waves ™

ENTERPRISE

Technical description of the Waves
Enterprise platform

Release master

https: //wavesenterprise.com

Jan 13, 2021

BLOCKCHAIN-PLATFORM WAVES ENTERPRISE

CHAPTER
ONE

FEATURES OVERVIEW

The Waves Enterprise Blockchain Platform is a scalable digital infrastructure solution that combines the
features of public and private blockchains for corporate and government use. The platform uses operation
protocol, rather than business logic, to solve the problem of trust between parties. The ProofofStake (PoS)
and ProofofAuthority (PoA) consensus mechanisms guarantee the correctness of data added to the blockchain,
while decentralization provides counterparty independence for data access.

1.1 Waves Enterprise Blockchain Highlights

* Built on Scala programming language.
¢ Includes technologies and best use practices of use proven on the Waves public blockchain platform.
e Adapted for corporate and government use.

* Supports PoS and PoA consensus algorithms, and allows administrators to choose the most fitting one
during deployment.

e Ensures high throughput rate.

¢ Supports Turingcomplete Docker smart contracts.

* Delivered as a set of microservices.

» Uses cryptographic algorithms certified by state regulators.

¢ Supports confidential and direct data exchange via private groups without loading data onto external
networks.

e Implements the permission management system at the consensus level.

e Waves Enterprise web client features transactions explorer, wallet, creation of transactions, smart
contract development, blockchain status monitoring, and permission management.

1.1.1 Waves Enterprise network deployment options

1. Operating in the main public network.
2. Operating in a private network anchored to the main network.

3. Operating in an independent private network.

Technical description of the Waves Enterprise platform, Release master

1.2 Main network

The main network is supported by a consortium of companies from various economic sectors including
banking, industrial, real estate, logistics, etc. Companies which use the main network may use public
blockchain for their projects or for supplying blockchain processes, e.g. banking enterprises delivering fiat
gateways, and state registrars granting access to cloudbased GOST cryptography.

1.3 Independent private network

Independent private networks may be used by companies that do not want to share their processes publicly.
Waves Enterprise allows such companies to deploy a standalone private network out of the box and configure
it in accordance with their business needs.

Following features are configurable:
» Consensus type.
¢ Cryptography provider.
e Number of nodes.

¢ Blockchain operating parameters.

1.4 Private network with block hashes broadcast to main network

This solution combines the advantages of public and private networks. Private networking allows companies
to conceal private information from the public blockchain, while the broadcast of private block hashes to the
main network ensures reliability of information, thanks to the scalability of the main network.

2 Chapter 1. Features overview

CHAPTER
TWO

OFFICIAL RESOURCES

 Official site of the blockchainplatform Waves Enterprise
e Github project
¢ Official site of the blockchainplatform Waves

https://wavesenterprise.com/
https://github.com/waves-enterprise/WE-releases
https://wavesplatform.com

Technical description of the Waves Enterprise platform, Release master

4 Chapter 2. Official resources

CHAPTER
THREE

ARCHITECTURE

The Waves Enterprise platform is based on distributed ledger technology and represents a fractal network
consisting of:

e A master blockchain, Waves Enterprise Mainnet, which secures the operation of the network, serving
as a global arbiter and a reference chain, and

e A number of custom, separated sidechains that can be tuned easily according to specific business needs.

This construction principle optimizes the platform for higher speeds, large volumes of calculations, consis-
tency and availability of data, and resistance to malicious changes in information.

The Anchoring mechanism uses the strengths of both consensus algorithms to create a net configuration.
The main Waves Enterprise blockchain is based on the ProofofStake consensus algorithm, which is supported
by independent participants. At the same time, enterprise sidechains do not need to interact with miners
and can use the ProofofAuthority algorithm. Sidechains are embedded in the main blockchain using the
anchoring mechanism, placing cryptographic proof of transactions in the main blockchain network.

WAVES ENTERPRISE MAIN-NET : | PRIVATE ENTERPRISE SIDECHAIN pr e B
H H | ORGANIZATION 1
« LPOS H H CORPORATE
- permissioned | H : NODE APPLICATION
« Waves cryptography : i :
NODE « 1000 tps

« Turing-complete smart-contracts | : i
: i ; $ «——Tis, dala, stale——>

NODE

ORGANIZATION N

ORGANIZATION 2

[P Depioyment options:
| i—Data anchoring—>} | ploy v

e Oy -

miner

+ matcher
« decentralised storage
= data service

+ corporate client

NODE

NODE SUBCHAIN

« Peer-to-peer private daa transfers
« Smart-contracts (Turing complete or not)
+ 800-1200 tps

« various integrations
CORFORATE NODE [NODE
I CLIENT |
P Accessible
e blockehain data Raw :
i plokehain data | CONFIGURATION OPTIONS
/ : « Consensus algorithm (LPoS, PoA)
i : « Cryptography (GOST, Waves)
i — « Optional node modes
: A DATA PRIVATE | « Authorization modes (basic, oAuth)
I SERVICE \ STORAGE | « Permission / Role system

‘ Txs, data, state

v %

4 . Accessible
blockehain data Private data
WE CLIENT GATEWAYS LOGISTIC NOTARY DOCUMENT FLOW P CORPORATE CORPORATE |
SYSTEMS SYSTEMS SYSTEMS L Bl APP CRM/ERP |

Fig. 1: Network topology including Waves Enterprise and sidechains

Technical description of the Waves Enterprise platform, Release master

3.1

Node architecture and additional services

The node component is mandatory, since it ensures the functioning of and interaction within the blockchain
network. Other components serve auxiliary purposes that significantly simplify user interaction with the
blockchain platform. The Waves Enterprise Blockchain Platform instance consists of five basic modules and
several additional microservices. The main modules include:

Node The main software, which is installed on the computer and works directly with the blockchain.

Waves Enterprise corporate client — A webapplication that provides contemporary and multifunctional
user interface for the blockchain platform.

Smartcontracts module — An environment for deploying and executing of Turingcomplete Docker smart-
contracts. Docker containers with smartcontracts are deployed on remote virtual machine for additional
security.

Data service — A service that aggregates data from the blockchain in RDBMS (PostrgreSQL) storage
and provides fulltext search on any information within the blockchain via the RESTfull web service.

Private store A PostgreSQL database provides private information processing and storing mechanisms,
along with an encrypted peertopeer communication service.

Additional services include:

Authorization service — A single authorization service for system components.

Data crawler A service that extracts data from blockchain node and loads it into dataservice compo-
nent.

Generator A service that generates key pairs for new accounts and creates apikeyhash.

Custom microservice plugins A set of plugins for processing and customizing data transferred to and
from external systems.

Monitoring Service — An external monitoring service that uses an opensource database (InfluxDB) to
store time rows with application data and metrics. The database is installed by the client separately.

Node components

The node includes the following internal components:

Node API — A REST API node interface which can receive data from the blockchain, sign and send
transactions, send private data, and create and call smart contracts.

Node storage — A system component that provides keyvalue storage (based on LevelDB) for a full set
of validated and confirmed transactions and blocks, same as the current state of objects.

Unconfirmed transaction pool — A component that provides a temporary storage and queue service for
validated transactions until they are included into a block.

Consensus and cryptolibraries — Configurable and customizable logical components responsible for
achieving agreement between nodes and cryptographic algorithms.

Key store A component used to store key pairs for the node itself and node users (optional). All keys
are secured by passwords.

Miner — A component responsible for creating transaction blocks that are recorded in the blockchain.
The miner component is in charge of interaction with Dockersmart contracts.

Network layer — A logic layer that provides interaction between nodes on the application level via
network protocol over the TCP.

Chapter 3. Architecture

Technical description of the Waves Enterprise platform, Release master

Waves Enterprise Waves Enterprise Node

corporate client

Waves Enterprise smart contracts

N Refresh/
: Access
© tokens B TP
B Authorization Service H ryptographic method .
: Qi Cryptographic methods
N) Consensus CryptoProvider
Refresh/ '
Q"W‘ Access | Call&Execute
New txs _tokens Consensus contract
Blockchain data
Validated
: : unconfirmed Key store
. . txs
. : Data service Validated Miner
. n ction UL ‘b d unconfirmed
: ransaction repare: Transforms raw txs i
: blockchain data | blockchain data Data Unconfirmed 5
2 t 5
N P IAPI| into prepared pata Q’wv g pool Validated H
: marts in crawler < unconfirmed txs =
Qo PostgreSQL K] ode storage | LevelDB) H
RDBMS S H
z + Blocks k]
« Transactions z
« State (indexes,
bal)
Confirmed txs
blocks, balances
scripts, data
Prepared . Scripts :
blockchain data Validated txs Blocks Gata Validated blocks
New block:
Custom Validation logic: ?‘\gw &CS g
microservice _ New txs - consensus rules
lugins Private data - smart-account scripts
............................... ° T - privacy rules
: T
Pn'vatle data Private data hash
txs
settngs Privacy engine 1 P2P encrypted data exchange
api-key
H C
Private storage | PostgreSQL onsensus, Network
cryptography i
« Private data settings setinas
%wT
Node and network confi | | | 4 Config]
~Monitoring events and setting: ={ Monitoring service (influxDB, graphana)]
Q“wr
ntearation with external systems

Fig. 2: A detailed diagram of the node architecture and additional microservices

3.1. Node architecture and additional services 7

Technical description of the Waves Enterprise platform, Release master

* Validation logic — A logic layer containing such transaction verification rules as basic sign verification
and advanced scripted verification.

* Config — A set of node configuration parameters specified in the nodename. conf file.

* Monitoring Service — An external monitoring service that uses an opensource database (InfluxDB) to
store time rows with application data and metrics. The InfluxDB database is installed by the client
separately.

8 Chapter 3. Architecture

CHAPTER
FOUR

WAVESNG PROTOCOL

The Waves Enterprise Operation Protocol provides performance advantages relative to other blockchains.

4.1 Terms

* Block — A set of transactions registered in the blockchain, signed by the miner, and containing a link
to the proof of the previous block. Limited to 1 MB or 6000 transactions.

* Round — A period of time between the issuance of key blocks. This floating value is controlled by the
consensus algorithm depending on the load on the network, averaging 40 seconds.

* Proof of ownership — The acquisition of mining rights in the PoS consensus.
e Node — A network host that runs the Waves Enterprise blockchain application.
e Miner — A node whose address has sufficient balance and a “mining” permission.

¢ Key block — A block that contains no transactions, only service information such as:

Miner public key — to verify proof of microblocks.

Amount of miner’s fee for the previous block.
— Miner’s proof.
— Link to previous key block.
 Liquid Block — A service term to describe the state of a block before issuing the next key block, i.e.
completing its mining.

* Microblock — A service term for a set of transactions applied to the state of blockchain every 5 seconds.
Limited to 500 transactions. Each microblock is signed by the miner’s private key.

4.2 Protocol description

The WavesNG protocol was developed by Waves Platform based on BitcoinNG to increase the throughput of
the Waves blockchain based on the architecture on which Waves Enterprise is implemented. The idea of the
protocol is to create microblocks continuously, rather than create one large block in each round of mining.
Small blocks can be forwarded and checked more quickly.

Mining rounds begin with generation of the key block. Each key block, along with the address of the miner
identified in it, are determined by consensus. (For more details, see Consensus.) A key block containing
only a proof with no transactions is generated quickly. Before the next block is generated, microblocks with
transactions are generated every five seconds without proof of stake, which increases the speed of processing.

https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

Technical description of the Waves Enterprise platform, Release master

Each microblock is linked to the previous one, and the key block is added to the blockchain as soon as the
next miner generates its key block.

This approach reduces the time to confirm a transaction compared to other blockchains.

4.2.1 1. Process for Creating a Liquid Block

1. The mining address is determined by consensus.
2. A miner creates and distributes a key block on the network.

3. Every 5 seconds, the miner creates a microblock containing transactions and sends it out to the network.
Each microblock must be linked to the previous microblock or key block.

4. The process continues until a new valid key block appears on the network.

4.2.2 2. Miner reward mechanism in WavesNG

The Waves Enterprise protocol offers financial incentive for participants to comply with the rules of the
blockchain. 40 % of the block transaction fee is distributed to the miner who created the block, and 60 % of
the fee is given to the miner of the following block. The fee credit transaction is performed after 100 blocks
to ensure a trust interval of checks.

40 %) 60 %
- microblock fees

| 5
= = —— PubKey A SIG, SIG, II’I}!;'! @7 Pubkey B S5IGg

2 seconds

)

(

A
v

1 minute

Fig. 1: Fee distribution diagram

4.2.3 3. Conflict resolution

A miner that continues the chain by creating two microblocks with the same parent is punished and loses
income from fees; the discoverer of the fraud receives the miner’s award for the block. The distributed nature
of blockchain means each node stores a copy of the blockchain. When the next microblock appears, the node
applies changes to its copy of the blockchain and checks it against other nodes of the network. At this point,
inconsistencies in transactions can be detected.

10 Chapter 4. WavesNG Protocol

CHAPTER
FIVE

CONSENSUS ALGORITHMS

Blockchain is a decentralized system with no central authority. This makes the system noncorrupt, but it
also creates difficulties with final decisionmaking and organization of work. These problems are solved by
a consensus mechanism, which allows the blockchain’s participants to reach agreement. Voting takes into
account the majority opinion without the interests of the minority, but it also guarantees an agreement that
benefits the entire network.

You can choose the consensus mechanism during the initial configuration of the network. The description of
available mechanisms, as well as their pros and cons, are described below.

5.1 LPoS consensus algorithm

Proof of ownership with the right to lease. In PoS systems, the creation of a block does not require energy-
intensive calculations, the miner’s task is to create a digital block proof.

5.1.1 Proof of Stake

The mechanism for allocating block creation rights is based on the number of tokens in the user’s account.
The more tokens a user has, the more likely he or she can create a block.

In Proof of Stake consensus the right to generate a block is determined by pseudorandom way, because by
knowing the previous miner and balances of all users in the system the following miner can be identified.
This is possible due to a deterministic computation of a block’s generating signature, which can be obtained
by SHA256 hashing of current block’s generating signature and the account’s public key. The first 8 bytes
of the resulting hash is converted to a number, referred to as the account hit X, and will be a pointer to
the following miner. The time of block generation for account i is calculated as:

log —XX"’
T‘i = Tmzn + Cl]-Og(]- - C2¢)
b; A,
where:
* b; a stake (stake of participant’s balance of overall balance of the system)
e A, baseTarget, the adaptive ratio, regulating the average time of issue of the block;
¢ X, an account hit;
e Thin 5 seconds, a constant defining the minimum time interval between blocks;

¢ C; a constant, which equals 70 and adjusts the form of allocation of the interval between blocks;

* Cy a constant which equals 5E17 and adjusts the baseTarget value (complexity).

11

Technical description of the Waves Enterprise platform, Release master

Based on this formula, the probability of selecting the participant to be rewarded depends on the participant’s
stake of assets in the system. The bigger the stake, the higher the chance of reward. The minimum number of
tokens needed for mining is 50000 WEST. BaseTarget is a parameter that maintains the block generation
time within a given range. BaseTarget in its turn is calculated as:

T T,
(S > Rpaz — Tty = T, + max(1, ﬁ)) A (S < Rppin NN > 1 — Ty, =T, — max(l, W”O))

where

* R pax = 90 a maximum reduction of complexity when the block generation time in the network exceeds
40 seconds;

* Ruin = 30 a minimal increase of complexity when the block generation time in the network is less
than 40 seconds;

* S the average generation time, at least for the last three blocks;
* T, the previous baseTarget value;
e T, the computed baseTarget value.

For an advanced description of technical features and enhancements of the classic PoS algorithm, see this
article.

Advantages Over Proof of Work

The absence of complex calculations allows PoS networks to lower the hardware requirements for system
participants, which reduces the cost of deploying private networks. No additional emission is required, which
in PoW systems is used for rewarding miners for finding a new block. In PoS systems, a miner receives a
reward in the form of fees for transactions which appeared in its block.

5.1.2 Leased Proof of Stake

A user who has an insufficient stake for effective mining may transfer his balance for lease to another
participant and receive a portion of the income from mining. Leasing is a completely safe operation, as
tokens do not leave the user’s wallet, but are delegated to another miner, which gives the miner a greater
opportunity to earn mining rewards.

5.2 Proof of Authority

In a private blockchain, tokens are not always needed. For example, a blockchain can be used to store hashes
of documents exchanged by organizations. In this case, in the absence of tokens and fees from transactions,
a solution based on the PoS consensus algorithm is redundant. The Waves Enterprise Blockchain Platform
offers the option of a Proof of Authority (PoA) consensus algorithm. Mining permission is issued centrally in
the PoA algorithm, which simplifies the decisionmaking compared to the PoS algorithm. The PoA model is
based on a limited number of block validators, which makes it scalable. Blocks and transactions are verified
by preapproved participants who act as moderators of the system.

12 Chapter 5. Consensus algorithms

https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/
https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/

Technical description of the Waves Enterprise platform, Release master

5.2.1 Algorithm description
An algorithm determining the miner of the current block is formed based on the parameters below. The
parameters of the consensus are specified in the consensus block of the node configuration file.

* t the duration of a round in seconds (the parameter of the node configuration file: roundduration).

* ts the duration of a synchronization period, calculated as t*0.1, but not more than 30 seconds (the
parameter of the node configuration file: syncduration).

* Npan a number of missed consecutive rounds for issuing the ban for the miner (the parameter of the
node configuration file: warningsforban);

* Ppan a share of the maximum number of banned miners, in percentage from 0 to 100 (the parameter
of the node configuration file: maxbanspercentage);

* than the duration of the miner ban in blocks (the parameter of the node configuration file: bandura-
tionblocks).

¢ Ty the unix time for generation the Genesis block.
e Ty the unix time for generation of H Block, a key block for NG.
* r the round number, calculated as (Tcyrrens To) div (t+ ts).

e A, the leader of round r, which has the right to create key blocks and microblocks for NG in the round
r.

* H the height of the chain in which the key block and microblocks for NG are created. The leader of
round A, has the right to generate a block at height H.

* My the miner issuing block at height H.
¢ Qu the queue of miners active at height H.

The Qpu queue is generated using addresses which are given mining permissions by a permission transaction,
which was not revoked until height H and did not expire until the time Ty .

The queue is sorted by the time stamp of the mining rights transaction. The node which was granted the
rights earlier will be higher in the queue. To keep the network consistent, this queue will be the same on
each node.

A new block is created at each round r. A round lasts t seconds. After each round, ts seconds count down
to complete data synchronization in the network. During the synchronization period, microblocks and key
blocks are not generated. For each round, a single leader, A, , has the right to create a block in this round.
A leader can be defined on each node of the network with the same result. The leader of the round is defined
as follows:

1. Miner My is defined, which created the previous key block at height H1.

2. The Qg queue of active miners is calculated.

3. Inactive miners are excluded from the queue (see more in Ezclusion of inactive miners).

4. If the H1 block miner (My;) is in the Qu queue, the following miner becomes the leader A , .
5

. If the H1 block miner (M y;) is not in the Q g queue the miner following the H2 block miner (M g9
) becomes the leader A ; and so on.

6. If no miners of blocks (H1..1) are in the queue, the first miner in the queue becomes the leader.

This algorithm identifies and checks the miner, which creates each block of the chain by calculating the list of
authorized miners for each moment of time. If the block was not created by the designated leader within the
allotted time, no blocks are generated within that round, and the round is skipped. Leaders who skip block

5.2. Proof of Authority 13

Technical description of the Waves Enterprise platform, Release master

generation are temporarily excluded from the queue by the algorithm described in the paragraph Ezclusion
of inactive miners.

The block generated by the leader A, with the time of the block Ty from the halfinterval (T +(r1)*(t+ts
); To +(r1)*(t+ts)+t] is determined to be valid. The block created by the miner out of its turn or not in
time is considered invalid. After a round of t duration, the network synchronizes the data for t5 . The leader
A, has t4 seconds to propagate the validation block over the network. If any node of the network during t
has not received a block from the leader A, , this node recognizes the round as “skipped” and expects a new
H block in the next round r+1, from the following leader A,.; .

Several consensus parameters — type (PoS or PoA), t, t ;— are specified in the configuration file of the host
network. The parameter T should be the same for all network participants, otherwise the network will fork.

5.2.2 Synchronization of time between network hosts

Each host should synchronize the application time with a trusted NTP server at the beginning of each round.
The server address and port are specified in the node configuration file. The server must be available to each
network node.

5.2.3 Exclusion of inactive miners

If any miner has missed the block creation Np,, times in a row, this miner is excluded from the queue at
tpan Subsequent blocks, which is determined by (bandurationblocks parameter in the configuration file).
The exception is made by each node on its own based on the calculated queue Qu and information about
block H and miner My . The Ppa, parameter specifies the maximum allowable share of excluded miners
in the network relative to all active miners at any given time. If at achievement of Ny,, round passes, the
maximum share of the excluded miners Pya, is reached, the exception of the next miner is not made.

5.2.4 Monitoring

The PoA consensus monitoring helps to identify how nonvalid blocks are created and distributed, as well
as how miners skip the queue. Network administrators perform additional troubleshooting and blocking of
malicious nodes.

To monitor the process of generating blocks using the PoA algorithm, the following details are entered in
InfluxDB:

* Active list of miners sorted by granting of mining rights.
* Scheduled round timestamp.
¢ Actual round timestamp.

¢ Current miner.

14 Chapter 5. Consensus algorithms

Technical description of the Waves Enterprise platform, Release master

5.2.5 Changing consen

sus settings

Changing consensus parameters (time of round and synchronization period) is performed based on the node
configuration file (see the insert) at the height fromheight. If a node fails to specify new parameters, the

transaction will fork.

Sample configuration:

consensus {
type = poa
sync-duration = 10s
round-duration 60s
ban-duration-blocks

changes = [

{

// specifying inside of the blockchain parameter

from-height = 18345

sync-duration = 5s
round-duration = 60s
1,
{
from-height = 25000
sync-duration = 10s
round-duration = 30s
H

100

5.2. Proof of Authority

15

Technical description of the Waves Enterprise platform, Release master

16 Chapter 5. Consensus algorithms

CHAPTER
SIX

CRYPTOGRAPHY

The Waves Enterprise platform provides the possibility to choose the cryptography used depending on the
specifics of the project under implementation and the jurisdiction of the customer.

