message = 2;

}

message CommitExecutionResponse {

}

message ContractKeysRequest {

string contract_id = 1;

google.protobuf.Int32Value limit = 2;

google.protobuf.Int32Value offset = 3;

google.protobuf.StringValue matches = 4;

KeysFilter keys_filter = 5;

}

message KeysFilter {

repeated string keys = 1;

}

message ContractKeysResponse {

repeated DataEntry entries = 1;

}

message ContractKeyRequest {

string contract_id = 1;

string key = 2;

}

message ContractKeyResponse {

DataEntry entry = 1;

}

message AssetId {

string value = 1;

}

common.proto listing:

syntax = "proto3";

package wavesenterprise;

option java_multiple_files = true;

option java_package = "com.wavesplatform.protobuf.common";

option csharp_namespace = "WavesEnterprise";

message DataEntry {

string key = 1;

oneof value {

int64 int_value = 10;

bool bool_value = 11;

bytes binary_value = 12;

string string_value = 13;

}

}

196 Chapter 21. Docker Smart-contracts

Technical description of the Waves Enterprise platform, Release master

21.4 gRPC services available to smart contract

You can use the official GitHub page for to download all required protobuf files. The list of all files is as
follows:

• address.proto - addresses methods.

• common.proto - a common file for proper work of others protobuf files.

• crypto.proto - methods for working with data encryption.

• permission.proto - permission methods.

• pki.proto - PKI methods.

• privacy.proto - privacy methods.

• util.proto - methods for utility tools.

Every protobuf file (except common.proto) contains a set of small blocks (message) that include a set of
key-value fields. A list of such blocks for each file is provided below.

address.proto

• GetAddresses - geting all addresses of participants whose key pairs are stored in the node keystore.

• GetAddressData - getting all data recorded to address account {address}.

contract.proto

• Connect - connecting a contract to a node.

• CommitExecutionSuccess - getting the result of successful contract execution and sending the results
to the node.

• CommitExecutionError - getting a contract execution error and sending the results to the node.

• GetContractKeys - getting the contract result execution by its ID (contract creation transaction ID).

• GetContractKey - getting a contract execution value by its ID (contract creation transaction ID) and
key {key}.

crypto.proto

• EncryptSeparate - data encryption separately for the each recipient with the unique key.

• EncryptCommon - data encryption with a single CEK key for all recipients and the CEK wraps into a
unique KEK for the each recipient.

• Decrypt - data decryption. The decryption is available only if the message recipient’s key is in the
node’s keystore.

permission.proto

• GetPermissions - getting roles (permissions) assigned to specified address {address} which are valid
at the moment.

• GetPermissionsForAddresses - getting roles (permissions) assigned to specified address list which are
valid at the moment.

pki.proto

• Sign - a creation a detached digital signature for sent data.

• Verify - check the detached digital signature for sent data.

privacy.proto

21.4. gRPC services available to smart contract 197

https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

• GetPolicyRecipients - getting all addresses of participants, signed to the access group {policy-id}.

• GetPolicyOwners - getting all addresses of owners, signed to the access group {policy-id}.

• GetPolicyHashes - getting the array of identified hashes which are written with association to the
{policy-id}.

• GetPolicyItemData - getting the confidential data package by its identified hash.

• GetPolicyItemInfo - getting the metadata for the confidential data package by the identified hash.

util.proto

• GetNodeTime - gitting current node time.

198 Chapter 21. Docker Smart-contracts

CHAPTER

TWENTYTWO

ROLE MANAGEMENT

The list of possible roles in the blockchain platform is given in module “Authorization of participants”.

Important: The prerequisite for changing permissions of participants (adding or deleting roles) is the
availability of the participant’s private key with the “permissioner” role in the node keystore from which the
query is made.

22.1 Option 1 (through REST API)

Participant permissions are managed by signing (sign method) and broadcasting (broadcast method) of
permission transactions through Node REST API .

Query object for sign method:

{

"type":102,

"sender":3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG,

"senderPublicKey":4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g,

"fee":0,

"proofs":[""],

"target":3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1ykfL,

"opType":"add",

"role":"contract_developer",

"dueTimestamp":null

}

Query fields:

• type - the type of the transaction for the participant permission management (type = 102);

• sender - the participant address with the permission to issue permission transactions;

• proofs - the transaction signature;

• target - the participant address, for which permissions are required to be assigned or deleted;

• role - participant permissions to be assigned or removed. Possible values: “miner”, “issuer”, “dex”,
“permissioner”, “blacklister”, “banned”, “contract_developer”, “connection_manager”;

• opType - the type of the operation “add” (add permissions) or “remove” (delete permissions);

• dueTimestamp - the permission validity date in the timestamp format. The field is optional.