6.1 Hashing

Hashing operations in the platform are performed by Blake2b256 and Keccak256 functions sequentially,
or by “Stribog” function in accordance with GOST R 34.112012 “Information Technology. Cryptographic
protection of information. Hash function”. The output data block size is 256 bits.

6.2 Electronic signature

Algorithms for key generation, formation and verification of electronic signature are implemented on the basis
of Curve25519 elliptic curve (ED25519 with X25519 keys), or in accordance with GOST R 34.102012 “Infor-
mation technology. Cryptographic protection of information. The processes of formation and verification of
electronic digital signature”.

6.3 Data encryption

The platform implements the ability to encrypt data using session keys based on the DiffiHelman protocol.
This operation is used to encrypt any type of text information, such as smart contract data, which should not
be available to other blockchain participants. Encryption can be performed individually for each recipient,
with the formation of a unique instance of ciphertext, or with the formation of a single ciphertext for a group
of recipients.

The algorithms used for symmetric encryption comply with the AES standard or GOST R 34.122015 “In-
formation technology. Cryptographic protection of information. Block cipher”.

Symmetric CEK and KEK keys are used to encrypt/decrypt data. CEK (Content Encryption Key) is the
key for the encrypting text data, KEK (Key Encryption Key) is the key for encrypting the CEK. The CEK
key is generated by a node randomly using the appropriate hashing algorithms. The KEK key is generated
by a node based on DiffieHellman algorithm, using public and private keys of sender and recipients, and is
used to encrypt the CEK key.

For a description of encryption methods and their use, see Data encryption operations.

17

Technical description of the Waves Enterprise platform, Release master

18 Chapter 6. Cryptography

CHAPTER
SEVEN

ROLE MODEL

The blockchain platform implements a mechanism limiting actions of participants based on the role model
which allows the platform owner to protect participants from threats, such as:

* attacks of unscrupulous miners on blockchain network;

¢ unauthorized issue of tokens;

e unauthorized access to confidential information;

* other illegal actions of intruders.

The procedure for issuing and revoking permissions is given in module Role management.

7.1 Roles list

The following table provides a list of possible platform roles:

Role name Authority

permissioner Add transactions to modify the permission list

blacklister Add transactions to modify the black list

miner Create new blocks

issuer Add transactions for issuing, reissuing, and burning tokens

dex Add the exchange transaction (deprecated)

con- Add the transaction to create a docker contract

tract _developery

connection- Add the transaction for registering/deleting node in the blockchain network

manager

banned It is forbidden to send any transactions to the blockchain. A group of all participants
with this role forms a blacklist

7.2 Permission model

Permission model describes a mechanism for applying different types of permissions when validating opera-
tions in a blockchain.

Hint: The node with the permissioner role can assign to itself any existing role in the system.

19

Technical description of the Waves Enterprise platform, Release master

Action Action permission condition
Assign or remove a role Available permissioner role

Add or Remove from blacklist Available blacklister role
Registration of the new node to the net | Available contract developer role
Generation and issue of blocks Available miner role

Token operations (issue, reissue, burn) Available issuer role
Token transfer (transfer, mass transfer) | User not in the blacklist

Token leasing (lease, lease cancel) User not in the blacklist
Creating an alias (alias) User not in the blacklist
Create a docker contract Available contract__developer role
Execution of docker contract User not in the blacklist

7.3 Update the permission list

A permission transaction is used to modify the permission list.

JSON description:

Transaction Type

Version

Sender PublicKey

Target Address or Alias

Timestamp

Operation Byte

Role Byte

Timestamp

Due Timestamp Defined Byte (0 None, 1 Defined)
Due Timestamp Bytes

The following diagram shows the sequence of actions when updating a permission list.

20

Chapter 7. Role model

Technical description of the Waves Enterprise platform, Release master

Interaction Add new permission to ACL J

Admin_pk0 Node_1 Node_1 permission list Blockchain

:1: tx1 (type 0xOc, permission list, add, pk1, "minee")J'_

seq tx validation]
2: get permissions (pk0)

I

I

I

1

|
el

3: permission list

({if "permission admin" is in permission_list for pk0 and sign is valid J

4: ok response

—
6: add tx1 to uncog&med tx pool

7: broadcast unconfirmed tx1

| | 1

I
f 8: new block (with tx1)

9: check block for type 0xOc txs
o

10: change permission list for pk1

J i

When modifying the permission list, the platform performs the following checks:
1. Sender is not in the blacklist.
2. Sender has the role of permissioner.
3. DueTimestamp (role duration) > Timestamp (current time).
4

. This role is not active (if added) or active (if removed).

7.3. Update the permission list 21

Technical description of the Waves Enterprise platform, Release master

22 Chapter 7. Role model

CHAPTER
EIGHT

ACCESS MANAGING

The Waves Enterprise Blockchain Platform implements a closed blockchain model where the addition of new
participants is controlled by an individual user with authority. The closed model also supports the restriction
for the data access for all participants. This model offers increased security compared to open blockchains
and added flexibility in configuring access levels and distribution of rights.

Only a user with the “Connection Manager” role can add new participants to the Waves Enterprise blockchain.
The 111 RegisterNode transaction is used to connect a new node to the network. This transaction contains
the credentials of the connected node. Each node creates and updates the table, which includes all approved
network participants.

A handshakemessage.

CONNECTION
MANAGER

O 2. peer-node-declared-address
@ < 1. new-node-owner public key.

3 broadcast RegisterModeTx -
new-node-owner public-key

NEW
4. add RegisterNodeT \®/ NODE

node-config
known-peers: [peer-node-declared-address]

resoive ip_.-*~

-
e le—
5. initial sync:
node state | LevelDB) E m
RegislerNodeTx | "% peer node public key——————
"opType": "add’
"sender”: "peer-node-address” I e 7. handshake
"nodeMame”: "new node name” T 1 (signature) o
‘targetPubKey™ “"new-node-owner public-key” o c :
__ validate__
handshake 3
o
add new i
declared-address \\
[M [8 handshake response_______ ') validate
| peers.dat Il T (signature) F signature
| new-node ip-address B
rrr le—

) «——10 data sync request——————— |

The process of disconnecting a participant from the network is similar to the process of connection, except
that the “Connection Manager” user sends the 111 RegisterNode transaction with the "opType": "remove"

23

Technical description of the Waves Enterprise platform, Release master

parameter. Since the handshake request is executed once every 30 seconds, the next request after the partic-
ipant is removed from the network will be denied, as the connected participant would now lack credentials
in the blockchain node table.

24 Chapter 8. Access managing

CHAPTER
NINE

DATA PRIVACY

The Waves Enterprise Blockchain Platform provides confidential data transfer and storage between partic-
ipants interacting on the network. The protection of confidential data during its transfer and storage is
provided by a set of groups, which contain a list of participants that can interact with private data.

| NODE PRIVATE STORAGE

: {GROUP A, DOC_ID_1
{GROUP A, DOC_ID_2
{GROUP B, DOC_ID_3
{GROUP B, DOC_ID_4
{GROUP B, DOC_ID_5

GROUFP A GROUP C ' | BLOCKCHAIN STATE
"

e et e

GROUP A {NODE 0
NODE 1}

NODE 0

GROUP B { NODE 1

NODE 2}

| NODE PRIVATE STORAGE
{GROUPA, DOC ID 1}
{GROUPA, DOC_ID_2}

GROUP C { NODE 2,
NODE 3}

9.1 Access groups

Access groups are created by network participants who need to arrange a private data exchange. Any
participant can create an access group and add into it any number of other participants. Only nodes can
exchange information within a group.

The group contains the following parameters:
* name (policyName);
* description (Description);
* the list of confidential data recipients (Recipients);
* the list of the policy owners with editing rights (Owners).

The access group is created by sending a CreatePolicy transaction (type = 112, group creation) to the
blockchain.

Owners can change the access group by sending the UpdatePolicy transaction (type = 113, group editing)
to the blockchain.

For external access and getting the information about groups there are using specified A PI Node requests: GET
/privacy/{policy}/recipients, GET /privacy/{policy}/getHashes, GET /privacy/getInfo/{hash}.

25

Technical description of the Waves Enterprise platform, Release master

9.2 Sending and receiving the data

The data is sent via POST /privacy/sendData request through its own node of the organization, which
checks whether the sender is a member of the specified group. If that check is successful, the data is written
to the node store, and the PolicyDataHash transaction (type = 114, sending the data hash) is initiated with
the calculated hash sum of the data. The size limit for transferring data to the network is 20 MB.

When a receiving party receives a transaction with the hash sum from the transmitted data, it checks
whether the blockchain node is involved in the group specified in the transaction. If the participant belongs
to the group, the getPrivateData request for confidential data is executed at the network address of the
group participant via P2P connection. To ensure the security of data transmission over an unprotected
communication channel, a set of encryption algorithms and the DiffeyHellman protocol are used.

26 Chapter 9. Data Privacy

CHAPTER
TEN

CLIENT

Waves Enterprise client is a convenient way to manage your blockchain. Client is intended for operations in
the Waves Enterprise public network.

OQutside .
information > Prepal:r,eBd data Client
systems
A Data
Y \ 4
e Data Data
reD(c’:(s;‘i(tT)r Node Aut::r::iz:etlon preparation (€= preparation —J»
P Yol —> ! agent service Tokens
A A
Settings
Write data
User
| Monitoring o Monitoring
agent —>» Monitoring [
¢ T Contracts
Monitoring DB

The client includes sections for use of all blockchain features:

“Data” — allows to find information about transactions or users through flexible search and advanced
filter system.

“Tokens” — allows to transfer, issue, lease tokens.

“Contracts” — provides tools for publishing and calling docker contracts. Contracts are available for
publishing from the repository, the address of which was specified when the client was built.

“Enter Data” — allows sending data transactions and files from the interface.

“Settings” — allows managing permissions for user actions in the blockchain.

The client supports the following browsers:

Google Chrome.
Morzilla Firefox.
Opera.

Apple Safari.

27

https://client.wavesenterprise.com

Technical description of the Waves Enterprise platform, Release master

¢ Microsoft Edge.

If the client web interface does not work properly, or if you see any errors during loading pages, please,
update your browser to the latest version.

Data

This section contains information about blockchain transactions. For information, use the filter and the
search string to specify the transaction fields to search for.

Available transaction filters:
e Data displays of all transactions.

e Tokens a selection of transactions with tokens. When this value is selected, an additional option
of contextual filtering by types of token operations (for example, transfer, lease or issue of tokens)
appears.

* Groups a selection of privacy data access groups transactions. When this value is selected, an additional
option of contextual filtering by operation types (for example, a creation or an update of the access
group) appears.

¢ Contracts a selection of the contracts transactions. When this value is selected, an additional option
of contextual filtering by Docker contracts appears.

e Anchoring anchoring operations.
 Data transactions operations with data transactions (Data Transaction).
¢ Settings web client settings and support requests.
* Choose address attaching the node address to the client.
Tokens

This section shows the balance of authorized account. Allows transferring tokens to other network partici-
pants, transfer tokens for lease and manage tokens. Token management requires the “Token Management”
permission.

Contracts

The section displays information on existing contracts in the network and allows you to run the selected
contracts. You can use the search string with transaction parameters for the filtration. Contract publishing
requires the “contractdeveloper” role.

Data transactions
The section allows to create data transactions and view information about existing data transactions.
Settings

The section contains basic information about the user’s account (public and private keys, secret phrase),
also the current version of the client and allows you to change the language of the interface. Also you can
add permissions to another users. This option requires the “permissioner” role.

28 Chapter 10. Client

https://support.wavesenterprise.com/servicedesk/customer/portal/3

CHAPTER
ELEVEN

11.1 Blocks

This module contains the structure of block storage in the Waves Enterprise blockchain.

BLOCKS, TRANSACTIONS, MESSAGES

Field order number | Field Type | Field size in bytes
1 Version (0x02 for Genesis block, 0x03 for common block) | Byte | 1

2 Timestamp Long | 8

3 Parent block signature Bytes | 64
4 Consensus block length (always 40 bytes) Int 4

5 Base target Long | 8

6 Generation signature* Bytes | 32
7 Transactions block length (N) Int 4

8 Transaction #1 bytes Bytes | M1
8+ (K 1) Transaction #K bytes Bytes | MK
94+ (K 1) Generator’s public key Bytes | 32
10 + (K 1) Block’s signature Bytes | 64

Generation signature is calculated based on the hash (Blake2b256) of the following fields:

Field order number | Field Type | Field size in bytes
1 Previous block’s generation signature | Bytes | 32
2 Generator’s public key Bytes | 32
The block signature is calculated based on the following data:
Field order number | Field Type | Field size in bytes
1 Version (0x02 for Genesis block,, 0x03 for common block) | Byte | 1
2 Timestamp Long | 8
3 Parent block signature Bytes | 64
4 Consensus block length (always 40 bytes) Int 4
5 Base target Long | 8
6 Generation signature* Bytes | 32
7 Transactions block length (N) Int 4
8 Transaction #1 bytes Bytes | M1
8+ (K 1) Transaction #K bytes Bytes | MK
94+ (K 1) Generator’s public key Bytes | 32

29

Technical description of the Waves Enterprise platform, Release master

11.2 Transactions

In this section we can see the structure of transaction storage in the blockchain platform of Waves Enterprise.
For some types of transactions, versioning is introduced.

Important: All transactions use the timestamp field containing a time stamp in the Unix Timestamp
format in milliseconds.

The values of json requests for signing and sending transactions to the blockchain are samples. Before
sending a request to sign a transaction, check whether the request parameters match the current data. For
example, if you are sending a transaction to Mainnet, you need to make sure that you have specified the
correct transaction fee. Otherwise, the request will finish with an error indicating the correct fee.

30 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

Table 1: Transaction types

Ne Transaction type Description
1 Genesis transaction Initial binding of the balance to the addresses of nodes created at the
start of the blockchain
3 Issue Transaction Tokens issue
4 Transfer Transaction Tokens transfer
) Reissue Transaction Tokens reissue
6 Burn Transaction Tokens burn
8 Lease Transaction Tokens lease
9 Lease Cancel Transaction | Cancel of the tokens lease
10 Create Alias Transaction | Alias creation
11 | MassTransfer Transac- | Mass tokens transfer. Minimum commission is specified
tion
12 Data Transaction Transaction with the data in the keyvalue pairs format. Minimum
commission is specified
13 SetScript Transaction Transaction which is binding a script with a RIDE contract to an ac-
count
14 | Sponsorship Transaction | Transaction which is signing a sponsorship asset
15 SetAssetScript Transaction which is binding a script with a RIDE contract to an asset
101 | Genesis Permission | Assignment of the first network administrator for further distribution
Transaction of rights
102 | Permission Transaction | Issuance/withdrawal of rights from the account
103 | CreateContract Transac- | Dockercontract creation
tion
104 | CallContract Transac- | Dockercontract call
tion
105 | EzecutedContract Trans- | Dockercontract execution
action
106 | DisableContract Transac- | Dockercontract disable
tion
107 | UpdateContract Transac- | Dockercontract update
tion
110 | GenesisRegisterNode Node registration in the genesis block with the blockchain start
Transaction
111 | RegisterNode Transac- | A new node registration
tion
112 | CreatePolicy Transaction | Access group creation
113 | UpdatePolicy Transac- | Update the access group
tion
114 | PolicyDataHash Trans- | A data hash sending to the net

action

For more information, see Commissions on the network “Waves Enterprise Mainnet”

11.2. Transactions

31

Technical description of the Waves Enterprise platform, Release master

11.2.1 1. Genesis transaction

Field Broadcasted JSON | Blockchain state | Type
type + + Byte

id + Byte
fee + Long
timestamp | + + Long
signature + ByteStr
recipient + + ByteStr
amount + + Long
height +

11.2.2 3. Issue Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type
type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + + + Byte
assetld + ByteStr
name + + + Array[Byte]
quantity + + + Long
reissuable + + + Boolean
decimals + + + Byte
description + + + Array[Byte]
chainld + + Byte
script + (opt) + + Bytes
password + (opt) String
height +
JSON to sign
{
"type": 3,
"version":2,
"name": "Test Asset 1",
"quantity": 100000000000,
"description": "Some description",
"sender": "3FSCKyfFo3566zwilJjSFLBwKvd826KXUagR",
"password": "",
"decimals": 8,
"reissuable'": true,
"fee": 100000000
}
Broadcasted JSON
32 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

"type": 3,
"id": "DnKb5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWH9pWrcxcmrhB",
"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFtheUJ",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,
"timestamp'": 1549378509516,
"proofs": [
—"NqZGcbcQ82FZrPh6aCE juo9nNnkPTvyhrNq329YWydaYcZTywXUwDxFAknTMEGuFrEndC jXBtrueLWagbJhpeiG" 1,
"version": 2,
"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"name": "Token Name',
"quantity": 10000,
"reissuable": true,
"decimals": 2,
"description": "SmarToken",
"chainId": 84,
"script": "base64:AQa3b8tH",
"height": 60719

11.2.3 4. Transfer Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr|
version + + + Byte

recipient + + + ByteStr

assetId + (opt) + + ByteStr

fee assetId + (opt) + + Bytes

amount + + + Long

attachment + (opt) + + Bytes

password + (opt) String

height +

JSON to sign

{
"type": 4,
"version": 2,
"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimZX",
Ilpasswordll B nn R
"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13D1aimZX",
"amount": 40000000000,
"fee": 100000

Broadcasted JSON

11.2. Transactions 33

Technical description of the Waves Enterprise platform, Release master

"senderPublicKey": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"amount": 200000000,

"fee": 100000,

"type": 4,

""version": 2,

"attachment": "3uaRTtZ3taQtRSmquqeC1DniK3Dv",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"feeAssetId": null,

"proofs": [
"2hRxJ2876CdJ498UCPErNfDSYdt2mTK4XUnmZNgZiq63RupJs5WTrAqR46c4rLQdq4toBZk2tSYCeAQWEQyi72U6"
1,

"assetId": null,

"recipient": "3GPtjb5osoYqHpyfmsFv7BMiyKsVzbGlykfL",

"id": "757aQzJiQZRfVRuJNnP3L1d369H20T jUEazwtYxGngCd",

"timestamp'": 1558952680800

11.2.4 5. Reissue Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr]
version + + + Byte

chainld + + Byte

assetld + + + ByteStr

quantity + + + Long

reissuable + + + Boolean

password + (opt) String

height

JSON to sign

{
"type" . 5,
"version":2,
"quantity": 10000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"reissuable": true,
"fee": 100000001
}

Broadcasted JSON

{
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUopabH3",

(continues on next page)

34 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)
"quantity": 10000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"chainId": 84,
"proofs": [
—"3gmgGM6rYpxuuR5QvIkugPsERG7yWYF7 JN6QzpUGJwT8Lw6SUHkzzk8R22A7cGQz7TQQ5NifKxvAQzwPyDQbwmBg" 1,
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"fee": 100000001,
"id": "GsNvk15VudkqtRmMSpYW21WzgJpZrLBwjCREHWuwnvhb5",
"type": 5,
"version": 2,
"reissuable": true,
"timestamp": 1551447859299,
"height": 1190
}
11.2.5 6. Burn Transaction
Field JSON to sign | Broadcasted JSON | Blockchain state | Type
type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr|
version + + + Byte
chainld + + Byte
assetld + + + ByteStr
quantity + + Long
amount + Long
password + (opt) String
height
JSON to sign
{
lltypen : 6 .
"version": 2,
"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
llpasswordll : nn .
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"quantity": 1000,
"fee'": 100000,
"attachment": "string"
}
Broadcasted JSON
{
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",
"amount": 1000,
"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
(continues on next page)

11.2. Transactions

35

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

"chainId": 84,
"proofs": [

—"kzTwsNX jJkzk6dpFFZZXyeimYo6iLTVbCnCXBD4xBtyrNjysPqZfGKkONdJUTP3xeAPhtEgU9hsdwzRVo1hKMgS" 1],
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",

"fee': 100000,
"id": "3yd2HZq7sgun7GakisLH88UeKcpYMUEL4sy57aprANSE",
"type": 6,

"version": 2,
"timestamp'": 1551448489758,
"height": 1190

11.2.6 8. Lease Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr|
version + + + Byte

amount + + + Long

recipient + + + ByteStr

status +

password + (opt) String

height +

JSON to sign

{
"type" . 8,
"version": 2,
"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"paSSWOI‘d" : nn .
"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",
"amount": 1000,
"fee': 100000

Broadcasted JSON

{
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8vOoB7bsy2AY56CUopabH3" ,
"amount": 1000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"proofs": [
—"5jvmWKmU89HnxXFXNAd9X41zmiB5fSGoXMirsaJ9tNeyiCAImjm7MR48g789VucckQw2UExaVXfhsdEBuUrchvrq" 1,
"fee": 100000,

"recipient": "3N1lksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",
"id": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",

(continues on next page)

36 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"type": 8,

"version": 2,

"timestamp'": 1551449299545,
"height": 1190

11.2.7 9. Lease Cancel Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + -+ PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr|
version + + + Byte

chainld + + Byte

leaseld + (txId) + + Byte

leaseld +

password + (opt) String

height +

JSON to sign

{
"type": 9,
"version": 2,
"fee": 100000,
"sender": "3N9vL3apA4j2L5Po jHWSTYmfHx9Lo2ZaKPB",
"password": "",
"txId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp"

Broadcasted JSON

{

"senderPublicKey": "FbtbfKHesn(QG2CXmsKf4TC8vOoB7bsy2AY56CUopatH3",
"leaseId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",
"sender": "3N9vL3apA4j2L5Po jHWSTYmfHx9Lo2ZaKPB",

"chainId": 84,
"proofs": [
—"2Gns72hraHbyay3eilleyHQEA1wTqiiAztaL jHinEYX91FEv62HFW38Hq89GnsEJFHUvo9KHYtBBrb8hg TAQwN7DM" 1],
"fee": 100000,
"id": "9vhxB2ZDQcqiumhQbCPnAoPBLuir727qgJhFeBNmPwmu",
"type": 9,
"version": 2,
"timestamp'": 1551449835205,
"height": 1190
}

11.2. Transactions 37

Technical description of the Waves Enterprise platform, Release master

11.2.8 10. Create Alias Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr|
version + + + Byte

alias + + + Bytes

password + (opt) String

height +

JSON to sign

{
"type": 10,
"version": 2,
"fee": 100000,
"sender": "3N9vL3apA4j2L5Po jHWSTYmfHx9Lo2ZaKPB",
"password": "",
"alias": "hodler"

Broadcasted JSON

{

"type": 10,

"id": "DJTailMpb7eLuPW5GcE4ndeE8jWsWP jx8gPYmbZPJjpag",

"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFthelJ]",

"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"fee": O,

"timestamp": 1549290335781,

"signature":
—"2qYepod9DhpxVadlyQDbv1QzU4KLKcbjjdtGY7De2272K76nbQfaXsRnyd31hUE8bhvL j jpHRAtoLVzbBDzRZYEY",

"proofs": [

—"2qYepod9DhpxVad1yQDbv1QzU4KLKcbjjdtGY7De2272K76nbQfaXsRnyd31hUE8bhvL j jpHRAtoLVzbBDZRZYEY" 1],
"version": 1,
"alias": "testperson4d",
"height": 59245

38 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.9 11. MassTransfer Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr]
version + + + Byte

assetId + (opt) + + ByteStr
attachment + (opt) + +

number of transfers | + + + List[Transfer|
transferCount + +

total Amount +

password + (opt) String

height +

JSON to sign

{

"type": 11,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",

"password": "",

"fee": 2000000,
"version": 1,
"transfers":

[

{ "recipient":
{ "recipient":

"3MtHszoTn399NfsH3v5f oeEXRRrchEVtTRB", "amount": 100000 },
"3N7BA6J9VUBfBRutuMy jF4yKTUEtrRFfHMc", "amount": 100000 }

Broadcasted JSON

{

"senderPublicKey":

"fee'": 2000000,
"type": 11,

"transferCount":
"version": 1,
"totalAmount":
"attachment": "",

"Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",

200000,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",

"proofs": [

< "2gWpMWdgZC jbygCX5US3aAFf tKtGPRSK3aWGJ6RDnWIf9hend5sBFAgY6u3Mp4 jN8cqual508qrkNedGNSCPN1GZ" 1,

"assetId": null,

"recipient": "3MtHszoTn399NfsH3vbfoeEXRRrchEVtTRB",

"transfers":
[
{
"amount":
}’
{

100000

(continues on next page)

11.2. Transactions

39

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"recipient": "3N7BA6JOVUBfBRutulMyjF4yKTUEtrRFfHMc",
"amount": 100000
}
1,
"id": "D9jUSHHcJqVAvkFMiRfDBhQbUzoSf(Qqd9cjaunMmt jdu",
"timestamp": 1551450279637,
"height": 1190

11.2.10 12. Data Transaction

Warning: The transaction has limits:

1. "key":"value" pairs count no more than 100,

"data": [
{
"key": "objectId",
"type": "string",
"value": "obj:123:1234"
I
]

2. The byte composition of the signed transaction should not exceed more than 150 KB.

Hint: You do not need to specify the senderPublicKey parameter if you are signing a transaction where

the author and the sender are the same.