Transfer the response from the node to the broadcast method.

199

Technical description of the Waves Enterprise platform, Release master

22.2 Option 2 (using the utility)

Using the Generators utility the process can be automated.

Example of console launching:

java -jar generators.jar GrantRolesApp [configfile]

Example of configuration:

permission-granter {

waves-crypto = no

chain-id = T

account = {

addresses = [

"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w"

]

storage = ${user.home}"/node/keystore.dat"

password = "some string as password"

}

send-to = [

"devnet-aws-fr-2.we.wavesnodes.com:6864"

]

grants = [

{

address: "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w"

assigns = [

{

permission = "miner",

operation = "add",

due-timestamp = 1527698744623

},

{

permission = "issuer",

operation = "add",

due-timestamp = 1527699744623

},

{

permission = "blacklister",

operation = "add"

},

{

permission = "permissioner",

operation = "remove"

}

]

}

]

txs-per-bucket = 10

}

The field “due-timestamp” limits the role validity; Fields “nodes”, “roles” are mandatory.

If the node is already assigned any of the roles specified in the config, then the case is handled in accordance
with the rules:

200 Chapter 22. Role management

Technical description of the Waves Enterprise platform, Release master

Current node status Status received
from transaction

Processing result

No role assigned New role Success - role assigned
Role assigned with-
out dueDate

Role with due-
Date

Checking dueDate; if less than current, then IncorrectDate-
time, otherwise Success - role assigned with duedate

Role assigned with
dueDate

Role with due-
Date

Checking dueDate; if less than current, then IncorrectDate-
time, otherwise Success - updating dueDate

Role assigned with
dueDate

Role without
dueDate

Success - role assigned without dueDate

Role assigned
with/without due-
Date

Role removal Checking node address; if <> for genesis address, then Success
- role removed

22.2. Option 2 (using the utility) 201

Technical description of the Waves Enterprise platform, Release master

202 Chapter 22. Role management

CHAPTER

TWENTYTHREE

PARTICIPANTS CONNECTION TO THE NETWORK

The moment of the first node running is the beginning of the new blockchain net creation. You can create
the blockchain net from the starting only one node, further you can add new nodes as required.

• Connect a new node into the existing network.

• Delete unnecessary nodes from the network.

23.1 Connection of a new node to the existing net

You can add new nodes into the net at any time. The configuration files setting is described in the section
Installing and running the Waves Enterprise platform. Perform all these actions and run the node. The
following steps are making:

1. The new node user gives the public key and the node description to the net administrator.

2. The network administrator (the node with “Connection-manager” role) uses the received public key
and description for the 111 RegisterNode transaction creation with the "opType": "add" parameter.

3. Transaction falls to the block and further into the nodes states of network participants. As a result of
the transaction among the stored data, each participant of the network stores the public key and the
address of the new node.

4. If necessary, the network administrator can add additional roles to the new node using the transaction
102 Permit .

5. The user runs the node.

6. After starting, the node sends handshake-message with its public key to the participants from the
“peers” list of its configuration file.

7. Network participants compare the public key from the handshake message and the key from transaction
111 RegisterNode sent earlier by the network administrator. If the check is successful, the network
participant updates its database and sends the Peers Message message to the network.

8. Having successfully connected, the new node synchronizes with the network and receives the address
table of the network participants.

203

Technical description of the Waves Enterprise platform, Release master

23.2 Deleting the node

1. The network administrator creates the 111 RegisterNode transaction with the parameter "opType":
"remove" and the public key of the removed node within.

2. This transaction is fell into the block and approved by other nodes.

3. After accepting the transaction the nodes find the public key specified in the transaction 111 Regis-
terNode in their state and delete it from there.

4. Then nodes delete the network address of the removed node from the network.known-peers of the
node configuration file.

204 Chapter 23. Participants connection to the network

CHAPTER

TWENTYFOUR

CONFIDENTIAL DATA EXCHANGE

Before you can share the confidential data, you need to create access groups. Using transactions, you can
add or change access groups to the confidential data.

24.1 Creation of the confidential data access group

The confidential data access group can be created by any network participant. You need to specify the range
of participants, which will get the data. Then any of participant will perform the following actions:

1. The network participant, the future owner of the group, is creating the 112 CreatePolicy with the
following parameters:

• sender - the public key of the access group creator.

• description - the description of the access group.

• policyName - the name of the access group.

• recipients - public keys of access group participants, which will have the access to the confidential data.

• owners - public keys of access group participants, which, in addition to the data access, can change the
lineup of the group participants.

2. This transaction is fell into the block and approved by other nodes.

3. After accepting the transaction the nodes which are the access group participants will get the access
to the confidential data.

24.2 Changing the access group

Access groups can only be changed by their owners. The following actions are performed to change the list
of participants in the access group:

1. The group owner creates the 113 UpdatePolicy transaction with the following parameters:

• policyId - identifier of the access group;

• sender - the public key of the access group owner;

• opType - the option of the adding (add) or the removing (remove) the group participants;

• recipients - public keys of access group participants, which are added or removed from the access group;

• owners - public keys of access group participants, which are added or removed from the access group.

2. This transaction is fell into the block and approved by other nodes.

205

Technical description of the Waves Enterprise platform, Release master

3. After accepting the transaction the information about participants of the changed access group will
update.

24.3 Exchanging the confidential data

Important: The size of the transferred data via API method POST /privacy/sendData to the network is
up to 20 MB.

1. Using the API POST /privacy/sendData tool the client sends the data to the network (API parameters:
sender, password, policy ID, data type, data information, data and hash).

2. Access group participants use the GET /privacy/{policyId}/getData/{policyItemHash} tool for getting
information about data and its further download.

Follow these steps for the values creation of the data and hash fields:

1. Translate the data byte sequence into the Base64 encoding.

2. Place the result of the data conversion to the "data": "29sCt...RgdC60LL" field of the API POST
/privacy/sendData.

3. Specify the data hash sum according to the SHA-256 algorithm in the "hash": "9wetTB...

SU2zr1Uh" field. You need to specify the hash result in the Base58 encoding.

4. Send the data to the network by pressing the Try it out! button.

5. Node automatically will create the 114 PolicyDataHash transaction as a result of the data sending.

206 Chapter 24. Confidential data exchange

CHAPTER

TWENTYFIVE

DATA ENCRYPTION OPERATIONS

Symmetric CEK and KEK keys are used to encrypt/decrypt data. CEK (Content Encryption Key) is the
key for the encrypting text data, KEK (Key Encryption Key) is the key for encrypting the CEK. The CEK
key is generated by a node randomly using the appropriate hashing algorithms. The KEK key is generated
by a node based on Diffie-Hellman algorithm, using public and private keys of sender and recipients, and is
used to encrypt the CEK key.

The symmetric CEK key is unreachable and does not appear in the encryption process. It is transmitted
from the sender to the recipient in the encrypted form (wrappedKey) via open communication channels along
with the encrypted message. One of such channels can be a record to the blockchain — a DataTransaction
or a smart contract state. The KEK key does not transmit from the sender to recipients, it is restored by
the recipient based on its private key and the known public key of the sender (Diffie-Hellman key exchange
algorithm).

Fig. 1: Encryption procedure of the text data based on the Diffie-Hellman algorithm

Encryption/decryption process includes the following actions:

207

Technical description of the Waves Enterprise platform, Release master

1. Use the POST /crypto/encryptSeparate method to encrypt data for each recipient separately. Param-
eters in the request object:

• sender - the sender address;

• password - a key pair password of the sender, which is generated at the same time as the account
itself;

• encryptionText - the text for the encryption;

• recipientsPublicKeys - an array with recipients public keys list inside.

2. Use the POST /crypto/encryptCommon method to encrypt data for all recipients with a single CEK
key.

3. Use the POST /crypto/decrypt method for the decryption. Parameters in the request object:

• recipient - the recipient address.

• password - a key pair password of the recipient, which is generated at the same time as the account
itself.

• encryptedText - the encrypted text data.

• wrappedKey - the wrapped key obtained by encoding the data.

• senderPublicKey - the sender public key.