Field JSON to | Broadcasted Blockchain Type Size
sign JSON state (Bytes)

type + + + Byte 1

id + Byte 1

sender + + PublicKeyAc- 3264
count

sender’s public | + (opt) + + PublicKeyAc- 3264

key count

fee + + + Long 8

timestamp + (opt) + + Long 8

proofs + + List[ByteStr| 32767

version + + Byte 1

authorPublicKey + + PublicKeyAc- 3264
count

author + + 3264

data + + + 3264

password + (opt) String 32767

height + 8

JSON to sign
40 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

"type": 12,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",
"author": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"data": [

{

"key": "objectId",

"type": "string",

"value": "obj:123:1234"

}
1,
"fee": 100000

Broadcasted JSON

{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUopabH3",
"authorPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v9oB7bsy2AY56CUopabH3",
"data":

[

"type": "string",
"value": "obj:123:1234",
"key": "objectId"

1,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"proofs": [

—"2T7WQmSXW8cFHf iFkdDEic9oNiT7aFiH3TyKkARERopr1VJvzRKqHAVNQ3eiYZ3uYN8uQnPopQEH4XV8z5SgSust" 1,
"author": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"fee": 100000,

"id": "7dMMCQNTusahZ7DWtNGjCwAhRYpjaHlhsepRMbpn2BkD",
"type": 12,

"version": 1,

"timestamp": 1551680510183

}

11.2. Transactions 41

Technical description of the Waves Enterprise platform, Release master

11.2.11 13. SetScript Transaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr|
chainld + + Byte

version + + + Byte

script + (opt) + + Bytes

name + + + Array[Byte
description + (opt) + + Array|Byte
password + (opt) String

height +

JSON to sign

{

"type": 13,

"version": 1,

"sender": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",

"paSSWOI‘d" : nn .

"fee": 1000000,

"name": "faucet",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="
}

Broadcasted JSON

{
"type": 13,
"id": "HPDypnQJHJskN8kwszF8rck3E5tQiuiM1fEN42w6PLmt",
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8vOoB7bsy2AY56CUopabH3",
"fee": 1000000,
"timestamp": 1545986757233,
"proofs": [

—"2QiGYS2dqh8QyN7Vu2tAYaioX6WM6rTSDPGbt4zrWS7QKTzo jmR2k jppvGN j4tDPsYPbcDungBaghaudLyMeGFgG" 1,

"chainId": 84,
"version": 1,
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",

"name": "faucet",
"description": "",
"height": 3805
}
42 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.12 14. SponsorshipTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
assetId + (opt) + + ByteStr

fee + + + Long

isEnabled + + + Boolean
timestamp + (opt) + + Long

proofs + + List[ByteStr]
chainld + + Byte

version + + + Byte

script + (opt) + + Bytes

name + + + Array[Byte
description + (opt) + + Array|[Byte
password + (opt) String

height +

JSON to sign

{
"sender": "3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t",
"assetId": "G16FvJk9vabwxjQswhO9CQAhbZzn3QrwqWjwnZB3gNVox",
"fee": 100000000,
"isEnabled": false,
"type": 14,
"password": "1234",
"version": 1
}

Broadcasted JSON

{
"type": 14,
"id": "Ht6kpnQJHJskN8kwszF8rck3E5tQiuiM1fEN42wGfdk7",
"sender": "3JWDUsqyJEkValaivNPP8VCAa5zGuxiwDOt",
"senderPublicKey": "Gt55fKHesnQG2CXmsKf4TC8v90B7bsy2AY56CUophy89",
"fee'": 100000000,
"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3gNVox",
"timestamp": 1545986757233,
"proofs": [

—"5Tfg¥S2dqh8QyN7Vu2tAYaioX5WMErTSDPGbt4zrWS7QKTzo jmR2k jppvGN j4tDPsYPbcDungBaghaudLyMeGFh7" 1,

"chainId": 84,
"version": 1,
"isEnabled": false,
"height": 3865

11.2. Transactions

43

Technical description of the Waves Enterprise platform, Release master

11.2.13 15. SetAssetScriptTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr|
version + + + Byte

chainld + + Byte

assetld + + + ByteStr

script + (opt) + + Bytes

password + (opt) String

height +

JSON to sign

{
"type": 15,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"fee": 100000000,
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg"
}

Broadcasted JSON

{
"type": 15,
"id": "CQpEMOAEDvgxKfgWLH2HXE82iAzpXrtqsDDcgZGPAF9J",
"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFtheU]",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,
"timestamp": 1549448710502,
"proofs": [

—"64eodpuXQjakKQQ4GJBaBrqiBtmk jSxseKC97gn6EwB5kZtMr18mAUHPRkZaHJe JxaDyLzGEZKghYoUknWfNhXnkf" 1,
"version": 1,
"chainId": 84,
"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"height": 61895

44 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.14 101. GenesisPermitTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type
type + + Byte
id + Byte
fee + Long
timestamp | + + Long
signature + ByteStr
target + + ByteStr
role + + String
height
11.2.15 102. PermissionTransaction
Field JSON to sign | Broadcasted JSON | Blockchain state | Type
type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + Byte
target + + + ByteStr
PermissionOp + PermissionOp
opType + + String
role + + String
dueTimestamp + (opt) + Option[Long]
password + (opt) String
height +
JSON to sign
{
"type":102,
"sender" :"3GLWx8yUFcNSL3DERS8kZyE4TpyAyNiEYsKG",
"password": "",

"senderPublicKey":"4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"fee":0,

"proofs":[""],

"target":"3GPtjbosoYqHpyfmsFv7BMiyKsVzbG1lykfL",

"opType":"add",

"role":"contract_developer",

"dueTimestamp" :null

Broadcasted JSON

{

"senderPublicKey": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"role": "contract_developer",

(continues on next page)

11.2. Transactions

45

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"proofs": [
"5ABJCRTKGo6 jmDZCRWcLQc257CCeczmc jmtf JmbBE7TP3KsVkwvisHOkEkfYPckVCzZEMKZTCA3LKAPcN804Git3j"
1,
"fee": O,
"opType": "add",
"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7Q23FW1KWepBOEZCFGE" ,
"type": 102,
"dueTimestamp": null,
"timestamp": 1559048837487,
"target": "3GPtjb5osoYqHpyfmsFv7BMiyKsVzbGlykfL"

11.2.16 103. CreateContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

The contractVersion field specifies the contract version, the 1 value is for the new contract, and the 2
value is for the updated contract. The contract is updated by using the 107 transaction. When you create
a contract, the 104 transaction is automatically created, this transaction is calling the contract to validate
it. If the contract fails or runs with error, transactions 103 and 104 will be discarded and will not fall into
the block.

The feeAssetId field is optional and used only for gRPC contracts (the field value version = 2).

Field JSON to | Broadcasted Blockchain Type Size(Bytes)
sign JSON state

type + + + Byte 1

id + Byte 1

sender + + PublicKeyAc- 3264
count

sender’s public + + PublicKeyAc- 3264

key count

password + (opt) String 32767

fee + + + Long 8

timestamp + (opt) + + Long 8

proofs + + List[ByteStr| 32767

version + + Byte 1

fee assetId + (opt) Byte 1

image + + + Array[Bytes] 32767

imageHash + + + Array|Bytes] 32767

contractName + + + Array[Bytes] 32767

params + + + List[DataEntry[_]]| 32767

height + 8

JSON to sign

{
"fee": 100000000,

(continues on next page)

46 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338£64e5d8b842abe2d73d5c8£828584b65",

"contractName": "stateful-increment-contract",
"sender": "3PudkbvjV1nPj1TkuuRahh4sGdgfr4YAUV2",

"password": "",
"params": [],
"type": 103,
"version": 1,

Broadcasted JSON

{
"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",

"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38DwsbskqDs jMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [

—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],

"version": 1,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",

"contractName" :
"params": [],
"height": 1619

"stateful-increment-contract",

11.2.17 104. CallContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.
Field JSON to | Broadcasted Blockchain Type Size(Bytes)
sign JSON state

type + + + Byte 1

id + Byte 1

sender + + PublicKeyAc- 3264
count

sender’s public + + PublicKeyAc- 3264

key count

fee + + + Long 8

timestamp + (opt) + + Long 8

proofs + + List[ByteStr| 32767

version + + Byte 1

contractVersion + + + Byte 1

contractld + + + ByteStr 32767

params + + + List[DataEntry| ||| 32767

height + 8

password + (opt) String 32767

11.2. Transactions 47

Technical description of the Waves Enterprise platform, Release master

JSON to sign

{
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"fee": 10,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"password": "",
"type": 104,
""params":
[
{
"type": "integer",
Ilkeyll : Hall .
"value": 1
1,
{
"type": "integer",
Ilkeyll B Ilbll R
"value": 100
}
1,
"version": 1,
"contractVersion": 1
}

Broadcasted JSON

{
"type": 104,
"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,
"timestamp": 1549365736923,
"proofs": [
—"294cTBhDKEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvN9Wb3YrsDYixKiUPXBnAyXzEcnKPFRCWIxVpdv" 1,
"version": 1,
"contractVersion": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",

"params":

[
{
"key": "a",
"type": "integer",
"value": 1
},
{
llkeyll : Ilbll .
"type": "integer",
"value": 100
}

]

48 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.18 105. ExecutedContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

Field Broadcasted JSON | Blockchain state | Type

type + + Byte

id + Byte

sender + PublicKeyAccount
sender’s public key | + + PublicKeyAccount
fee + Long

timestamp + + Long

proofs + + List|ByteStr|
version + + Byte

tx + + ExecutableTransaction
results + + List[DataEntry|[]]
height +

password + (opt) String

Broadcasted JSON

{
"type": 105,

"id": "38GmSVC5s8Sjeybzfe9R(6p1Mb6ajb8LYIDcep8G8Umj",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",

"password": "",

"fee": 500000,

"timestamp": 1550591780234,

"proofs": [

—"5whBipAWQgFvm3myNZe6GDd9Ky8199C9gNxLBHqDNmVAUJWIgLE7t9LBQDi68CKT57dzmnP JpJkrwKh2HBSwUer6" 1],

"version": 1,
Iltxll .

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs":

—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],

"version'":

"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",

"contractName" :
"params":
"height": 1619

}’
"results": [],
"height": 1619

"stateful-increment-contract",

11.2. Transactions

49

Technical description of the Waves Enterprise platform, Release master

11.2.19 106. DisableContractTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + Byte

sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr]
version + + Byte

contractld + + + ByteStr

height +

password + (opt) String

JSON to sign

{
"sender":"3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"password": "",
"contractId":"Fz3wqAWWcPMT4M1q6H7 crLKtToFJvbeLSvqjaU4Zwlpg",
"fee":500000,
"type":106
}

Broadcasted JSON

{

"type": 106,

"id": "8Nw34YbosEVhCx18pd81HqYac4C2pGjyLKck8NhSoGYH",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,

"proofs": [

—"5GqPQkuRvG6LPXgPoCr9FogAdmhAaMbyFb5Uf jQPUKASc6BLuQSz75LAWix10k2Z6PC5ezPpjqzqnr15i3RQmaEc" 1,
"version": 1,

"contractId": "Fz3wqAWWcPMT4M1q6H7crLKtToFJvbeLSvqjaU4ZwMpg",
"height": 1632

}

50 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.20 107. UpdateContractTransaction

Warning: The byte composition of the signed transaction should not exceed more than 150 KB.

Field JSON to | Broadcasted Blockchain Type Size(Bytes)
sign JSON state
type + + + Byte 1
id + Byte 1
sender + + PublicKeyAc- 3264
count
sender’s public + + PublicKeyAc- 3264
key count
image + + + Array[Bytes 32767
imageHash + + + Array|Bytes 32767
fee + + + Long 8
timestamp + (opt) + + Long 8
proofs + + List[ByteStr] 32767
version + + + Byte 1
contractId + + + ByteStr 32767
height + 8
password + (opt) String 32767
JSON to sign
{

"image" : "registry.wvservices.com/we-sc/tdm-increment3:1028.1",

"sender" : "3Mxxz9pBYS5fJMARINQmzYUHxiWAtvMzSRT",

"password": "",

"fee" : 100000000,

"contractId" : "EnsihTUHSNABORcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",

"imageHash" : "0e5d280b9acf6efd8000184ad008757bb967b5266e9ebf476031fad1488c86a3",

"type" : 107,

"version" : 1
}

Broadcasted JSON

{

"senderPublicKey":
—"5qBRDmM74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEy JuW",
"tx":

{

"senderPublicKey":
—"5gBRDm74WKR5xK7LPs8vCy9Q jzzqK4KCb8PL36fm55S3kEi 2XZETHF gMgp3D13AwgE8bBkYrzvEvQZuabMfEy Jul" ,
"image":"registry.wvservices.com/we-sc/tdm-increment3:1028.1",

"sender" :"3Mxxz9pBYS5f IJMARINQmzYUHxiWAtvMzSRT",

"proofs": [
—"3tNsTyteeZrxEbVSv5zPT6dr247nXsVWR5v7Khx8spypgZQUdorCQZV2guTomutUTcyxhJUjNkQW4VmSgbCtgmlZ"],
"fee":0,

"contractId":"EnsihTUHSNABORcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",
"id":"HdZdhXVveMT1vYzGTviCoGQU3aH6ZS3YtFpYujWeGCHE",
"imageHash":"17d72ca20bf9393eb4f4496fa2b8aa002e851908b77af1d5db6abcOb8eaec0217",

(continues on next page)

11.2. Transactions

51

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"type":107,"version":1,"timestamp":1572355661572},
"sender" :"3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG",

"proofs": [

—"28ADV8miUVN5SEF jhqeF j6MADSXY jbxA3TsxSwFVs18jXAsHVaBczvnyoUSaYJs jRNmaWgXbpbduccRxpKGTs6tro"],
"fee":0,"id" :"7TniVY8mjzeKqLBePvhTxFRfLu7BmcwVfqaqtbWANSAA2",

"type":105,
"version":1,
"results":[],
"timestamp":1572355666866
}

}

11.2.21 110. GenesisRegisterNodeTransaction

Field Broadcasted JSON | Blockchain state | Type
type + + Byte
id + Byte
fee + Long
timestamp + + Long
signature + Bytes
version + Byte
targetPubKey | + +

height +

11.2.22 111. RegisterNodeTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type
type + + + Byte
id + Byte
sender + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
fee + + Long
timestamp + (opt) + + Long
proofs + + List[ByteStr]
version + Byte
targetPubKey + + + PublicKeyAccount
nodeName + + + String
opType + + +
height +
password + (opt) String
JSON to sign
{
"type": 111,
"opType": "add",
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,
"password": "",
(continues on next page)
52 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"targetPubKey": "apgJP9atQccdBPAgJPwH3NBVqYXrapgJP9at(QccdBPAgJPwHapgJP9at(ccdBPAgJPwHDKkh6AS",
"nodeName": "Node #1",

"fee": 500000,

}

11.2.23 112. CreatePolicyTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + + Byte

sender + + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
policyName + + + String

recipients + + + Array[Byte
owners + + + Array|Byte

fee + + + Long

timestamp + (opt) + + Long

proofs + + List[ByteStr]
height + Long

description + + + String

password + (opt) String

JSON to sign

{
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"policyName": "Policy# 7777",
"password": "sfgKYBFCFQ#$fsdf () *%",
"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"
1,
"fee": 15000000,
"description": "Buy bitcoin by 1c",
"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"
1,
"type": 112

11.2. Transactions 53

Technical description of the Waves Enterprise platform, Release master

11.2.24 113. UpdatePolicyTransaction

Field JSON to sign | Broadcasted JSON | Blockchain state | Type

type + + + Byte

id + + Byte

sender + + + PublicKeyAccount
sender’s public key + + PublicKeyAccount
policyld + + + String

recipients + + + Array|Byte
owners + + + Array[Byte

fee + + + Long

timestamp + + Long

proofs + + List[ByteStr|
height + Long

opType + + +

description + + + String

password + String

JSON to sign

{

}

"policyId": "7wphGbhgbmUgzuN5wzgqwqtViTiMdFezSal1fxRV58Lm",
"password": "sfgKYBFCF@#$Efsdf () *%",
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"3NwJf jG5RpaDfxEhkwXgwD70oX21NMFCx JHL"

1,

"fee": 15000000,

llopTypell : Haddll .

"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

1,

"type": 113,

54

Chapter 11.

Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.2.25 114. PolicyDataHashTransaction

When the user sends confidential data to the network using POST /privacy/sendData, the node automati-
cally will create the 114 transaction.

Field Broadcasted JSON | Blockchain state | Type

type + + Byte

id + + Byte

sender + + PublicKeyAccount
sender’s public key | + + PublicKeyAccount
policyld + + String

dataHash + + String

fee + + Long

timestamp + + Long

proofs + + List|ByteStr|
height + Long

11.3 Network messages

This section describes the structure of network messages in the Waves Enterprise blockchain platform.

11.3.1 Network message

All network messages, except Handshake, are based on the following structure:

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4
2 Magic Bytes Bytes | 4
3 Content ID Byte |1
4 Payload length Int 4
) Payload checksum Bytes | 4
6 Payload Bytes | N

Magic Bytes are 0x12, 0x34, 0x56, 0x78. Payload checksum is first 4 bytes of FastHash of Payload bytes.
FastHash is hash function Blake2b256(data).

11.3.2 Handshake message

Handshake message is intended for primary data exchange between two nodes. An authorized Handshake
contains the node owner’s blockchain address and signature. Unsigned Handshakes are not accepted.

11.3. Network messages 55

Technical description of the Waves Enterprise platform, Release master

Authorized Handshake

Field order num- | Field Type | Field size in
ber bytes
1 HandshakeType byte | 1
2 Application name length (N) Byte |1
3 Application name (UTF8 encoded bytes) Bytes | N
4 Application version major Int 4
5 Application version minor Int 4
6 Application version patch Int 4
7 Consensus name lenght (P) Byte | 1
8 Consensus name lenght (UTF8 encoded bytes) Bytes | P
9 Node name length (M) Byte | 1
10 Node name (UTF8 encoded bytes) Bytes | M
12 Node nonce Long | 8
13 Declared address length (K) or 0 if no declared address was | Int 4
set
14 Declared address bytes (if length is not 0) Bytes | K
15 Peer port Int 4
16 Node owner address Bytes | 26
17 Signature Bytes | 64

11.3.3 GetPeers message

GetPeers message is sent to request network addresses of network participants.

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4
2 Magic Bytes Bytes | 4
3 Content ID (0x01) Byte |1
4 Payload length Int 4
5 Payload checksum Bytes | 4

11.3.4 Peers message

Peers message is a response to a GetPeers request.

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4
2 Magic Bytes Bytes | 4
3 Content ID (0x02) Byte |1
4 Payload length Int 4
5 Payload checksum Bytes | 4
6 Peers count (N) Int 4
7 Peer #1 IP address Bytes | 4
8 Peer #1 port Int 4
6+2*N 1 Peer #N IP address Bytes | 4
6+2*N Peer #N port Int 4

56 Chapter 11. Blocks, transactions, messages

Technical description of the Waves Enterprise platform, Release master

11.3.5 GetSignatures message

11.3.6 Signatures message

11.3.7 GetBlock message

11.3.8 Block message

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x14) Byte |1

4 Payload length Int 4

5 Payload checksum Bytes | 4

6 Block IDs count (N) Int 4

7 Block #1 ID Bytes | 64

6+ N Block #N ID Bytes | 64

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x15) Byte |1

4 Payload length Int 4

5 Payload checksum Bytes | 4

6 Block signatures count (N) | Int 4

7 Block #1 signature Bytes | 64

6 +N Block #N signature Bytes | 64

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x16) Byte |1

4 Payload length Int 4

) Payload checksum Bytes | 4

6 Block ID Bytes | 64

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x17) Byte |1

4 Payload length Int 4

) Payload checksum Bytes | 4

6 Block bytes (N) Bytes | N

11.3. Network messages

57

Technical description of the Waves Enterprise platform, Release master

11.3.9 Score message

Field order number | Field Type Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x18) Byte 1

4 Payload length Int 4

5 Payload checksum Bytes | 4

6 Score (N bytes) BigInt | N

11.3.10 Transaction message

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x19) Byte |1

4 Payload length Int 4

5 Payload checksum Bytes | 4

6 Transaction (N bytes) Bytes | N

11.3.11 Checkpoint message

Field order number | Field Type | Field size in bytes
1 Packet length (BigEndian) | Int 4

2 Magic Bytes Bytes | 4

3 Content ID (0x64) Byte |1

4 Payload length Int 4

5 Payload checksum Bytes | 4

6 Checkpoint items count (N) | Int 4

7 Checkpoint #1 height Long | 8

8 Checkpoint #1 signature Bytes | 64

6+2*N 1 Checkpoint #N height Long | 8

6+2*N Checkpoint #N signature Bytes | 64

58

Chapter 11.

Blocks, transactions, messages

CHAPTER
TWELVE

DOCKER SMART CONTRACTS

The Waves Enterprise platform provides the ability to develop and use Turingcomplete smart contracts.

12.1 Smart contracts on the Waves Enterprise platform

Turingcomplete smart contracts allow you to implement any logic embedded in the program code. To separate
the launch and operation of smart contracts themselves from the Waves Enterprise platform, Dockerbased
containerization is used. However, any programming language can be used to write a smart contract. Each
smart contract is run in a Docker container to isolate its operation and manage the resources of the running
smart contract.

When a smart contract is launched in a blockchain network, its code cannot be arbitrarily changed, replaced,
or prohibited from being executed without interfering with the entire network. This property makes smart
contracts an almost irreplaceable tool in the blockchain network.

Docker Registry is used for storing smart contracts with read access to Docker images for machines with
nodes. Waves Enterprise provides an open repository for Docker smart contracts, where any developer can
add their own smart contract. The open repository is located at the registry.wavesenterprise.com/
wavesenterprisepublic address. To add your smart contract to the open repository, you need to write a
request to our technical support. After the request is approved, the smart contract will be added to the open
repository, and you can call it from the client or the node’s REST API.

If you use a private blockchain network, you need to have your own Docker repository for publishing and
calling smart contracts.

The node state can be accessed through a REST API or gRPC.

A smart contract can be created and called by any network participant, regardless of whether there is a
mining node or not. You need just to register in the Mainnet network via client interface.

12.2 Creating a contract

Creating a smart contract starts with the preparation of a Docker image, which consists of the contract
program code, the required environment, and the special scenario Dockerfile. A prepared Docker image (a
build) is then assembled and sent to Docker Registry. To send the new smart contract, create a request on
the technical support portal. After verifying the smart contract, technical support staff places it in an open
Docker repository. The settings of the dockerengine section for working with the open Docker repository
are already presented by default in the node configuration file. Also the recommended parameter values are
set by default for optimal operation of smart contracts in the Mainnet blockchain network.

Dockerfile sample for REST API usage:

59

https://www.docker.com/
https://docs.docker.com/registry/
https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://grpc.io/
https://client.wavesenterprise.com/
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release master

: BROADCASTING e : MINING NODE e
: NODE : : .

UTX POOL UTX POOL CONTRACT EXECUTOR DOCKER REGISTRY

CallContract tx

5 5 _— > !
tx broadcast download image
¢ | T A/ —_——>
! 1 ExecutedContract tx a !

-~

| : ! | A

change state ! | change state

: 5 I}
LEVEL DB 1 1 LEVEL DB A o @
: : ! DOCKER RUNTIM

CallContract tx | get state S
— | | — e

REST AFI REST AFI ! SMART CONTRACT

deploy image
results

FROM python:alpine3.8

ADD contract.py /

ADD run.sh /

RUN chmod +x run.sh

CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

Dockerfile sample for gRPC usage:

FROM python:3.9-rc-buster

RUN pip3 install grpcio-tools

ADD src/contract.py /

ADD src/protobuf/common_pb2.py /protobuf/

ADD src/protobuf/contract_pb2.py /protobuf/

ADD src/protobuf/contract_pb2_grpc.py /protobuf/
ADD run.sh /

RUN chmod +x run.sh

ENTRYPOINT ["/run.sh"]

The contract is created by publishing a special (CreateContractTransaction) transaction containing a link
to the image in Docker Registry. To use the REST API or gRPC, please, specify the transaction version
103. After the transaction is received, the node downloads the image using the link specified in the “image”
field, the image is checked and launched as a Docker container.

60 Chapter 12. Docker Smart Contracts

Technical description of the Waves Enterprise platform, Release master

12.3 Executing a Contract

Smart contract execution is initiated by a special (CallContractTransaction) transaction containing the
contract ID and call parameters. The transaction ID defines the Docker container. The container is executed
unless it has been launched before. The contract launch parameters are transferred to the container. | Smart
contracts change their state by updating the keyvalue pairs.

12.4 Updating Contract

Only the developer of the Docker smart contract can update this contract. The developer should keep
the contract_developer role during the contract update and should be the 103 transaction creator. 107
transaction is using for the contract update. And it is necessary that the contract is active.

All the mining nodes download the contract image and run it for the checking after the 107 transaction
includes into the block. Then the 105 transaction is issued within the 7107 transaction inside it.

12.5 Contract Call Disabling

If necessary, the contract developer can disable calling the contract. To do this, a special (DisableContract-
Transaction) transaction is published specifying the Contract ID. The contract becomes unavailable after its
disconnection, but you can get information about the contract from the the blockchain later.

12.6 Description of Transactions

The following transactions are implemented to ensure the interaction between the blockchain and the Docker
Contract:

Code Transaction Purpose
type

103 | CreateCon- Initiates the Contract. Transaction is signed by a user with the role “con-
tractTransac- | tract_developer”
tion

104 | CallCon- Calls the Contract. Transaction is signed by the initiator of contract execution
tract Transac-
tion

105 | Ezecuted- Records the contract execution result in the contract state. |br| Transaction is
Contract- signed by the block generating node
Transaction

106 | DisableCon- | Disables calling a contract. |br| Transaction is signed by a user with the role
tractTransac- | “contract_ developer”
tion

107 | UpdateCon- Updates a contract. |br| Transaction is signed by a user with the role “con-
tractTransac- | tract_ developer” |br| Only the contract developer and 103 transaction issuer can
tion update the contract

12.3. Executing a Contract 61

Technical description of the Waves Enterprise platform, Release master

12.7 Node configuration

Downloading and execution of Docker Contracts initiated by transactions with codes 103107 are performed
on nodes with enabled option dockerengine.enable = yes (for details see module “Node configuration” >
“Docker configuration”).

12.8 REST API

The REST API methods description for the Docker contract usage is represented on the API methods
available to smart contract page.

12.9 gRPC

The gRPC methods description for the Docker contract usage is represented on the gRPC services available
to smart contract page.

12.10 Implementation examples

e Creating a simple contract

62 Chapter 12. Docker Smart Contracts

CHAPTER
THIRTEEN

ANCHORING

In a private blockchain, transactions are processed by a certain number of participants known in advance.
Thus, there is a threat of information spoofing, because the number of participants is quite small compared
to a public blockchain where anyone can join the network. When using PoS consensus algorithm in a private
blockchain, the threat of overwriting that blockchain becomes real.

The anchoring mechanism was developed to increase participant confidence in the date placed in a private
blockchain. Anchoring checks the data in a blockchain for invariability, which is achieved by publishing
data from a private blockchain to a public one, where data spoofing is unlikely due to the larger number of
participants and blocks. Published data represents a signature and a height of blocks in a private network.
This connectivity between two or more networks increases their resistance, because any attempt to forge or
alter data using a longrange attack would require attacking all connected networks.

13.1 How does anchoring work in the Waves Enterprise blockchain

| current-height = N | icurrent-height >= N + 10 |
1 height-above = 10 i H i

BLOCK #N BLOCK #(N + 10) >

TARGETNET

Data tx : TARGETNET height check
height (every 30 sec)
signature Data tx :
_ height
(A signature
targetnet-tx-id

targetnet-tx-timestamp

~ e ™ |
— oo —| BLOCK #(K - 100) }—{ BLOCK #K | BLOCK #(K+)
PAN

! current-height = K
! threshold = 100

SIDECHAIN

Fig. 1: Targetnet anchoring scheme

Anchoring process is shown below:

1. Anchoring configurations are set in the configuration file of the private blockchain node. Users should
use recommended values for configurations to avoid anchoring malfunctioning.

63

https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/

Technical description of the Waves Enterprise platform, Release master

2. Each heightrange is an anchoring transaction that contains block data at currentheight threshold
and is broadcasted to the Targetnet by the anchoring node. The Data Transaction with a keyvalue
list is used as an anchoring transaction. The node then requests height of the broadcasted transaction.

3. The node then checks the Targetnet height each 30 seconds until its height reaches the height of the
created transaction -+ heightabove.

4. When the required Targetnet height is reached and the presence of previously created data transactions
are confirmed, another anchoring data transaction is created in the private blockchain.

13.2 Transaction structure for anchoring

Targetnet transaction consists of the following fields:
* height the height of the chosen block from the private blockchain.
* signature the signature of the chosen block from the private blockchain.
The private blockchain transaction consists of the following fields:
e height the height of the chosen block from the private blockchain.
* signature the signature of the chosen block from the private blockchain.
* targetnettxid the Targetnet anchoring transaction ID.

* targetnettxtimestamp the timestamp of the Targetnet anchoring transaction.

13.3 Errors during the anchoring

Errors can occur at any step during anchoring. In case of any error in the private blockchain the Data
Transaction containing the error code and the description is always published. The error transaction includes
the following data:

e height the height of the chosen block from the private blockchain.
* signature the signature of the chosen block from the private blockchain.
e errorcode the error code.

e errormessage the error message.

64 Chapter 13. Anchoring

Technical description of the Waves Enterprise platform, Release master

Table 1: Error types

Code

Message

Possible cause

Unknown error

An unknown error occurred during the send
of the transaction to the Targetnet

1 Fail to create data transaction for Creating of the transaction to be sent to the
Targetnet Targetnet failed
2 Fail send transaction to Targetnet The transaction publication to the Targetnet
failed (it could be a JSON request error)
3 Invalid http status of response from The Targetnet has returned an HTTP code
Targetnet transaction broadcast other than 200 after the transaction publi-
cation
4 Fail to parse http body of response from The Targetnet has returned an unknown
Targetnet transaction broadcast JSON after the transaction publication
) Targetnet return transaction with The Targetnet has returned mismatched ID
id='$TargetnetTxId' but it differ from | after the transaction publication
transaction that we sent id='$sentTxId
6 Targetnet didn't respond on transaction The Targetnet has not responded to the re-
info request quest about the transaction info
7 Fail to get current height in Targetnet Failed to get current Targetnet height
8 Anchoring transaction in Targetnet The anchoring transaction has disappeared
disappeared after height rise enough from the Targetnet after its height evened
heightabove value
9 Fail to create sidechain anchoring Fail to public the anchoring transaction in
transaction the private blockchain
10 | Anchored transaction in sidechain was Anchored transaction in sidechain was

changed during Targetnet height arise
await, looks like a rollback has happened

changed during Targetnet height arise await,
looks like a rollback has happened

13.3. Errors during the anchoring

65

Technical description of the Waves Enterprise platform, Release master

66 Chapter 13. Anchoring

CHAPTER
FOURTEEN

INTEGRATION SERVICES

14.1 Authorization service

The authorization service is an external service that provides authorization for all components of the
blockchain network. This service is built using the OAuth 2.0 authorization protocol. OAuth 2.0 is an open
framework for realization of the authorization mechanism, allowing third parties limited access to protected
resources without transferring credentials to the third party. The data flow scheme between participants
sharing information using OAuth 2.0 is presented below.

Authorization request

OO B s SN .

| Authorization grant |

T TTTTTTmTSooommmmmmooomeees

3 Authorization grant i

e »i

: Access token and refresh token '

Mo oo o g

Accesstoken pememeeeeeeoeeoooooon !
—— - | . .
I- Protected resource Authorlzatlon
Client .]
Server
Access token Resource Server
__ >
Access token error

]

' Refresh token

o oo soossssooosoooooooes »

3 New access token and updated refresh token

o

Fig. 1: Basic authorization scheme based on OAuth 2.0 protocol

A JSON Web Token is used to authorize each request from the client to the server and has a limited lifetime.
The client can receive two types of tokens: access and refresh. The access token is used to authorize requests
for access to protected resources and to store additional information about the user. The refresh token is
used to obtain a new access token and to refresh the refresh token.

67

https://en.wikipedia.org/wiki/OAuth
https://jwt.io/

Technical description of the Waves Enterprise platform, Release master

CLIENT AFP
- (4) Data ~

(3) Auth key)
(1) Auth key

AUTH SERVICE

DATA SERVICE NODE

* \
L (2) Refresh tokesn and @

access token

\-4@
EXTERNAL SERVICE % \
Sub Auth key
Client 1 Ewid3twet
Client 2 36y21erqg

Client 3 Gyt78ngy6

Fig. 2: The authorization scheme of the Waves Enterprise blockchain platform

In general, the authorization scheme includes the following operations:

1.

The client (which could be any blockchain network component like the web client, data service, or an
external application) provides its authentication data to the authorization service once.

If the initial authentication procedure is successful, the authorization service stores the client’s au-
thentication data in the database, generates and sends signed access, and refresh tokens to the client.
Tokens include the lifetime info and basic customer data, such as an ID and a role. Client authentica-
tion data is stored in the authorization service configuration file. The client checks the lifetime of the
access token each time before sending a request to a thirdparty service. In case the token is expired,
the client refers to the authorization service to obtain a new access token. The refresh token is used
for requests to the authorization service.

The client sends a request to receive data from a thirdparty service using the current access token.

The external application checks the lifetime of the access token and its integrity, then compares the
previously obtained public key of the authorization service with the key contained in the signature of
the access token. If the token is successfully verified, the service provides the requested data to the
client.

14.2 Data preparation service

This service aggregates data from a blockchain into a relational database and provides an API to access that
data. Service features are designed to meet the needs of the Waves Enterprise client. Specifying parameters
are available for requests.

Deploy your client and node using the delivery set for service usage. Currently, access to the Data Preparation
Service API is limited in the public network. The data service REST API is represented in the Data service
REST API service.

68

Chapter 14. Integration services

CHAPTER

FIFTEEN

System and hardware requirements are given below.

SYSTEM REQUIREMENTS

Optional vCPU | RAM SSD JVM Operation Mode
Minimum requirements 2+ 2Gb 50Gb java Xmx2048M jar
Recommended requirements | 2+ 4+ Gb | 504+ Gb | java Xmx4096M jar

Hint: “Xmx” flag defining maximum size of memory available for JVM.

Waves Enterprise platform environment requirements

* JRE 1.8 (64bit) or OpenJDK 12.0.1
* Docker CE

¢ Dockercompose

69

http://www.oracle.com/technetwork/java/javase/downloads/2133155
https://jdk.java.net/12/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/

Technical description of the Waves Enterprise platform, Release master

70 Chapter 15. System requirements

CHAPTER
SIXTEEN

INSTALLING AND RUNNING THE PLATFORM

Currently we support Unixlike systems (for example, popular Linux distributives and MacOS). However
Waves Enterprise platform can be run under the Windows natively in experimental mode. Also you can you
Unix virtual machines and the Docker environment for the installation and running the platform under the
Windows.

Installation of the platform in the base delivery version assumes that Docker Engine and Docker Compose
are installed in the deployment environment.

Important: Make sure that you have a Docker Engine version that supports the dockercompose file format
version 3.0 or higher. You can find out more on the official Docker page.

Depending on the Waves Enterprise usage scenario, we offer several installation options:

16.1 Deploying the platform in Sandbox mode

In the trial mode you can interact with the blockchain through the client application, or REST/gRPC node
interfaces: send transactions, receive data from the blockchain, set and call smart contracts, and transfer
confidential data between nodes.

1. Create a working directory where the node runs and place there the dockercompose.yml file. This file
you can download from the official Waves Enterprise GitHub page choosing the latest release.

2. To install the platform in Sandbox mode, open the terminal and go to the directory where the file
dockercompose.yml is located, and execute the following command:

docker run --rm -ti -v $(pwd):/config-manager/output wavesenterprise/config-manager:v1.2.3

After the platform is deployed, all created passwords and addresses are stored in the credentials.txt file,
which is located in the working directory.

3. Wait for the results of the previous command and run the following command:

docker-compose up -d

Attention: On Linux, you may need to have root right to execute commands.

After launching the containers, the client application will be available at http://localhost, swagger host
of the node http://localhost/nodeO.

To stop running nodes and services, execute the following command:

71

https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/compose-file/
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

docker-compose down

The network will operate till the 30 000 blocks height without a license. It is not necessary to get license for
the sandbox mode.

The Waves Enterprise team offers a fully automated deployment mode to familiarize yourself with platform
capabilities. n this mode, a blockchain network of three nodes will be installed as well as additional com-
ponents authorization service and corporate client. All key pairs used to sign transactions and blocks will
be generated randomly. Sandbox mode allows you to test all available options and features of the platform.
The network operates up to a height of 30,000 blocks.

16.2 Connecting a single node to the Mainnet network

Full instructions for the node connection to the Mainnet are provided on the Connection of the node to the
“Waves Enterprise Mainnet” page.

1. Create a working directory and place there the dockercompose.yml file. This file you can download
from the official Waves Enterprise GitHub page choosing the latest release.

2. Put the node configuration file named private_network.conf. You should use the Mainnet configu-
ration file named mainnet.conf from the Waves Enterprise GitHub official page. Please, download it
and name it as private_network.conf.

3. Run the following command and wait execution results:

docker run --rm -ti -v $(pwd):/config-manager/output/ wavesenterprise/config-manager:v1.2.3

After the platform is deployed, all created passwords and addresses are stored in the credentials.txt file,
which is located in the working directory.

4. If you have a license file place it in the working directory/configs/nodes/node0/license directory,
which is creating in the working directory during the node deploy.

5. Run the command to start the node:

docker-compose up -d node-0

After the container is launched node REST API will be available at http://localhost:6862.

Attention: If there are errors, make sure that no other competing containers or programs are running.
To display a list of running containers and their status, type docker ps a. To stop the selected container,
enter docker stop [myContainer]. To stop all containers, you can enter docker stop $(docker ps a
q). The command docker rm [myContainer] will delete the selected one, docker rm $(docker images
a q) will delete all containers.

To stop running node execute the following command:

docker-compose down

It is enough to install one node for the Waves Enterprise Mainnet connection. Full connection procedure is
represented in the Connection of the node to the “Waves Enterprise Mainnet” page.

For a full deployment of the blockchain network from N nodes contact our technical support for getting a
consultation.

72 Chapter 16. Installing and running the platform

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/tree/master/configs
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release master

This section also provides such useful topics as:

16.3 Updating a Mainnet node

If you are working with the Mainnet we recommend updating the connected nodes on time. After the new
release issued, all clients receive a notification email about updating of a Mainnet node. If you do not receive
such an email, please send a request to our technical support.

The instructions below are intended for nodes that are deployed and run using the dockercompose.yml file.
Please, contact our technical support if you have other node versions for update.

Perform the following actions for the node update:

1. Download the latest version of the dockercompose.yml file from the official Waves Enterprise GitHub
page choosing the latest release.

2. Place the dockercompose.yml file into the working directory.

3. If your node is up than stop it by the command:

docker-compose down

4. After node was down perform the command:

docker-compose up -d node-0

16.4 First steps after the Waves Enterprise platform installation

One of the first things you can do after deploying the Waves Enterprise platform is to do the following steps:
o Attaching the node address to the client
e Sending transactions

¢ Platform options activation

16.4.1 Attaching the node address to the client

After the blockchain platform has started, follow these steps:
1. Open a browser and input http://localhost in the address bar.
2. Register in the client using any valid email address and log in to it.

3. Open the Choose address > Create address page. To open the menu after the first login, you
should enter the password that you entered during your account registration.

4. Choose the Add address from node keystore option and press “Next”.

5. Fill in the fields below. You can take the values from the file credentials.txt for the first node in
the working directory.

e Address name specify the name of the node.
* Node URL specify the http://localhost/nodeAddress value.

* Node authorization type choose the node authorization type (token or apikey).

16.3. Updating a Mainnet node 73

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

e Blockchain address specify the name of the node.
e Key pair password specify the node key pair password.

Now you can send transactions from the web client of the node which has tokens.

16.4.2 Sending transactions
Transactions can be sent from the web client or using the node’s REST API. You can perform the following
actions via the client:
¢ Operations with tokens. You need to attach the node address to the web client for the token operations.
* Operations with private groups to exchange confidential data.
¢ Operations with Docker contracts.
¢ Using the anchoring option.
* Sending data transactions.

All actions are performed in an intuitive and friendly web interface. Each action is accompanied by sending
the corresponding transaction to the blockchain.