208 Chapter 25. Data encryption operations

CHAPTER

TWENTYSIX

GLOSSARY

Account

A client data set which is stored in database and used for client identification

Alias

A user’s login associated with his address as a result of the transaction, the result of which is used to
record the alias address matching in the database, and it is possible to specify this alias in the subsequent
transactions

Anonymous network

Unpermissioned public blockchain which can be accessed by any participant as an anonymous person

Blockchain

A decentralized, distributed and public digital ledger that is used to record in such way that any involved
record cannot be altered retroactively, without the alteration of all subsequent blocks

Genesis block

The first block in the blockchain which contains special genesis transactions distributing the initial balance
and permissions

Access group

A table inside the node state containing the net participants list which can exchange the privacy data
according to this policy

Cryptocurrency

A form of digital currency based on encryption algorithms and ran inside decentralized platforms built on
the blockchain

Consensus

The way to agree on a single point of the data value in a network between participants

Mining

The process by which transactions are verified and added to a blockchain

Mainnet

A real network where transactions are executing, tokens are issuing and storing

Node

A computer which is ran the node software and connected to the blockchain network

Peer

209

Technical description of the Waves Enterprise platform, Release master

A net address of the node

Private key

A privately held string of data that allows you to sign transactions and to get access to tokens. The private
key is inextricably bound to the public key

Public network

Permissioned public blockchain where each participant is known and registered in the network

Public key

A string of data bound with the private key and used for interactions with net participants. The public key
is applied to transactions to confirm the correctness of the user’s signature made on the private key

Public address

A public address is the cryptographic hash of a public key and a net byte. They act as email addresses that
can be published anywhere, unlike private keys

Swagger

API tool

Seed phrase

A set from 24 accidentally chosen words for restoring the access to the tokens

Smart account

An account with specified features for creating and running smart-contracts

Smart asset

A token with an attached script, during each new transaction with such a token the transaction will be
confirmed first by the script, then by the blockchain

Smart contract

A computer program code that is capable of facilitating, executing, and enforcing the negotiation or perfor-
mance of an agreement between participant

State

The full history of transactions which is stored in the node DB

Token

An account unit, a blockchain asset, which is not a cryptocurrency and is intended to represent the digital
balance, it is an equivalent of the company’s shares

Transaction

An operation that participants on the blockchain network use to interact with eachother

Participant

A blockchain participant who send transactions to the net for getting approve

Hash

A unique configuration of the symbols (letters and digits), it is a result of the hash function performing over
the data according with the specified algorithm. Hash uniquely identifies the object

Private network

Permissioned private blockchain where all transactions are controlled by a central authority

210 Chapter 26. Glossary

Technical description of the Waves Enterprise platform, Release master

Gateway

The app for tokens transfer from one blockchain net to another one

Airdrop

A distribution of cryptocurrency to users, entirely for free

PoS (Proof-of-Stake)

A consensus algorithm based on the stake which is used for choosing the node for checking transactions and
generating a new block

PoA (Proof-of-Authority)

A consensus algorithm in a private blockchain that grants to the most authority nodes the right to check
transactions and generate a new block

211

Technical description of the Waves Enterprise platform, Release master

212 Chapter 26. Glossary

CHAPTER

TWENTYSEVEN

WHAT IS NEW IN THE WAVES ENTERPRISE

27.1 1.2.1

The following pages have been added:

• REST API Debug methods

• Full REST API description on the API Docs page

The following sections have been rebuilt:

• Installing and running the Waves Enterprise platform

27.2 1.2.0

The following pages have been added:

• A new section Integration services, which includes Authorization service and Data preparation service

• Obtaining a license section was added

• A new REST API Licenses method was added

• A new Smart contract run with gRPC section was added

• A new gRPC services available to smart contract section was added

The following sections have been rebuilt:

• Installing and running the Waves Enterprise platform

• The Cryptography section was renovated. Part of information was moved into Data encryption opera-
tions section

• Changes in the node configuration file

• Transactions

213

https://docs-out.vostokservices.com/en/1.2.1/api.html

Technical description of the Waves Enterprise platform, Release master

27.3 1.1.2

The following sections have been rebuilt:

• Sandbox

• Changes in the node configuration file

• Node installation was converted into “Installing and running the Waves Enterprise platform”

• Participants connection to the network

• Anchoring settings

• Authorization type configuration for the REST API access

• Connection of the node to the “Waves Enterprise Partnernet”

• Connection of the node to the “Waves Enterprise Mainnet”

• System requirements

27.4 1.1.0

The following pages have been added:

• API methods available to smart contract

• Sandbox

• Changes in the node configuration file

The following sections have been rebuilt:

• Docker Smart Contracts

• Example of starting a contract

• Node installation

• Additional services deploy

27.5 1.0.0

The following pages have been added:

• Authorization service

The following sections have been rebuilt:

• Node configuration

• Mainnet and Partnernet connection

• REST API

• Node installation

Changes in the node configuration file node.conf

• The NTP server section is added

• The auth section is added into the authorization type selection of the REST API section

214 Chapter 27. What is new in the Waves Enterprise