You can use the node’s REST API to send any transaction to the blockchain. Follow these steps for sending
a transaction via the node’s REST API:

1. Open the node’s REST API using http://localhost/node-0 address in a browser.

2. Enter the apikey into the API key authorization form and press Authorize. You can copy the apikey
value from the “API key” field of the credentials.txt file.

3. Choose Transactions methods, then POST /transactions/signAndBroadcast method and press “Try it
out”.

4. Using the transactions table choose a transaction which you want to send to the blockchain.

5. Make a json request using your parameters and examples from the transactions page for the each kind
of transaction. Mainly these parameters are:

¢ sender an address of a nodesender;

¢ password a password of the keystore.dat file;
e recipient an address of a noderecipient;

e various identifiers.

6. Insert the request in the corresponding body form of the REST API, where you can also find examples
of requests for sending transactions to the blockchain.

7. Press “Execute” and watch the result in the Response body field. The successful response code is 200.

74 Chapter 16. Installing and running the platform

http://localhost/node-0

Technical description of the Waves Enterprise platform, Release master

16.4.3 Activating additional options

Two options are enabled in sandbox mode by default working with Docker contracts and mining. Autho-
rization is set by apikeyhash. The node configuration file already contains the default settings for the local
Docker host that you can develop Docker contracts immediately. Mining settings are also set by default in
accordance with the recommended values.

Additional options for the Waves Enterprise platform are enabled and configured using the appropriate
sections of the node configuration file. Go to the configuration file of the node where you want to enable
additional options or configure the ones used, and edit the sections of the selected options.

e Docker configuration

e Anchoring settings

e Mining settings

e Authorization settings
* Privacy groups settings

Node configuration files are stored in individual directories of each node, for example ../working
directory/configs/nodes/node0/node.conf. Depending on the configuration file section the recom-
mended values are either already set in the sample files, or they can be found on the section description page.
The section should be uncommented or copied from the documentation from the corresponding description

page.

If you have any questions about configuring sections of the node configuration file, contact technical support.

16.4. First steps after the Waves Enterprise platform installation 75

https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release master

76 Chapter 16. Installing and running the platform

CHAPTER
SEVENTEEN

MANUAL NODE CONFIGURATION

The node configuration includes the following steps:

17.1 Preparation of configuration files

These following configuration files are used for the configuration:
* accounts.conf — the configuration file for the accounts creation.

e apikeyhash.conf — the configuration file for the apikeyhash and privacyapikeyhash values creation
when you choose the apikey string hash authorization.

¢ node.conf — the main node configuration file defining the operational principals and an option list.

17.1.1 accounts.conf configuration file for the accounts creation

When specifying a path, use the “forward slash” / as a delimiting character for directory hierarchy levels.
During Linux using the value wallet must match the directory structure of the operating system, for
example /home/contract/we/keystore.dat. During node setting it is prohibited to use cyrillic symbols for
specifying paths to the working directory, keystore, etc.

// accounts.conf listing

accounts-generator {
waves-crypto = yes
chain-id = V
amount = 1
wallet = ${user.homel}"/node/keystore.dat"
wallet-password = "some string as password"
reload-node-wallet {
enabled = false
url = "http://localhost:6862/utils/reload-wallet"
}
}

The description of the configuration file parameters is represented below.

14)

» wavescrypto — the choice of a cryptographic algorithm (“yes” wuse cryptography Waves, “no” use

GOSTcryptography);

e chainid — an identifying byte of the network, the value will be necessary further on for entry in
parameter addressschemecharacter of the node configuration file;

¢ amount — a number of generated key pairs;

77

Technical description of the Waves Enterprise platform, Release master

e wallet — the path to the key storage directory on the node, the value will be required further on
for entry in parameter wallet > file of the node configuration file. For the Waves cryptography,
the path to file keystore.dat is specified (example, ${user.home}/nodeName/keystore.dat), for the
GOSTecryptography the path to directory (${user.home}/nodeName/keystore/);

* walletpassword — a password for access to closed node keys, the value will be necessary further for
entry into the parameter wallet > password of the node configuration file;

¢ reloadnodewallet — an option to update the node keyStore without restarting the application, by
default it is turned off (false). url parameter specifies the path to the /utils/reloadwallet method
of the REST API node.

17.1.2 apikeyhash.conf configuration file

apikeyhash.conf configuration file is intended only for the apikeyhash and privacyapikeyhash values
creation when you choose the apikey string authorization.

// api-key-hash.conf listing

apikeyhash-generator {
waves-crypto = yes
api-key = "some string for api-key"

}

Parameters description

» wavescrypto — the choice of a cryptographic algorithm (“yes” use cryptography Waves, “no”
use GOSTeryptography);

¢ apikey — the key you need to come up with. The value of this key will need to be specified
in requests to REST API node (for more details see page REST API).

17.1.3 node.conf node configuration file

If you are planning to connect the new node to the existing network, it will be more easy to request full
configuration file from your network administrator or from any of net participants. When you are creating
the configuration file from a scratch or connecting to the “Waves Enterprise Mainnet”, you can get the
example of the file from our GitHub page. You can read on the Changes in the node configuration file page
about changes in the node configuration file.

Warning: If your node’s version is 1.0 and higher you need to specify the following parameter in the
node section of the node configuration file:

"features": {
"supported": [100]
}

This option becomes active when the total quantity of blocks from featurecheckblocksperiod = 15000
and blocksforfeatureactivation = 10000 parameters is achieved (25 000 of blocks). These parameters
are stored in the blockchain section and can not be changed during Mainnet or Partnernet connection.
Nodes will not be able to connect to the network without activation of this option.

The example of the node configuration file is represented below. This file does not include such options like
anchoring, Docker smart contracts and private data access groups. Also there are apikey authorization and
Waves cryptography. You can find the fields description here.

78 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

Note: If you want to use additional options, set the enable field of the selected option to yes or true and
configure the option section according to the description of its setting.

Warning: Please, fill ONLY the fields with the /FILL/ word inside as a value.

node {
Type of cryptography
waves-crypto = yes

Node owner address
owner-address = " /FILL/ "

NTP settings
ntp.fatal-timeout = 5 minutes

Node "home" and data directories to store the state
directory = "/node"
data-directory = "/node/data"

Location and name of a license file
license.file = ${node.directory}"/license/node.license"

wallet {
Path to keystore.
file = "/node/keystore.dat"

Access password
password = " /FILL/ "
}

Blockchain settings
blockchain {
type = CUSTOM
fees.enabled = false
consensus {

type = "poa"
round-duration = "17s"
sync-duration = "3s"

ban-duration-blocks = 100
warnings-for-ban = 3
max-bans-percentage = 40
}
custom {
address-scheme-character = "E"
functionality {
feature-check-blocks-period = 1500
blocks-for-feature-activation = 1000
pre-activated-features = { 2 =0, 3=0,4=0,5=0,6=0,7=0,9=0, 10=20, 100 =0 }
}

Mainnet genesis settings
genesis {
average-block-delay: 60s

(continues on next page)

17.1. Preparation of configuration files 79

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

initial-base-target: 153722867

Filled by GenesisBlockGenerator
block-timestamp: 1573472578702

initial-balance: 1625000000000000

Filled by GenesisBlockGenerator
genesis-public-key-base-58: ""

Filled by GenesisBlockGenerator
signature: ""

transactions = [
Initial token distribution:
- recipient: target's blockchain address (baseb8 string)
- amount: amount of tokens, multiplied by 10e8 (integer)
#
Example: { recipient: "3HQSr3VFCiE6JcWwV1yX8xttYbAGKTLV3Gz", amount:
—3000000000000000 }

#
Note:
Sum of amounts must be equal to initial-balance above.
#

{ recipient: " /FILL/ ", amount: 100000000000000 },

{ recipient: " /FILL/ ", amount: 150000000000000 },

{ recipient: " /FILL/ ", amount: 50000000000000 1},

]
network-participants = [
Initial participants and role distribution
- public-key: participant's baseb8 encoded public key;
- roles: list of roles to be granted;
#
Example: {public-key: "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1iTt", roles:
— [permissioner, miner, connection_manager, contract_developer, issuer]}
#
Note:

There has to be at least one miner, one permissioner and one connection_manager fory
—the network to start correctly.
Participants are granted access to the network via GenesisRegisterNodeTransaction.
Role list could be empty, then given public-key will only be granted access to the,
—network.
#
{ public-key: " /FILL/ ", roles: [permissioner, miner, connection_manager, contract_
—developer, issuer]},
{ public-key: " /FILL/ ", roles: [miner]},
{ public-key: " /FILL/ ", roles: [1},
]
}
}
}

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value is INFO.
logging-level = DEBUG

P2P Network settings

(continues on next page)

80 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

network {
Network address
bind-address = "0.0.0.0"
Port number
port = 6864

Peers network addresses and ports
Example: known-peers ["node-1.com:6864", '"node-2.com:6864"]

known-peers = [/FILL/]

Node name to send during handshake. Comment this string out to set random node name.
Example: node-name = "your-we-node-name"
node-name = " /FILL/ "

How long the information about peer stays in database after the last communication with it
peers-data-residence-time = 2h

String with IP address and port to send as external address during handshake. Could be set,
—automatically if uPnP is enabled.

Example: declared-address = "your-node-address.com:6864"

declared-address = "0.0.0.0:6864"

Delay between attempts to connect to a peer
attempt-connection-delay = 5s

New blocks generator settings

miner {
enable = yes
Important: use quorum = O only for testing purposes, while running a single-node network;
In other cases always set quorum > O
quorum = 0
interval-after-last-block-then-generation-is-allowed = 10d
micro-block-interval = 5s
min-micro-block-age = 3s

500

200ms

max-transactions-in-micro-block
minimal-block-generation-offset

Nodes REST API settings
rest-api {
Enable/disable REST API
enable = yes

Network address to bind to
bind-address = "0.0.0.0"

Port to listen to REST API requests
port = 6862

auth {
type: "api-key"

Hash of API key string
You can obtain hashes by running ApiKeyHash generator

(continues on next page)

17.1. Preparation of configuration files 81

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

api-key-hash: " /FILL/ "

Hash of API key string for PrivacyApi routes
privacy-api-key-hash: " /FILL/ "
}
}

#Settings for Privacy Data Exchange
privacy {
storage {
enabled = false
url = "jdbc:postgresql://postgres:5432/node-17user=postgres&password=wenterprise"
driver = "org.postgresql.Driver"
profile = "slick.jdbc.PostgresProfile$"

user = "postgres@postgres&password=wenterprise"
password = "wenterprise"

H

connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000

numThreads = 20

schema = "public"

migration-dir = "db/migration"

H H H B R H

Docker smart contracts settings
docker-engine {
Docker smart contracts enabled flag
enable = yes
integration-tests-mode-enable = yes
default-registry-domain = "registry.wavesenterprise.com/waves-enterprise-public"
Basic auth credentials for docker host
#docker-auth {

username = "some user"
password = "some password"
#}

Optional connection string to docker host
docker-host = "unix:///var/run/docker.sock"

Optional string to node REST API if we use remote docker host
node-rest-api = "node-0"

gRPC server settings for docker contracts with the gRPC API
grpc-server {

gRPC server port

port = 6865

Optional node host

host = €192.168.65.2”

Execution settings

(continues on next page)

82 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

execution-limits {
Contract execution timeout
timeout = 10s
Memory limit in Megabytes
memory = 512
Memory swap value in Megabytes (see https://docs.docker.com/config/containers/resource_
—constraints/)
memory-swap = O

}

Reuse once created container on subsequent executions
reuse-containers = yes

Remove container with contract after specified duration passed
remove-container-after = 10m

Remote registries auth information
remote-registries = []

Check registry auth on node startup
check-registry-auth-on-startup = yes

Contract execution messages cache settings
contract-execution-messages-cache {
Time to expire for messages in cache
expire-after = 60m
Max number of messages in buffer. When the limit is reached, the node processes all messages,
—in batch
max-buffer-size = 10
Max time for buffer. When time is out, the node processes all messages in batch
max-buffer-time = 100ms

17.2 Changes in the node configuration file

This section provides information to help you identify changes in the configuration file depending on the
node version.

Warning: If you are updating a node version, you must also update the node configuration file. The
node will not run without updating the configuration file!

17.2. Changes in the node configuration file 83

Technical description of the Waves Enterprise platform, Release master

17.2.1 Changes in the node configuration file of the 1.2.2 version

blockchain section

The Mainnet blockchain section needs to be changed instead of full settings to this one:

blockchain.type = MAINNET

Warning: If the node, which is connected to the Mainnet, has old blockchain section settings, it will
fork!

The blockchain section corresponds to individual settings in all other cases.

17.2.2 Changes in the node configuration file of the 1.2.0 version

dockerengine section

In the section dockerengine added parameter grpcserver, responsible for setting up gRPC server to work
docker contracts with gRPC API:

grpc-server {

gRPC server port

port = 6865

Optional node host

host = ““192.168.65.2”
}

17.2.3 Changes in the node configuration file for earlier versions

Node version 1.1.2

Node version 1.1.0

17.3 Description of the node configuration file parameters and sec-
tions

Several types of values are used for parameters in the configuration file:

¢ Integer data which used to specify the exact number of elements. It can be the number of transactions,
blocks or connections.

¢ Integer data including measuring units to specify the time periods or memory volume. You typi-
cally specify the time periods in days, hours, or seconds, or the cache memory volume, for example,
leveldbcachesize = 256M or connectiontimeout = 30s.

 String which used to specify the addresses, directory paths, passwords and so on. The directory path
is specifying in the acceptable format of your current OS and the value is quoted.

e Array for the list of values like addresses or public keys. The value is specified in square brackets
separated by commas.

* Boolean no or yes which used for option activation.

84 Chapter 17. Manual node configuration

https://docs.wavesenterprise.com/en/1.1.2/how-to-setup/configuration/config-changelog.html
https://docs.wavesenterprise.com/en/1.1.0/how-to-setup/configuration/config-changelog.html

Technical description of the Waves Enterprise platform, Release master

An example of the node configuration file is represented on the configuration files prepare page. It includes
the following sections:

node general section, which includes all sections of blockchain settings.

synchronization.transactionbroadcaster synchronization parameters settings for sending unconfirmed
transactions to the blockchain.

ntp NTP server parameters settings.

blockchain common blockchain settings.

features network settings.

network mnetwork settings.

wallet settings of the private keys access.

miner mining settings.

restapi REST API settings.

privacy confidential information access groups settings.

dockerengine Docker smart contracts settings.

17.3.1 node section

Additional section parameters:

wavescrypto cryptography type in the blockchain. Possible values: yes Waves cryptography, no
GOST cryptography.

directory the main directory for the storage of the node software.
datadirectory the main directory for the storage of the node software.
logginglevel logging level. Possible values: DEBUG, INFO, WARN, ERROR, default value is INFO.

owneraddress the node address, the future owner of the configuration file.

17.3.2 synchronization.transactionbroadcaster section

maxbatchsize and maxbatchtime — technical parameters that allow you to adjust the speed of reducing
the transaction queue.

minbroadcastcount — a minimum number of connections that can be used to send each transaction
to the blockchain. The value should not exceed the number of nodes in the network minus one (the
sender should not be taken into account).

retrydelay — an interval for resending a transaction if the number of current connections was not
enough, or errors occurred during sending.

extensionbatchsize a number of blocks in the series used to request an extension from peers.
knowntxcachesize the maximum number of unconfirmed transactions in the cache.

knowntxcachetime the maximum lifetime of unconfirmed transactions in the memory cache.

17.3.

Description of the node configuration file parameters and sections 85

Technical description of the Waves Enterprise platform, Release master

17.3.3 ntp section

server an NTP server addresses list. The recommended value is [«0.pool.ntp.org», «1.pool.
ntp.org», ... «10.pool.ntp.orgy].

requesttimeout the timeout of the one request to an NTP server. The recommended value is 10
seconds.

expirationtimeout the timeout of the NTP server requests synchronization. The recommended value
is 1 minute.

fataltimeout the timeout of the connection to an NTP server. The recommended value is 1 minute.

17.3.4 blockchain section

e type the blockchain type. Possible values are MAINNET or CUSTOM. The MAINNET value allows you to

use the genesis block, consensus and Mainnet settings. When you select MAINNET in the configuration
file of the node which connects to the Mainnet network, you do not need to specify the parameters of
custom, genesis and consensus blocks.

e consensus.type consensus type. Possible values are pos or poa. You can read more here about

consensus settings.

fees unit

e enabled the option of using fees for the transaction release. Possible values are false or true.

custom unit

¢ addressschemecharacter the address feature character which is used to prevent mixing up addresses

from different networks. For the “Waves Enterprise Mainnet” V and for the “Waves Enterprise Part-
nernet” P. You can use any letter you like for the sidechain or test versions of the Waves Enterprise
blockchain platform. Nodes must have the same network byte on the same blockchain network.

e functionality main blockchain settings.

e genesis genesis block settings.

functionality unit

¢ featurecheckblocksperiod the blocks period for feature checking and activation.
¢ blocksforfeatureactivation the number of blocks required to accept feature.

* preactivatedfeatures a set of blockchain options.

genesis unit

* averageblockdelay an average delay between the blocks creation. This parameter is used only for

the PoS consensus.

initialbasetarget an initial base number for the managing the mining process. This parameter
is used for the PoS consensus . The frequency of the block creation depends on the parameter value
therefore the higher the value, the more often blocks are created. Also, the value of the miner’s
balance affects the use of this parameter in mining the larger the miner’s balance, the less the value
of initialbasetarget is used. When setting a value for this parameter, it is recommended to take
into account the combination of miners balances and the expected interval between blocks.

blocktimestamp a time and data code. The time is specified in milliseconds and the value must
consist of 13 digits. If you specify the standard value timestamp consisting of 10 digits, then you need
to add any three digits at the end.

86

Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

initialbalance an initial balance in smallest units. The parameter value affects on the mining
process with the PoS consensus. The larger the miner’s balance, the smaller the initialbasetarget
value is used for the mining node determination for the current round.

genesispublickeybase58 the public key hash of the genesis block, encrypted in Base38.
signature the genesis block signature, encrypted in Baseb8.

transactions a list of network participants with an initial balance, the creation of which will be
included in the genesis block.

networkparticipants a list of network participants with specified roles, the creation of which will be
included in the genesis block.

17.3.5 network section

bindaddress the node network address.
port the port number.

knownpeers a list of known nodes network addresses. This parameter should be filled in. The list of
addresses is passed to the user by the network administrator before the new node is connected.

declaredaddress a string with IP address and port to send as external address during the handshake.

maxsimultaneousconnections a maximum number of simultaneously supported connections. This
parameter is limited by the number of nodes in the blockchain, i.e. the maximum number of simulta-
neous connections will not exceed the number of nodes in the network.

peersrequestinterval an interval for requesting a list of peers. The value is specified in seconds or
minutes. The recommended value is 12 minutes.

attemptconnectiondelay a request interval to connect to any of the known peers.

17.3.6 wallet section

file a path to the private keys storage.

password a password for the private keys file access.

17.3.7 miner section

enable a miner option activation.

quorum required number of connections (both incoming and outgoing) to attempt block generation.
Setting this value to 0 enables offline generation. When you are specifying the value, it is necessary to
consider that the own mining node is not summed with the parameter value, i.e., if it is quorum = 2,
then you need at least 3 mining nodes in the network.

intervalafterlastblockthengenerationisallowed enable block generation only if the last block
is not older the given period of time.

microblockinterval an interval between microblocks.
minmicroblockage a minimal age of the microblock.
maxtransactionsinmicroblock a maximum number of transaction in the microblock.

minimalblockgenerationoffset a minimal time interval between blocks.

17.3.

Description of the node configuration file parameters and sections 87

Technical description of the Waves Enterprise platform, Release master

17.3.8 features section

e supported a list of supported options.

17.4 Accounts creation

The user account includes an address and a key pair which consists of public and private keys. The address
and public key are shown to the user during account creation on the command line. The private key is
written to the keystore.dat.

17.4.1 Key pairs generating

Public and private keys for initial participants are creating by the generator. You can get the last version
of the generator on our GitHub page. Before running the utility you need to specify the accounts.conf
configuration file which contains parameters for keys creating. During the creation think up and enter a
password, then save it for later configuration. The given password will be used at creation of a global
variable WE_NODE_QOWNER_PASSWORD further. Press enter key if you do not want to use this password. Use
the following command to run the generator:

java jar generatorsx.x.X.jar AccountsGeneratorApp accounts.conf

17.4.2 Global variables

We recommend to use a password for the keys pair to increase security. The Waves Enterprise platform
supports two ways of the password usage:

1. Enter the password manually at the each start of the node.
2. Create global variables in your OS.

If you are using the manual enter the password there is no need to create global variables. But when you are
planning to use containers or any similar services to run the node then create the following global variables
in the OS for your convenience:

1. WE_NODE_OWNER_PASSWORD the keys pair password specified during the key pair creation.

2. WE_NODE_OWNER_PASSWORD_EMPTY true or false, specify the true value if you do not want to
use the keys pair password, in this case it is not necessary to create the WE_NODE_OWNER_PASSWORD
variable. When you are using the password than specify the false value and write into the
WE_NODE_OWNER_PASSWORD variable the keys pair password.

17.5 Signing the genesis block

Sign the genesis block using utility generatorsx.x.x.jar. Command for signing: java jar generatorsx.x.x.
jar GenesisBlockGenerator node.conf, where Name. conf is the edited in this section node configuration
file. After signing genesispublickeybaseb8 and signature fields of the configuration file will be filled with
values of the public key and the proof of the genesis block.

Example:

genesis-public-key-base-58: "4ozcAj...penxrm"
signature: "5QNVGF...7Bj4Pc"

88 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

17.6 Consensus settings

Waves Enterprise blockchain platform supports two types of consensus PoS and PoA. The consensus settings
are located in the blockchain section.

17.6.1 PoS configuration

The PoS consensus will be used by default if you have not specified the consensus type in the consensus.
type field of the blockchain section. Here are the mining responsible parameters which are located in the
genesis unit of the blockchain section:

* averageblockdelay an average delay between the blocks creation. The default value is 60 seconds.
The value of this parameter is ignored if PoA consensus is selected.

e initialbasetarget an initial base number for the managing the mining process. The frequency of
the block creation depends on the parameter value therefore the higher the value, the more often blocks
are created. Also, the value of the miner’s balance affects the use of this parameter in mining the
larger the miner’s balance, the less the value of initialbasetarget is used.

e initialbalance an initial balance in smallest units. The greater the share of the miner’s balance
from the network initial balance, the smaller becomes the value of initialbasetarget to determine
the node miner of the current round.

We recommend to use the default parameter values specified in the configuration files examples which are
represented on the GitHub page.

17.6.2 PoA settings

Please, uncomment or add the consensus unit of the blockchain section for the PoA consensus usage:

consensus {

type = '"poa"
round-duration = "17s"
sync-duration = "3s"

ban-duration-blocks = 100
warnings-for-ban = 3
max-bans-percentage = 40

}

Represented in the consensus unit parameters are used only for the PoA consensus.

e type the consensus type. Possible values are pos or poa. If you will specify the pos value, than other
parameters will not be considered.

e roundduration a round length of the block mining in seconds.

e syncduration a block mining synchronization period in seconds. The total time of the round is the
sum of roundduration and syncduration.

¢ bandurationblocks a blocks quantity of the ban period for the mining node.
e warningsforban a number of rounds which is used for ban warnings for miner nodes.

* maxbanspercentage a percentage of mining nodes from the total number of nodes in the network that
can be placed in the ban.

17.6. Consensus settings 89

https://github.com/waves-enterprise/WE-releases/tree/master/configs

Technical description of the Waves Enterprise platform, Release master

Using the PoA consensus allows to adjust the order of blocks creation by limiting the mining function for
certain nodes. The reason is to distribute evenly the network load, if any mining nodes left the network or
became inactive. Mining node can get banned for the following reasons:

* if a node will miss its queue for mining;
« if a node provides an invalid block;
* if a node went offline.

Before getting into the blacklist the mining node receives warnings about the ban possibility during the
number of rounds that is specified in the warningsforban parameter. The mining node will be back to the
mining after the bandurationblocks parameter value will end.

17.6.3 Consensus settings in the miner section

When you are configuring consensus settings, please, consider the following settings of the miner section:
e microblockinterval an interval between microblocks. The value is specified in seconds.

e minmicroblockage a minimal age of the microblock. The value is specified in seconds and should not
be more than the microblockinterval parameter value.

* minimalblockgenerationoffset a minimal time interval between blocks. The value is specified in
milliseconds.

The values of the microblock creation parameters should not conflict with the parameters values of the
averageblockdelay for PoS and roundduration for PoA. The number of microblocks in a block is not
limited, but depends on the transactions size in the microblock.

17.7 Docker configuration

Installation and execution of docker smart contracts configures in the dockerengine of the node configuration

file.

Docker smart contracts settings
docker-engine {
Docker smart contracts enabled flag
enable = no
Bastc auth credentials for docker host
docker-auth {
username = '"some user'
password = '"some password'
}
Optional connection string to docker host
docker-host = "uniz:///var/run/docker.sock"
Optional string to node REST API if we use remote docker host
node-rest-api = "hitps://clinton.wavesenterprise.com/node-0"
Use node docker host
use-node-docker-host = no
Ezecution settings
execution-limits {
gRPC contract startup timeout
startup-timeout = 10s
Contract ezecution timeout
timeout = 60s

(continues on next page)

90 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

Memory limit wn Megabytes

memory = 512

Memory swap wvalue in Megabytes (see https://docs.docker.com/config/containers/resource_

—constraints/)

memory-swap = O
}
Reuse once created container on subsequent ezecutions
reuse-containers = yes
Remove container with contract after specified duration passed
remove-container-after = 10m
Remote registries auth information

remote-registries = [
{
domain = "myregistry.com:5000"
username = '"user'
password = '"password"
}
]

Check registry auth on node startup
check-registry-auth-on-startup = yes
#Authorization timeout for the contract
contract-auth-expires-in = 1im
Contract ewecution messages cache settings
contract-execution-messages-cache {
Time to exzpire for messages in cache
expire-after = 60m
Maz number of messages in buffer. When the limit is reached, the node processes all messages,
—1n batch
max-buffer-size = 10
Maz time for buffer. When time 1s out, the node processes all messages in batch
max-buffer-time = 100ms
}
remove-container-on-fail = yes
grpc-server {
host = "192.168.65.2"
port = 6865
akka-http-settings {
akka {
http.server.idle-timeout = infinite
http.client.idle-timeout = infinite
http.host-connection-pool.idle-timeout = infinite
http.host-connection-pool.client.idle-timeout = infinite

Parameters:
* enable the Docker smart contracts option activation (yes/no).
* dockerauth the authorization parameters with login/password section.

* dockerhost a path to the local Docker host. For UNIX systems the default value is dockerhost =
<unix:///var/run/docker.socks.

e noderestapi the REST API address if you are using the remote Docker host.

* usenodedockerhost using the Docker host on the node (yes/no). If you enable this parameter, you

17.7. Docker configuration 91

Technical description of the Waves Enterprise platform, Release master

should also use the parameter for the local Docker host dockerhost = «unix:///var/run/docker.
socky.

e executionlimits the Docker contracts run limits section:

— startuptimeout a timeout for creating a gRPC contract container and registering it in the node
(in seconds);

timeout a timeout for the smart contract execution;

memory a memory limit for a smart contract in megabytes;
— memoryswap a memory swap value in megabytes.
¢ reusecontainers reuse option for the existing Docker contract.
* removecontainerafter container remove option after contract execution (yes/no).
* remoteregistries a list of remote registry repositories with credentials.

e checkregistryauthonstartup the option which checks the registry repositories authorization during
the node start (yes/no).

e contractauthexpiresin a timeout for the Docker contract authorization token.

* contractexecutionmessagescache the contract execution messages cache settings section. When
the limit is reached, the node processes all messages in batch:

— expireafter a time period to expire for messages in cache;
— maxbuffersize a maximum number of messages in buffer;
— maxbuffertime a maximum time period in milliseconds of messages in buffer.

* removecontaineronfail — deleting the container if an error occurred when starting it. This parameter
can be useful during searching for errors when working with contracts (yes/no).

gRPC server
Section of gRPC server settings for working with smart contracts with the gRPC API.
* host — a node network address (optional parameter).
e port — a gRPC server port.
» akkahttpsettings a section of settings for the Akka HTTP framework used for the gRPC server.

17.8 Authorization type configuration for the REST API access

The Waves Enterprise blockchain platform supports the following two types of authorization for the node’s
REST API access:

* apikey string hash authorization;
e authorization via the authorization service.

The authorization type is specified in the REST API configuration section of the node configuration file.
apikey string hash authorization type is a simple method of the access management to a node with a low
level security. If the apikey hash is leaking out to the attacker, he is getting the full access to the node.
When you utilize the separate authorization service with access tokens, you increase the security level of
your blockchain network to the high level. You can read more information about the authorization service
in the Authorization service section.

92 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

17.8.1 restapi section of the node configuration file

The restapi section allows to bound the node network address to the REST API interface, to choose and
configure the authorization type, also to specify the limits for some REST API methods.

Node's REST API settings
rest-api {

Enable/disable REST API
enable = yes

Network address to bind to
bind-address = "127.0.0.1"

Port to listen to REST API requests
port = 6862

Authorization strategy should be either 'oauth2' or 'api-key', default is 'api-key'
auth {
type = "api-key"

Hash of API key string
api-key-hash = "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tC1lzjjLXqsu"

Hash of API key string for Privacydp: routes
privacy-api-key-hash = "H6nsiifwVYKYEx6YzYD7woP1XCn72RVvx6tClzjjLXqgsu"

For OAuthZ2:
auth {
type: "oauthl2'

® R R Y

H®

OAuth2 service public key to wverify auth tokens
public-key: "AuthorizationServicePublicKeyInBase6/"

=

}

Enable/disable CORS support
cors = yes

Enable/disable X-API-Key from different host
api-key-different-host = mno

Mazxz number of transactions

returned by /transactions/address/{address}/limit/{limit}
transactions-by-address-1limit = 10000
distribution-address-limit = 1000

}

Parameters description
* enable REST API option activation.
* bindaddress a network address to bind the REST API interface.
e port a port to listen to REST API requests.
* cors enable/disable CORS support.

* transactionsbyaddresslimit a maximum number of transactions returned by /transactions/
address/{address}/limit/{limit} method.

e distributionaddresslimit GET /assets/{assetId}/distribution/{height}/limit/{limit}.

17.8. Authorization type configuration for the REST API access 93

Technical description of the Waves Enterprise platform, Release master

auth section for the apikey type
¢ authtype the authorization type, specify the apikey value the string hash authorization.
* apikeyhash a hash of API key string.
* privacyapikeyhash a hash of API key string for privacy methods.
auth section for the oauth?2 type
e authtype the authorization type, specify the oauth2 value the token authorization.

e publickey a public key of the authorization service.

17.8.2 When you use the key string hash for the authorization

Specify the apikey value for the authtype parameter. Create the apikeyhash for the REST API access by
using the generatorsx.x.x.jar utility. To run the utility, you need to specify the apikeyhash. conf file as one
of the parameters, which defines the parameters of creating the apikeyhash. Use the following command to
run the generator:

java -jar generators-x.x.x.jar ApiKeyHash api-key-hash.conf

Specify the value obtained as a result of the utility execution in the parameter apikeyhash in the node
configuration file.

Create the privacyapikeyhash by the same way as the apikeyhash to get the privacy methods access.
Specify the value obtained as a result of the utility execution in the parameter privacyapikeyhash in the
node configuration file.

17.8.3 When you use the token authorization

Specify the oauth2 value for the authtype parameter, write the public key of the authorization service into
the publickey parameter.

17.9 Anchoring settings

If you are using the anchoring option, please, configure the anchoring unit. targetnet is the blockchain
network which will be used by the sidechain node to send anchoring transactions.

anchoring {
enable = yes
height-range = 30
height-above = 8
threshold = 20

targetnet-authorization {
type = "oauth2" # "api-key" or "oauth2"
authorization-token = ""

authorization-service-url = "https://client.wavesenterprise.com/authServiceAddress/v1l/
—auth/token"
token-update-interval = "60s"

api-key-hash = ""
privacy-api-key-hash = ""
}

(continues on next page)

94 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

targetnet-scheme-byte = "V"

targetnet-node-address = "https://client.wavesenterprise.com:6862/NodeAddress"
targetnet-node-recipient-address = ""

targetnet-private-key-password = ""

wallet {

file = "node-1_mainnet-wallet.dat"
password = "small"

}

targetnet-fee = 10000000
sidechain-fee = 5000000
}

Anchoring parameters

* heightrange the number of blocks which is used as an interval between anchoring transactions to the
Targetnet.

* heightabove the number of blocks in the Targetnet after which the private blockchain node creates the
confirming datatransaction containing data from the first datatransaction. We recommend specifying
this value that does not exceed the Targetnet maximum rollback depth maxrollback.

e threshold the number of blocks subtracted from the current height of the private blockchain. The
anchoring transaction sent to the Targetnet includes the data from the block at height currentheight
threshold. When the value is 0, the current block is anchored. We recommend specifying this value
close to the private blockchain maximum rollback depth maxrollback.

The distance between anchoring transactions may change depending on the mining settings in the Targetnet
network. The specified value heightrange sets the approximate interval between anchoring transactions.
The real time of falling anchoring transactions into the mined block of the Targetnet may exceed the time
spent on the mining of the heightrange number of blocks.

Anchoring authorization parameters

e type authorization type for anchoring. apikey apikeyhash authorization , authservice authoriza-
tion by a special security token.

For authorization by apikeyhash necessary a current keyvalue as apikey. For authorization by a special
security token you must use a type = "authservice" and comment configfile structure values:

e authorizationtoken a constant authorization token.

* authorizationserviceurl URL address authorization service.

* tokenupdateinterval data interval for a token refresh.
Targetnet access parameters

A separate keystore.dat file with a key pair for the Targetnet access is generated for the node that will
send the anchoring transaction to the Targetnet.

* targetnetschemebyte the Targetnet network byte.

e targetnetnodeaddress the full node network address including the port number in the Targetnet
for the sending of anchoring transactions. The address should be specified along with the connection
type (http/https), the port number and the NodeAddress parameter as in the example http://node.
weservices.com:6862/NodeAddress.

17.9. Anchoring settings 95

Technical description of the Waves Enterprise platform, Release master

* targetnetnoderecipientaddress the node address in the Targetnet for the recording of anchoring
transactions signed with a key pair of this address.

* targetnetprivatekeypassword the node private key password for the anchoring transactions signing.

The network address and the port for the Targetnet/Partnernet networks anchoring can be obtained from
Waves Enterprise technical support staff. If multiple private blockchains with mutual anchoring are used,
you should use the appropriate private network settings.

Parameters of key pair file for the Targetnet anchoring transactions signing, wallet unit

e file a file name and a path to the key pair file for the Targetnet anchoring transactions signing. The
file is located on the private network node.

¢ password a password of the key pair file.
Fee parameters
* targetnetfee the fee for the anchoring transaction issue in the Targetnet.

e sidechainfee the fee for the anchoring transaction issue in the private blockchain.

17.10 Privacy data access groups configuration

When using the privacy methods activate the option and fill in the storage block with database settings
for storing the private data:

privacy {
storage {
enabled = true
url = "jdbc:postgresql://"${POSTGRES_ADDRESS}":"${POSTGRES_PORT}"/"${POSTGRES_DB}
driver = "org.postgresql.Driver"
profile = "slick.jdbc.PostgresProfile$"
user = ${POSTGRES_USER}
password = ${POSTGRES_PASSWORD}
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000
numThreads = 20

schema = "public"
migration-dir = "db/migration"
}

Data request timeout.
request-timeout = 2 minute

First retry delay. With each attempt, the delay increases by 4/3.
init-retry-delay = 30 seconds

Max parallel crawling tasks count.
crawling-parallelism = 100

The number of attempts that the crawler will take before the data is marked as lost.
max-attempt-count = 20

Delay between attempts to process the queue of lost items.
lost-data-processing-delay = 10 minutes

(continues on next page)

96 Chapter 17. Manual node configuration

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

Policy data responses cache

cache {

Max count of elements

max-size = 100

Time to expire for element if it hasn't got access during this time
expire-after = 10m

}

Parameters description

enabled the option activation;

url the PostgreSQL DB address;

driver the JDBC driver name;

profile a profile name for the JDBC access;

user a user name for the DB access;

password a password for the DB access;

connectionPool a connection pool name, default is HikariCP;
connectionTimeout a connection timeout;
connectionTestQuery a query name for the connection test;
queueSize a requests queue size;

numThreads a number of parallel connections;

schema an interaction scheme;

migrationdir a path to the data migration directory.

requesttimeout a waiting timeout for all responses from peers to a data request.

initretrydelay a delay from the receiving of the data hash to the start of its search among peers.

crawlingparallelism a limitation of the maximum number of simultaneous processes in the syn-

chronizer.

maxattemptcount the maximum number of rounds for requesting data from peers after which data is

considered “lost”.
lostdataprocessingdelay an interval of rounds of requests for “lost” data.

cache responses cache settings.

DB PostgreSQL is using as a database for the confidential data storage. The database should be installed
on the same machine with the node and should have an DB access account. You can use the PostgreSQL
tutorial for download and install the database according with your operation system type.

During the installation the system will offer to create an access account. These credentials must be entered
into the appropriate user/password parameters.

Specify the URL for the PostgreSQL connection into the url parameter. URL consists of:
* POSTGRES ADDRESS a PostgreSQL host address;
* POSTGRES PORT a PostgreSQL host port number;
* POSTGRES DB a PostgreSQL name.

17.10. Privacy data access groups configuration 97

https://www.postgresql.org/
http://www.postgresqltutorial.com/install-postgresql/

Technical description of the Waves Enterprise platform, Release master

You can specify the PostgreSQL credentials with the URL in the same string. The
example is represented bellow, where user=user_privacy_node_O@wedev is a login,
password=7nZL7Jr41q0WUHz5qKdypA&sslmode=require a password with require option during the
authorization.

Example

privacy.storage.url = "jdbc:postgresql://vostk-dev.postgres.database.azure.com:5432/
—privacy_node_O?user=user_privacy_node_0Qwe-dev&password=7nZL7Jr41q0WUHz5qKdypA&
—sslmode=require"

You can download the latest distributives and configuration files examples from the GitHub Waves Enterprise
release page.

98 Chapter 17. Manual node configuration

https://github.com/waves-enterprise/WE-releases

CHAPTER
EIGHTEEN

USING A LICENSE

The Waves Enterprise blockchain platform is commercial and is designed primarily for use in large companies
and the public sector. To use the technology, you must purchase a license for the platform. Quick and easy
access to the list of licenses is provided by the licensing service.

License Management |
Client -)

User v v

License Management

Auth service .
Service

~ A

License Management |)
Administration Tool |

Support Team member
Fig. 1: Waves Enterprise blockchain platform license acquisition scheme

You do not need a product license to learn about the platform’s features. The platform retains full function-
ality until the blockchain height of 30,000 blocks is reached, which at block round time of 30 seconds is 10
days of operation without restrictions.

Waves Enterprise blockchain platform users are offered the following license types:

¢ Commercial license allows you to use the platform to implement commercial projects. It is issued
for the period determined by the contractual relations with the partner.

¢ Noncommercial license allows using the platform for implementing noncommercial projects. It is
issued for the period determined by the contractual relations with the partner.

¢ Trial license allows you to familiarize yourself with the platform and the technology. It is issued for
the duration of the pilot project by contract, or for the time of product development and debugging.

¢ The Mainnet network license is a special license that allows you to run the node in the Mainnet
network. To work in the network you should have at least 50,000 WEST on your balance or in
leasing. If the specified balance is reduced, restrictions on block formation and access to the node API
are introduced. Sending an application for registration of new members is performed in the Service
Desk system.

99

https://client.wavesenterprise.com/admin-license/auth
https://support.wavesenterprise.com/servicedesk
https://support.wavesenterprise.com/servicedesk

Technical description of the Waves Enterprise platform, Release master

Attention: One license applies to one node!

Based on their validity periods, license types include:
¢ Indefinite.
* Twoyear.
¢ Oneyear.
* Threemonth (trial license).
* Rental for the period of use of the technology.

Upon license expiration, the node for which the license was purchased will no longer be able to generate
blocks or write new transactions to the network.

18.1 Obtaining a license

To formalize a license request, follow these steps:
1. Go to license management service and create a new account, if it has not been created before.

2. Send your license request to Waves Enterprise support. A support representative will contact you to
agree on the details, create a company profile, and link the created account to it.

3. After activating the license, specify the address of your node (node_owner address).
4. Send the specified license file as JSON in the request POST /licenses/upload to the node.

5. To view the license status, use the request GET /licenses/status.

100 Chapter 18. Using a license

https://wavesenterprise.com/license
https://support.wavesenterprise.com/servicedesk

CHAPTER
NINETEEN

MAINNET AND PARTNERNET CONNECTION

19.1 Working inside the “Waves Enterprise Mainnet”

19.1.1 Connection of the node to the “Waves Enterprise Mainnet”

Warning: The account balance must be at least 50,000 WEST if you want to connect your node to
the network “Waves Enterprise Mainnet” and do mining! Information about the generating balance in the
Mainnet network is updated once every 1000 blocks, mining will only be available after the generating
balance is updated.

Follow these steps for the node connection to the “Waves Enterprise Mainnet”:

1.
2.

NS ot ke

®

10.

11.

Go to the Waves Enterprise website and create an account following the webinterface hints.

Transfer tokens to the “Waves Enterprise Mainnet” network.

. Transfer for leasing any number of tokens to the 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu address

and keep the transaction ID. Further you can withdraw tokens from the lease, because this operation
is necessary to verify your ownership of this address and the balance.

Deploy a single node.
Go to the Waves Enterprise support website and perform the registration.
Select the type of request “Participant connection” for legal or natural person.

Register on the resource by filling in all the required fields of the form. If you want to mine, check the
box Please grant mining rights.

Enter the transaction ID of the token lease transfer in the Proof of WEST token ownership field.

Please, wait for the connection application consideration. You can start working in the “Waves Enter-
prise Mainnet” after successful registration.

Run the node after obtaining permission and getting a license to connect to the network “Waves
Enterprise Mainnet”, public key of which you specified in the application.

Transfer or lease tokens to the address of the connected node for the mining and work in the network.

101

https://client.wavesenterprise.com/
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release master

102 Chapter 19. Mainnet and Partnernet connection

Technical description of the Waves Enterprise platform, Release master

19.1.2 Fees in the “Waves Enterprise Mainnet”

Transaction Fee Description
type
1 Genesis no Initial binding of the balance to the addresses of nodes created at the start
transaction fee of the blockchain
3 Issue Trans- | 1 Tokens issue
action WEST
4 Transfer 0.1 Tokens transfer
Transaction WEST
5 Reissue 1 Tokens reissue
Transaction WEST
6 Burn Trans- | 1 Tokens burn
action WEST
8 Lease Trans- | 0.1 Tokens lease
action WEST
9 Lease Cancel | 0.1 Cancel of the tokens lease
Transaction WEST
10 Create Alias | 1 Alias creation
Transaction WEST
11 | MassTransfer | 0.1 Mass tokens transfer. Minimum commission is specified
Transaction WEST
12 Data Trans- | 0.1 Transaction with the data in the keyvalue pairs format. The fee is always
action WEST charged to the transaction author. Minimum commission is specified, the
fee depends on data volume
13 SetScript 0.5 Transaction which is binding a script with a RIDE contract to an account
Transaction WEST
14 | Sponsorship 1 Transaction which is signing a sponsorship asset
WEST
15 SetAs- 1 Transaction which is binding a script with a RIDE contract to an asset
setScript WEST
101 | Genesis no Assignment of the first network administrator for further distribution of
Permission fee rights
Transaction
102 | Permission 0.05 | Issuance/withdrawal of rights from the account
Transaction WEST
103 | Create- 1 Dockercontract creation
Contract WEST
Transaction
104 | CallContract | 0.1 Dockercontract call
Transaction WEST
105 | Ezecuted- no Dockercontract execution
Contract fee
Transaction
106 | Disable- 0.05 | Dockercontract disable
Contract WEST
Transaction
107 | Update- 1 Dockercontract update
Contract WEST
Transaction
110 | GenesisReg- no Node registration in the genesis block with the blockchain start
isterNode fee
Transaction
111 | RegisterNode | 0.05 | A new node registration
19.1 ﬁ’&ﬁf&g%@.dp tNC Ny, ' innet” 10
112 | CreatePolicy 1 Access group creation
Transaction WEST
113 | UpdatePolicy | 0.5 Update the access group
T o oo s s WEQTh

Technical description of the Waves Enterprise platform, Release master

19.1.3 Parameters for calculating certain commissions

Commissions are dynamically calculated for the following transactions:
e 11 MassTransfer Transaction
e 12 Data Transaction
The following formula is using to calculate fee for the 11 MassTransfer Transaction:

(Nt +1)

Fee = Feepgse + 5

* FeeAdd

where:
e Feepase a basic fee which is equal 0.1WEST.
e N 7 a number of transfers.
¢ Feepaqqa an additional fee which is equal 0.1WEST.
The following formula is using to calculate fee for the 12 Data Transaction:

(Size — 1)

F =F ase
€e = FeBase + 507

* FeeAdd

where:
e Feepase a basic fee which is equal 0.1WEST.
e Size a transaction body size in bytes.

¢ Feepaqq an additional fee which is equal 0.05WEST for each 1 kB of the transaction size.

19.2 Working inside the “Waves Enterprise Partnernet”

19.2.1 Connection of the node to the “ Waves Enterprise Partnernet”

Follow these steps for the node connection to the “Waves Enterprise Partnernet”:
1. Deploy a single node as it is for the “Waves Enterprise Mainnet” connection.
2. Go to the Waves Enterprise support website and perform the registration.
3. Select the type of request “Participant connection” for legal or natural person.
4

. Register on the resource by filling in all the required fields of the form. If you want to mine, check the
box Please grant mining rights.

5. Please, wait for the connection application consideration. You can start working in the “Waves Enter-
prise Partnernet” after successful registration and getting a license.

6. Run the node after getting the application approve.

104 Chapter 19. Mainnet and Partnernet connection

https://support.wavesenterprise.com/servicedesk

CHAPTER
TWENTY

REST API

The Waves Enterprise blockchain platform provides an opportunity to interact with blockchain both in terms
of receiving data (transactions, blocks, balances, etc.) and in terms of writing information to blockchain
(signing and sending transactions) via RESTful API of the node. REST API allows users to interact remotely
with the node using requests and responses in JSON format. HTTPS protocol is using to work with API
and as an interface it is utilized the Swagger framework.

20.1 Node REST API methods

Full description of the REST API methods you can find on the API Docs page. Almost all REST API
methods are closed by the authorization. If a method is opened, you’ll see the badge .

20.1.1 Activation

Hint: The rules for generating requests to the node are given in module How to use REST API.

GET /activation/status

Returns the activation status of the new functionality in the node(s).

Method Response:

{"height": 47041,
"votingInterval": 1,
"votingThreshold": 1,
"nextCheck": 47041,
"features": [
{"id": 1,
"description": "Minimum Generating Balance of 1000 WEST",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
{”id": 2’
"description": "NG Protocol",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",

(continues on next page)

105

https://docs-out.vostokservices.com/en/1.2.1/api.html

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"activationHeight": 0 },
{"id": 3,
"description": "Mass Transfer Transaction",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
{"id": 4,
"description": "Smart Accounts",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
{"id": 5,
"description": "Data Transaction",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
"id": 6,
"description": "Burn Any Tokens",
"blockchainStatus": "ACTIVATED",
"nodeStatus'": "IMPLEMENTED",
"activationHeight": 0 },
nid": 7,
"description": "Fee Sponsorship",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
{"id": 8,
"description": "Fair PoS",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 },
"id": 9,
"description": "Smart Assets",
"blockchainStatus": "VOTING",
"nodeStatus": "IMPLEMENTED",
"supportingBlocks": 0 },
"id": 10,
"description": "Smart Account Trading",
"blockchainStatus": "ACTIVATED",
"nodeStatus": "IMPLEMENTED",
"activationHeight": 0 }]

~

~

~

~

20.1.2 Addresses

Hint: The rules for generating queries to the node are given in module How to use REST API.

106

Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /addresses/info/{address}

Getting a public key by the address. The method returns only those public keys that are stored in the
keystore.dat file of the node.

Method Response:

{
"address": "3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF",
"publicKey": "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1Tt"
}

GET /addresses

Get all addresses of participants whose key pairs are stored in the node keystore.

Method Response:

[
"3NBVqYXrapgJP9atQccdBPAg JPwHDKkh6AS" ,
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

GET /addresses/seq/{from}/{to}

Gets all addresses of participants whose key pairs are stored in node keystore in the specified range.

Method Response:

L
"3NBVqYXrapgJP9atQccdBPAg JPwHDKkh6AS",
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

GET /addresses/balance/{address}

Get the balance for the address {address}.
Method Response:

{
"address": "3N3keodUiS8WLEwOW4BKDNxgNdUpwSnpb3K",
"confirmations": O,
"balance": 100945889661986

}

20.1. Node REST API methods 107

Technical description of the Waves Enterprise platform, Release master

POST /addresses/balance/details

Get balances for the address list.

Method Query:

{
"addresses": [
"3N65yEf310jBZUvpu4lCo7n8D73 juFtheUJ", "3N11u447zghwjOMemYkrkt9vOxDaMwTYOnG"
]

GET /addresses/effectivebalance /{address} /{confirmations}

Get the balance for the address {address} after a number of confirmations > = value {confirmations}.
Returns the total balance of the participant, including assets transferred to the participant for the leasing.

Method Response:

{
"address": "3N65yEf310jBZUvpu4LCo7n8D73juFthelUJ",
"confirmations": 1,
"balance": 0

}

GET /addresses/effectiveBalance/{address}

Get the effective balance of the specified address.
Method Response

{
"address": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"confirmations": O,
"balance": 1240001592820000

}

GET /addresses/balance/details /{address}

Returns detailed information about balance of address {address}.

Method Query:

{
"addresses": [
"3N65yEf310jBZUvpud4lCo7n8D73 juFtheUJ"
]
}

Method Response:

L
{
"address": "3N65yEf310jBZUvpu4LCo7n8D73juFtheUJ",

(continues on next page)

108 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"regular": O,
"generating": O,
"available": 0,
"effective": 0

Response Options
* Regular total balance of participant, including assets transferred for leasing
 Available total balance of participant, except for assets transferred for leasing

* Effective — total balance of participant, including assets transferred to participant for leasing (Available
-+ assets transferred to you for leasing)

¢ Generating minimum balance of participant, including assets transferred to participant for leasing, for
the last 1000 blocks (used for mining)

GET /addresses/scriptinfo/{address}

Get information about the script installed on the address {address}.

Method Response:

{

"address": "3N3keodUiS8WLEwOW4BKDNxgNdUpwSnpb3K",

"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£34S0ocMRkRKFgzTtXXnnv7upRHXJzZrLS
oy

"scriptText": "ScriptV1(BLOCK(LET (x,CONST_LONG(1)) ,FUNCTION_CALL (FunctionHeader (==,List (LONG,,
—LONG)) ,List (FUNCTION_CALL (FunctionHeader (+,List (LONG, LONG)),List(REF(x,LONG), CONST_LONG(1)),
—LONG) , CONST_LONG(2)),BOOLEAN) ,BOOLEAN))",

"complexity": 11,

"extraFee": 10001
}

Ro8tUW6yMtEiZ

Response Options
e “address” address in Base58 format
e “script” Base64 representation of the script
* “scriptText” source code of the script
 “complexity” complexity of the script

» “extraFee” fee for outgoing transactions set by the script

20.1. Node REST API methods 109

Technical description of the Waves Enterprise platform, Release master

POST /addresses/sign/{address}

Returns the message encoded in BASE58 format signed by address private key {address}, stored in node
keystore. The message is first signed and then converted.

Method Query:

{
"message": "mytext"

}

Method Response:

{

"message": "wWshKhJj",

"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":
—"62PFG855ThsEHUZ4N8VE8kMyHCKOGWnvtTZ3hq6 JHYv12BhPleR jegA6nSa3DAoTTMammhamadvizDUYZAZtKY9S"

POST /addresses/verify /{address}

Validates signature of a message executed by address {address}, including the one created through POST
method/addresses/sign/{address}.

Method Query:

{

"message": "wWshKhJj",

"publickey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":
«—"BkwwE9sDZzssoNaoBSJnb8RLqfYGt INDGbTWWXUeX8b9amRR IN3hr5fhs9vHBq6VES5ngdhqbCUoDEsoQNauRRts"

Method Response:

{
"valid": true

}

POST /addresses/signtext/{address}

Returns a message signed by address private key {address} stored in the node keystore.

Method Query:

{
"message": "mytext"

}

Method Response:

{

"message': "message",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

(continues on next page)

110 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"signature":
—"BbkVZfWfFmoYn38cJfNhkdct5WCyksMgQ7k jwHK7Z jnrzs 9OQYRWo6HuUJoGc8WRMozdYcAVIvo jInPpArgPvu2uc3u"
}

POST /addresses/verifytext/{address}

Validates signature of a message executed by address {address}, including the one created through the
POSTmethod /addresses/signtext/{address}.

Method Query:

{
"message'": '"message",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

—"bkVZfWfFmoYn38cJfNhkdct5WCyksMgQ7k jwHK7Z jnrzs9QYRWo6HuJoGc8WRMozdYcAVJvo jJnPpArqgPvu2uc3u”

Method Response:

{

"valid": true

}

GET /addresses/validate/{addressOrAlias}

Validates correctness of specified address or its alias {addressOrAlias} in a network blockchain of operating
node.

Method Response:

{
addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc",
valid: true

POST /addresses/validateMany

Checks the validity of addresses or aliases.

Method Query:

{
addressesOrAliases: [
"3HSVTt jim3FmV21HWQ1LurMhFz jut7AalAc",
"alias:T:asdfghjk",
"alias:T:1nvA1iDAl11ass99911% &$$$ "
1
}

Method Response:

20.1. Node REST API methods 111

Technical description of the Waves Enterprise platform, Release master

{
validations: [

{
addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc",
valid: true

},

{
addressOrAlias: "alias:T:asdfghjk",
valid: true

},

{
addressOrAlias: "alias:T:1nvAl1iDAl11ass99911%°&$$$ ",
valid: false,

reason: "GenericError(Alias should contain only following characters: -.0123456789@_

—abcdefghi jklmnopqrstuvwxyz) "
}
]
}

GET /addresses/publicKey/{publicKey}

Returns participant address based on its public key.

Method Response:

{
"address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq"
}

GET /addresses/data/{address}

Returns all data recorded to address account {address}.

Method Response:

L
{
"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4GgilN36aWnY",
"type": "integer",
"value": 1500000
}
]

GET /addresses/data/{address}/{key}

Returns data recorded to address account {address} by key {key}.
Method Response:

{
"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4Ggi1N36aWnY",
"type": "integer",
"value": 1500000
}
112 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.1.3 Alias

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /alias/byalias/{alias}

Gets participant address by its alias {alias}.
Method Response:

{

"address": "address:3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"

GET /alias/byaddress/{address}

Gets alias {alias} of participant by its address {address}.
Method Response:

L
"alias:HUMANREADABLE1",
"alias:HUMANREADABLE2",
"alias:HUMANREADABLE3",
]

20.1.4 Anchoring

GET /anchoring/config

Hint: Rules of the creating requests to a node, see How to use REST API section.

Get the anchoring section of the node configuration file.

Method answer

{

"enabled": true,

"currentChainOwnerAddress": "3FWwx401177A40eHAEWS5EQ6Bkn4Lv48quYz",
"mainnetNodeAddress": "https://clinton-pool.wavesenterpriseservices.com:443",
"mainnetSchemeByte": "L",

"mainnetRecipientAddress": "3JzVWCSV6v4ucSxtGSjZsvdiCT1FAzwpqrP",
"mainnetFee": 8000000,

"currentChainFee'": 666666,

(continues on next page)

20.1. Node REST API methods

113

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"heightRange": 5,
"heightAbove": 3,
"threshold": 10
}

20.1.5 Assets

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /assets/balance/{address}

Returns balance of all address {address} assets.

Method Response:

{
"address": "3Mv61lqe6egMSjRDZiiuvJDnf3Q1qWOtTZDB",
"balances'": [
{
"assetId": "Ax9T4grFxx5m3KPUEK jMdnQkCKtBktf694wU2wJYvQUD",
"balance'": 4879179221,
"quantity": 48791792210,
"reissuable'": true,
"minSponsoredAssetFee" : 100,
"sponsorBalance" : 1233221,
"issueTransaction" : {
"type" : 3,

"assetId": "49KfHPJcKvSAvNKwM7CTof jKHzL87SaSx8eyADBjvbWi",
"balance'": 10,
"quantity": 10000000000,
"reissuable'": false,
"issueTransaction" : {
"type " .3 s

Method Parameters:
e “Address” participant address
¢ “balances” object with participant balance
* “assetld” asset ID

e “balance” asset balance

114 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

¢ “quantity” number of issued assets

* “reissuable” indicator whether asset can be reissued or not

¢ “igsueTransaction” asset creation transaction

* “minSponsoredAssetFee” minimum value of fee for sponsorship transactions

* “sponsorBalance” assets allocated for payment of sponsored asset transactions

GET /assets/balance/{address}/{assetld}

Returns address {address} balance by asset {assetId}.
Method Response:

{
"address": "3Mv6lqe6egMSjRDZiiuvJDnf3Q1qWOtTZDB",
"assetId": "Ax9T4grFxx5m3KPUEKjMdnQkCKtBktf694wU2wJYvQUD",
"balance": 4879179221

}

GET /assets/details/{assetld}

Returns description of asset {assetId}.

Method Response:

{
"assetId" : "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ",
"issueHeight" : 140194,
"issueTimestamp" : 1504015013373,
"issuer" : "3NCBMxgdghg4tUhEEffSXy11L6hUi6fcBpd",
"name" : '"name",
"description" : "Sponsored asset",
"decimals" : 1,
"reissuable" : true,
"quantity" : 1221905614,
"script" : null,
"scriptText" : null,
"complexity" : O,
"extraFee": O,
"minSponsoredAssetFee" : 100000 // null assume no sponsorship, number - amount of assets for,

—minimal fee

}

GET /assets/{assetld}/distribution

Returns distribution of asset {assetId}.

Method Response:

{
"3P8GxcTEyZtG6LEfnn9knpO9wu8uLKrAFHCb" : 1,
"3P2voHxcJg79csj4YspNqlakepX8TSmGhTE" : 1200
}

20.1. Node REST API methods 115

Technical description of the Waves Enterprise platform, Release master

POST /assets/balance

Returns the assets balance for one or few addresses.

Method Response

{
"3GLWx8yUFcNSL3DER8kZyEATpyAyNiEYsKG": [],
"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn": []
}

20.1.6 Blocks

Hint: The rules for generating queries to the node are given in module How to use REST API.

The last block may contain a different number of transactions during the period of its creation. It depends
on the fact that while the block is not accepted by the nodesminers, the number of transactions in it can
constantly change. Therefore, when using methods that provide information about the last block, it should
be kept in mind that the number of transactions in the last block may change.

GET /blocks/height

Returns block number of current blockchain state.

Method Response:

{
"height": 7788
}

GET /blocks/height/{signature}

Returns height (number) of block by its signature.

GET /blocks/first

Returns contents of first block (genesis block).

GET /blocks/last

Returns contents of last block.

Method Response:

{

"version": 2,

"timestamp": 1479313809528,

"reference":
—"4MLXQDbARiJDEAoy5vZ8QYh1yNnDhdGhGWkDKna8J6QXb7agVpFEi16hHBGUxxnq8x4myG4w66DR4Ze8FM5dh8Gi",

(continues on next page)

116 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"nxtconsensus": {
"basetarget": 464,
"generationsignature": "7WUV2TufaRAyjiCPFdnAWbn2Q7Jk7nBmWbnnDXKDEeJv"

}’
"transactions": [
{
"type": 2,
IlidH :

—"64hxaxZvB9iD1cfRf1j8KPTXs4qE7SHaDWTZKoUvgfVZotaJUtSGabBxi86ufAfp5ifoNAGknBqSOCpxBKGORNVR" ,
"fee": 100000,
"timestamp": 1479313757194,
"signature":
—"64hxaxZvB9iD1cfRf1j8KPTXs4qE7SHaDWTZKoUvgfVZotaJUtSGabBxi86ufAfp5ifoNAGknBqS9CpxBKGORNVR",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGA8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3N8UPtqiy322NVr1fLP7SaK1AaCU7oPaVuy",
"amount'": 1000000000
}
1,
"generator": "3N5GRqzDBhjVXnCn44baHcz2GoZybqLxtTh",
"signature":
—"4ZhZdLAvaGneLU4K4b2eTgRQvbB jEZrtwolqAhM9ar3A3weGEutbf NKM4WI9JZnV8BXenx8 JRGVNwpfxf3prGaxd",
"fee": 100000,
"blocksize": 369

GET /blocks/at/{height}

Returns contents of block at height {height}.

GET /blocks/seq/{from}/{to}

Returns contents of blocks ranging from {from} to {to}.

GET /blocks/seqext/{from}/{to}

Returns contents of blocks with additional transactions info ranging from {from} to {to}.

GET /blocks/signature/{signature}

Returns contents of block by its signature {signature}.

20.1. Node REST API methods 117

Technical description of the Waves Enterprise platform, Release master

GET /blocks/address/{address}/{from}/{to}

Returns all blocks generated (mined) by address {address}.

GET /blocks/child/{signature}

Returns block inherited from block with signature {signature}.

GET /blocks/headers/at/{height}

Returns block header at height {height}.

GET /blocks/headers/seq/{from}/{to}

Returns block headers ranging from {from} to {to}.

GET /blocks/headers/last

Returns header of last block in the blockchain.

20.1.7 Consensus

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /consensus/algo

Returns type of consensus algorithm used on the network.

Method Response:

{
"consensusAlgo": "Fair Proof-of-Stake (FairPoS)"

}

GET /consensus/settings

Returns consensus settings specified in node configuration file.

Method Response:

{
"consensusAlgo": "Proof-of-Authority (PoA)",
"roundDuration": "25 seconds",
"syncDuration": "5 seconds",
"banDurationBlocks": 50,
"warningsForBan": 3

}

118 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /consensus/minersAtHeight/{height}

Returns miner queue at height {height}.
Method Response:

{

"miners": [
"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",
"3N2EsS6hJPYgRn7WF JHL JNnrsm92sUKcXkd",
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF"
"3NBbipRY(mZFudFCoVJXg9JMkkyZ4DEAZNS"

1,

"height": 1

}

GET /consensus/miners/{timestamp}

Returns miner queue at timestamp {timestamp}.

Method Response:

{

"miners": [
"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",
"3N2EsS6hJPYgRn7WF JHL JNnrsm92sUKcXkd",
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF" ,
"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEJZNS"

1,

"timestamp": 1547804621000

GET /consensus/bannedMiners/{height}

Returns a list of blocked miners at height {height}.

Method Response:

{

"bannedMiners": [],
"height": 1000

20.1. Node REST API methods

119

Technical description of the Waves Enterprise platform, Release master

GET /consensus/basetarget/{blockld}

Returns value of ‘base complexity’ (basetarget) of creating block {blockId} .

GET /consensus/basetarget

Returns value of ‘base complexity’ (basetarget) of creating last block.

GET /consensus/generatingbalance/{address}

Returns generating balance available for minning node {address} minimum participant balance including
assets transferred to participant for leasing, for last 1000 blocks.

GET /consensus/generationsignature/{blockld}

Returns value of ‘generation signature’ of generating block {blockId}.

GET /consensus/generationsignature

Returns value of ‘generation signature’ of last block.

20.1.8 Contracts

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /contracts

Returns the contracts info.

Method Response

[
{
"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCql1CCh8i",
"image": "registry.wvservices.com/wv-sc/mayl4_1:latest",
"imageHash": "ff9b8af966b4c84e66d3847ab514e65f55b2c1£63afcd8b708b9948a814cb8957",
"version": 1,
"active": false

120 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /contracts

Returns some parameters for the one or more contract IDs specified in the query.

Method Response

{
"8vBJhy4eS80EwWCHC3yS3M6nZd5CLBa6XNt4Nk3yEEEXG" : [
{
"type": "string",
"value": "Only description",
"key": "Description"
},
{
"type": "integer",
"value": -9223372036854776000,
llkeyll : "key_may”
}
]
}

GET /contracts/info/{contractld}

Returns current information about specified contract version, contract location, and the image hash.

Method Response

[
{
"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCqlCCh8i",
"image": "registry.wvservices.com/wv-sc/mayl4_1:latest",
"imageHash": "ff9b8af966b4c84e66d3847a514e65£55b2c1£63afcd8b708b9948a814cb8957",
"version": 1,
"active": false

}

GET /contracts/status/{id}

Returns the contract execution transaction status.

Method Response

[
{
"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"senderPublicKey": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"txId": "4q5Q8vLeGBpcdQofZikyrr jHUS4pB1AB4qNEn2yHRKWU",
"status": "Success",
"code": null,

"message': "Smart contract transaction successfully mined",
"timestamp": 1558961372834,
"signature":

—"4gXy7qtzkaHHH6NkksnZ5pnv8 juF65Mv jQ9JgVztpgNwLNwuyyr27Db3gCh5YyADqZeBH72EyAkBouUoKvwJ3RQJ"

}

(continues on next page)

20.1. Node REST API methods 121

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"txId": "4q5Q8vLeGBpcdQofZikyrr jHUS4pB1AB4gqNEn2yHRKWU",
"status": "Success",
"code": null,
"message': "Smart contract transaction successfully mined",
"timestamp": 1558961376012,
"signature":
—"3VhqcO9DvNhMvFFtWnBuV4XwQ62ZcTAVLNZYmeGc7mGzMcnGZ3RLshDs393fnQulWTh8CmL58Ynvn jyULEEiSyorV"
}
]

GET /contracts/{contractld}

Returns result of smart contract execution by its ID (contract creation transaction ID).

Request parameters

"contractId" - Contract ID

"offset" - Offset number

"matches" - String for matches search
"limit" - Limit number

Method Response:

L
{
"key": "avg",
"type": "string",
"value": "3897.80146957"
},
{
"key": "buy_price",
"type": "string",
"value": "3842"
}
]

GET /contracts/executedtxfor/{id}

Returns result of smart contract execution by ID of contract execution transaction.

Method Response:

{
"type": 105,
"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee'": 500000,
"timestamp": 1549365523980,
"proofs": [
"4BoG6wQnYyZWyUKzAwh5n1184tsEWUqUTWmXMExvvCU95xgk4UFB8iCnHJ4GhvIm86REB69hKM7s2WLAwWTSXquAs"
1,

(continues on next page)

122 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1,

Ngx! {
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [

—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],

"version": 1,

"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619
},
"results": []

GET /contracts/{contractld}/{key}

Returns smart contract execution value by its ID (contract creation transaction ID) and key {key}.

Method Response:

{
"key": "updated",
"type": "integer",
"value": 1545835909
}

20.1.9 Crypto

Hint: The rules for generating queries to the node are given in module How to use REST API.

POST /crypto/encryptSeparate

Encrypts the text separately for the each recipient with the unique key.
Method Query

{
"sender": "3MCUfX4P4U56hoQwSqXnLJenB6cDkxBjisL",
"password": "some string as a password",
"encryptionText": "some text to encrypt",
"recipientsPublicKeys": [
—"BbR6boLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",
"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdquNtqzuDS8Zmn48w3S"]
}

20.1. Node REST API methods 123

Technical description of the Waves Enterprise platform, Release master

Method Response

{
"encryptedText": "IZ5Kk5YNspMWl/jmlTizVxD6Nik=",
"publicKey":
—"BbR6boLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",
"wrappedKey" :

—"uWVoxJAzruwTDDSbphDS31T jSQX6CSWXivp3x34uE3XtnMqqK9swoaZ3LyAgFDR706CfkgzFkWmTen4qAZewPfBbwR"
1,
{

"encryptedText": "F9uO10RGvSEDe6dWmlpzJQ+3xqE=",

"publicKey":
—"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVgkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S",
"wrappedKey" :
—"LdzdoKadUzBTMwczGYgulAM4YrbbLrOUh1MvQ3MPcLZUhCD9herz4dvim6ssaVHPiBNUGgqKnLZ6Si4Cc64UvhXBbG"
}

POST /crypto/encryptCommon

Encrypts the data with a single CEK key for all recipients and the CEK wraps into a unique KEK for the
each recipient.

Method Query

{
"sender": "3MCUfX4P4U56hoQwSqXnLJenB6cDkxBjisL",
"password": "some string as a password",
"encryptionText": "some text to encrypt",
"recipientsPublicKeys": [
—"BbR65oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",
"9LopMj2GqWxBYgnZ2gxalNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdquNtqzuDS8Zmn48w3S"]
}

Method Response

{
"encryptedText": "NpCCig2i3jzoOxBnfqjfedbti8Y=",
"recipientToWrappedStructure": {

"6R650Lxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFc jRHJ1VVHLp63LkrkxsNod64VipffeiZz5i2qXc" :
"M8pAe8HNKiWLE1HsC1ML5t8b7giWxiHfvagh7Y3F7rZL8ql1tqMCIMYJo4qz4b3xjcuuliVs7tY3k70Sigb3Aw1Dkkw" ,
"9LopMj2GqWxBYgnZ2gxaNxwXqxXHuWd6ZAdVgkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S" :
"Dogn6gPvBBeSu2vdwgFYMbDHM4knEGMbqPn8Np76mNRRoZXLDioofyVbSSaTTEr4cviwzEwVMugiy2wuzFWk3zCiT3"
X
}

POST /crypto/decrypt

Decrypts the data. The decryption is available only if the message recipient’s key is in the node’s keystore.

Method Query

{
"recipient": "3M5F8B1qxSY1W6kA2ZnQiDB4JTGz9W1jvQy",
"password": "some string as a password",
"encryptedText": "oiKFJijfid8HkjsjdhKHhud9874",

(continues on next page)

124 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"wrappedKey": "M5F8B1qxSY1W6kA2ZnQiDB4JTGzA2ZnQiDB4JTGz9W1jvQy"
"senderPublicKey": "M5F8B1qxSY1W6kA2ZnQiDB4JTGzA2ZnQiDB4JTGz9W1jvQy",
}

Method Response

{
"decryptedText": "some string for encryption",

}

20.1.10 Debug

Hint: The rules for generating node queries are given in module How to use REST API.

GET /debug/blocks/{howMany}

Gets sizes and full hashes for last blocks. The blocks number is specified during the request.

Method Response

L
{
"226": "7CkZxrAjU8bnat8CjVAPagobNYazyviHASubmp7YYqGe"
1,
{
"226": "GS3y9fUHAKCamqb52TPsjizDVir8J7iGoe8P2XZLasxsC"
1,
{
"226": "B9LmhGGDAvcfUAQJEWvyVrT9sazZE6gibpAN13xUN7KV"
1,
{
"226": "Byb9MHtwYf3MFyi2tbhQ3GTdCct5phKq9REkbjQTzdne"
1,
{
"226": "HSxSHbiV4tZc8RalN6jxdhgtkAhjxuLn76ulxerMRUefA"
}
]

GET /debug/info

Shows all information for the debugging and testing.

Method Response

{
"stateHeight": 74015,
"extensionLoaderState'": '"State(Idle)",
"historyReplierCacheSizes": {
"blocks": 13,

(continues on next page)

20.1. Node REST API methods 125

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"microBlocks": 2

},

"microBlockSynchronizerCacheSizes": {
"microBlockOwners": O,
"nextInventories": O,
"awaiting": O,
"successfullyReceived": 0

},

"scoreObserverStats": {
"localScore": 42142328633037120000,
"scoresCacheSize": 4

},

"minerState": "mining microblocks"

POST /debug/rollback

Removes all blocks after given height.

Sample response

{
"rollbackTo": 100,
"returnTransactionsToUtx": true

Method Response

{

"BlockId":
—"4U4Hmg4mDYrvxaz3JVzL1Z1piPDZ1PJ61vd1PeS7TESZFkHsUCUqeeAZoszTVr43Z4NV44dqbLvOWdrLytDL6gHuv"
}

POST /debug/validate

Validates a transaction and measures time spent in milliseconds.

Query Parameters

"id" - Transaction ID

Method Response

{

""'valid": false,
"validationTime": 14444

126 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /debug/minerinfo

Shows all miner information for debugging.

Method Response

L
{
"address": "3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF",
"miningBalance": 1248959867200000,
"timestamp": 1585923248329
}

GET /debug/historylnfo

Shows all last block history for debugging.
Method Response

{

"lastBlockIds": [

"37P4fvexYHPUzNPRRqYbRYxGz7x3r5 jFznck7amaS6aWnHL50QqrqCzsSh1HvYKnd2ZhU6n6sWYPb3hxsY8FBfmZ",
"5RRulqtesz4KvrVp4fxzQHebq2fRanNsg3HJKwD4uChqySm7vFHCAHKU61iZYXIDVmf SxiE9Maeb6sM2JireaWLbx",
"3L027Jf jekcZnJsYEe7st7evDZ6TgmCUBtiZrSxUCobKL48DZQ4dXMfp8IWY jEykH15HEHSXzgMSTQigESvECN2r",
"r4RuxEXAqgfDMKVXRWmZcGMaWKDsAvVxfXDtw8d6bamLR61J1gaocesargYSoZQqRbDrBcefLprk7D78fA728719",

"3F4Up46crZbpKVWUeieL6GeSrVMYm7JJ7aX6aHD6B8wedFggSKv8d3H39(y9MLEauFBU9mM3qZV1U8emhmnqwmLbg" ,
"QSuBkEtVe9nik5T55330geCbgKy7ihBkS2pwYayK23m4ANier83Thpa jEzvpbyPy9pPWZc55t8mYUKxXDscKuRC",

"4udpNnz3e1M1GbVZxtwfg8gpF6EbiKxRCRBwi6iRMyLsvhb5J2EcOWqyu2sq2KYL75012yiP8TszworeUfuxNmIbg",
"5BZYZ4RZAJ jM5KKCaHpyUsXnb4uunnMbkcfTo jc5QzQo3vyP2w3YD4qrALizkkQQR4ziS77BoAGb56QCecUtHFFN",
"5JwfLaF10GxRXVCADbFuKpxrvxgLCGU3kCFwxUhLL8G3xV211MrKBuAuQ4MaC5uN574uVOUSM6HfHTMERnfr5jGJ",
"4bysMhz14E1rC7dLYScfVVqPmHqzi8 jdhcnkruJmCNL86TwV2cbF7GOYVchvTrvOqbQZ7 JQownV59gRRcD26zm16"

1,

"microBlockIds": []

}

GET /debug/configlnfo

Shows currently running node config.

Method Response

{
"node": {
"anchoring": {
"enable": '"no"
}’

"blockchain": {
"consensus": {

Iltypell . IIPOSH

} t

"custom": {
"address-scheme-character": "K",

"functionality": {
"blocks-for-feature-activation": 10,
"feature-check-blocks-period": 30,

(continues on next page)

20.1. Node REST API methods 127

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"pre-activated-features": {
"wallet": {
"file": "wallet.dat",
"password": ""
1,
"waves-crypto": "yes"
}
}

DELETE /debug/rollbackto/{signature}

Rollbacks the state to the block with a given signature.

Query Parameters

"signature" - Block signature

Method Response

{

"BlockId":
—"4U4Hmg4mDYrvxaz3JVzL1Z1piPDZ1PJ61vd1PeS7TESZFkHsUCUqeeAZoszTVr43Z4NV44dgbLvOWdrLytDL6gHuv"
}

GET /debug/portfolios/{address}

Gets current portfolio considering pessimistic transactions in the UTX pool.

Query Parameters

"address" - Node address

Method Response

{
"balance": 104665861710336,
"lease": {
"in": O,
"out": 0
}’
"assets": {}
}

128 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /debug/print

Prints a string at DEBUG level, strips to 250 chars.

Sample response

{

"message": "string"

GET /debug/state

Gets current state of the node.

Method Response

{
"3JD3qDmgL1icDaxa3n24YSjxr9Jze5MBVVs": 4899000000,
"3JPWx147Xf3f9fE89YtfvRhtKWBHy9rWnMK" : 17528100000,
"3JU5tCoswHH7FKPBUowySWBnQwpbZiYyNhB": 300021381800000,
"3JCJChsQ2CGyHcO9Ymu8cnsES6Yzj jJELu3a": 75000362600000,
"3JEW9XnPC8w3qQ4AJyVTDBmsVUp32QKoCGD" : 5000000000,
"3JSaKNX94deXJkywQuwTFgbigTxJa36TDVg3": 6847000000,
"3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF": 1248938560600000,
"3JV6V4JEVc3a9uSqRmdUMvMKMfZa16HbGmg" : 4770000000,
"3JZtYeGEZHjb2zQ6EcSE0524PdafPn6viikc" : 900000000,
"3JMMFLX9d1rmXaBK9AF7WuwzudvRkkoVQBC": 4670000000,
"3JJDpPDqSPokKpb jEmzwMzmaPUyopLZjWiC": 800000000,
"3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t": 994280900000

}

GET /debug/stateWE /{height}

Gets state at specified height.

Query Parameters

"height" - Block height

Method Response

{
"3JPWx147Xf3f9fE89YtfvRhtKWBHy9rWnMK" : 17528100000,
"3JU5tCoswHH7FKPBUowySWBnQwpbZiYyNhB": 300020907600000,
"3JCJChsQ2CGyHcOYmu8cnsES6YzjjJELu3a": 75000350600000,
"3J5aKNX94deXJkywQuTFgbigTxJa36TDVg3": 6847000000,
"3JFR1pmL6biTzr90a63gJcjZ81h429KD3aF": 1248960085800000,
"3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t": 994280900000

}

20.1. Node REST API methods

129

Technical description of the Waves Enterprise platform, Release master

20.1.11 Leasing

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /leasing/active/{address}

Returns list of lease creation transactions, in which {address} was involved as sender or recipient.

Method Response:

[
{

"type": 8,
"id": "2jWhz6uGYsgvfoMzNRBEEGdi9eafyCA2zLFfkM4NP6TT7",
"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",
"senderPublicKey": "DWONKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",
"fee": 100000,
"timestamp": 1544390280347,
"signature":

—"25kpwh7nY jRUt£bAbWYRYMDPCUCoyMoUuWTJ6vZQArXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD" ,
"version": 1,
"amount": 31377465877,
"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqalLtZcyzH",
"height": 1298747

"type": 8,
"id": "2jWhz6uGYsgvfoMzNRBEEGdi9eafyCA2zLFfkM4NP6TT",
"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",
"senderPublicKey": "DWONKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",
"fee": 100000,
"timestamp": 1544390280347,
"signature":

—"25kpwh7nY jRUt£bAbWYRYMDPCUCoyMoUuWTJ6vZQrXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD" ,
"version": 1,
"amount": 31377465877,
"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqaLtZcyzH",
"height": 1298747

}

130 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.1.12 Licenses

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /licenses

Returns a list of all downloaded licenses.

Method Response:

[
{
"license": {
"version": 1,
"id": "3GLWx8yUFcNSL3DER8kZyEATpyAyNiEYsKG",
"license_type": null,
"issued_at": "2020-02-27T16:11:14.784Z",
"node_owner_address": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"valid_from": "2020-02-20",
"valid_to": "2020-02-27",
"features": [
"all_inclusive"
]
1,
"signer_public_key": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCqlCCh8i",
"signature":
—"ff9b8af966b4c84e66d3847ab14e65f55b2c1f63afcd8b708b9948a814cb8957mLT1ippM7tmfSC8u",
"signer_id": "ff9b8af966b4c84e66d3847a514e65£55b2c1£63afcd8b708b9948a814cb8957"
1,

{
"license": {
"version": 1,
"id": "49KfHPJcKvSAvNKwM7CTof jKHzL87SaSx8eyADBjvbWi",
"license_type": null,
"issued_at": "2020-02-27T16:12:34.327Z2",
"node_owner_address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq",
"valid_from": "2020-02-29",
"valid_to": null,
"features": [
"all_inclusive"
]
1,
"signer_public_key": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

—"bkwwE9sDZzssoNaoBSJnb8RLqfYGt INDGbTWWXUeX8b9amRR IN3hr5fhs9vHBq6VES5ngdhgbCUoDEsoQNauRRts",
"signer_id": "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ"
}

20.1. Node REST API methods

131

Technical description of the Waves Enterprise platform, Release master

GET /licenses/status

Returns the node license activation status

Method Response:

{
"status" : "TRIAL",
"description" : "Trial period is active. Blocks before expiration: '{num}'"

}

POST /licenses/upload

Adds a new license in JSON format in the node

Method request

{
"license": {
"version": 1,
"id": "49KfHPJcKvSAvNKwM7CTof jKHzL87SaSx8eyADBjvbWi",
"license_type": null,
"issued_at": "2020-02-27T16:12:34.327Z2",
"node_owner_address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq",
"valid_from": "2020-02-29",
"valid_to": null,
"features": [
"all_inclusive"
]
1,
"signer_public_key": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

" bkwwE9sDZzssoNaoBSJnb8RLqfYGt 1NDGbTWWXUeX8b9amRRJN3hr5fhs9vHBq6VES5ng4dhqbCUoDEso(NauRRts",
"signer_id": "8tdULCMr598Kn2dUaKwHkvsNyFbDB1Uj5NxvVRTQRnMQ"
}

Method Response:

{

"message'": "License upload successfully"
}
20.1.13 Node

Hint: The rules for generating queries to the node are given in module How to use REST API.

132 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /node/config

Returns main node configuration parameters.

Method Response:

{

"version": "0.6.6",

"waves-crypto": false,

"chainId": "D",

"consensus'": "P0OS",

"minimumFee": {
"i": 0,
"3": 100000000,
"4": 100000,
"5": 100000000,
"g": 100000,
"7'": 300000,
"g": 100000,
"g": 100000,
"10": 100000,
"11": 100000,
"12": 100000,
"13": 1000000,
"14": 100000000,
"15": 100000000,
"102": 0

}

}

POST /node/stop

Query stops node.

GET /node/status

Returns main node configuration parameters.

Method Response:

{
"blockchainHeight": 47041,
"stateHeight": 47041,
"updatedTimestamp": 1544709501138,
"updatedDate": "2018-12-13T13:58:21.138Z"
}

20.1. Node REST API methods 133

Technical description of the Waves Enterprise platform, Release master

GET /node/version

Returns version of application.

Method Response:

{
"version": "Waves Enterprise v0.9.0"

}

GET /node/owner

Returns the address and public key of the node owner.

Method Response:

{
"address": "3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF",
"publicKey": "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZWiTt"
}

20.1.14 Peers

Hint: The rules for generating queries to the node are given in module How to use REST API.

POST /peers/connect

Request to connect a new host to the node.

Method Query:

{
"host":"127.0.0.1",
"port":"9084"

Method Response:

{
"hostname": "localhost",
"status": "Trying to connect"
}
134 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

GET /peers/connected

Returns a list of connected nodes.

Method Response:

{
"peers": [
{
"address": "52.51.92.182/52.51.92.182:6863",
"declaredAddress": "N/A",
"peerName": "zx 182",
"peerNonce": 183759
1,
{
"address": "ec2-52-28-66-217.eu-central-1.compute.amazonaws.com/52.28.66.217:6863",
"declaredAddress": "N/A",
"peerName": "zx 217",
"peerNonce": 1021800
}
]
}

GET /peers/all

Returns a list of all known nodes.

Method Response:

{
"peers": [
{
"address": "/13.80.103.153:6864",
"lastSeen": 1544704874714
}
]
}

GET /peers/suspended

Returns a list of suspended nodes.

Method Response:

[
{
"hostname": "/13.80.103.153",
"timestamp": 1544704754619
1

20.1. Node REST API methods 135

Technical description of the Waves Enterprise platform, Release master

POST /peers/identity

Gets the public key of the peer which is used by the node for the connection and the confidential data
transfer.

Method Query:

{

"address": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6AS",

"signature":
—"6RwWMUQcwrxtKDgM4ANes9AmuSEJgyfFOBo6nTpXyD89ZKMAcpCMI7igbWf2MmLXLdgNxdsUc68fd5TyRBEB6ngf "
}

Parameters:

¢ address the blockchain address corresponding to the “privacy.owneraddress” parameter in the node
configuration file;

* signature electronic signature of the “address” field value.

Method Response:

{
"publicKey": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGA8"
}

Parameters:

¢ publicKey the peer public key associated with “privacy.owneraddress” parameter in the configuration
file. This parameter does not appear if the mode of the handshake checking turned off.

GET /peers/hostname/{address}

Gets the hostname and IP Address of the node by its address in the Waves Enterprise net.
Method Response:

{

"hostname": "nodel.we.io",
"ip": "10.0.0.1"

GET /peers/allowedNodes

Gets the actual list of allowed participants at the request moment.

Method Response:

{
"allowedNodes": [
{
"address": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"publicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxuaJyrgsLk5VY"
1,
{

"address": "3JLp8wt7rEUdn4CcabHp9jZ7w8T5XDAKicd",
"publicKey": "J3ffCciVu3sustgb5vxmEHczACMR89Vty5ZBLbPnoxyg"

(continues on next page)

136 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

}

},
{
"address": "3JRY1lcp7atRMBd8QQoswRpH7DLawM5Pnk3L",
"publicKey": "5vn4UcB9En1XgY6w2N6e9W7bqFshG4SL2RLFqQEWEbWxG"
}

"timestamp": 1558697649489

20.1.15 Permissions

Hint: The rules for generating queries to the node are given in module How to use REST API.

GET /permissions/{address}

Returns roles (permissions) assigned to specified address {address} which are valid at the moment.

Method Response:

{

"roles": [
{
"role": "miner"
1,
{
"role": "permissioner"
}
1,

"timestamp": 1544703449430

GET /permissions/{address}/at/{timestamp}

Returns roles (permissions) assigned to specified address {address} which are valid at the moment {times-
tamp}.

Method Response:

{

"roles": [
{
"role": "miner"
1,
{
"role": "permissioner"
}
1,

"timestamp": 1544703449430

20.1. Node REST API methods 137

Technical description of the Waves Enterprise platform, Release master

POST /permissions/addresses

Returns roles (permissions) assigned to specified address list which are valid at the moment.

Method Query:

{
"addresses": [
"3N2cQF{fUDzG2iujBrFTnD2TAsCNohDxYu8w", "3Mxb5sDg4NXeflBRzJRAofa3orYFxLanxmd7"
]1
"timestamp'": 1544703449430
}

Method Response:

{
"addressToRoles": [
{
"address": "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"roles": [
{
"role": "miner"
},
{
"role": "permissioner"
}
]
},
{
"address": "3MxbsDq4NXef1BRzJRAofa3orYFxLanxmd7",
"roles": [
{
"role": "miner"
}
1
}
1,
"timestamp": 1544703449430
}
20.1.16 PKI

Warning: The PKI methods can be used only with GOST cryptography.

Digital signature formats listed in the table below is used in PKI. The digital signature number in the table
is consistent for the sigtype field value.

Table 1: Digital signature formats

| Digital signature format
1 | CAdJESBES
2
3

CAdJESX Long Type 1
CAdEST

138 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /pki/sign

Hint: The rules for generating queries to the node are given in module How to use REST API.

This method creates a detached digital signature. inputData is data for generating a digital signature as an
array of bytes in the Base64 coding, keystoreAlias is a name of the key container of the digital signature
private key. Also you need to specify a password in the password string.

Request example

{

"inputData" : "SGVsbG8gd29ybGQh",
"keystoreAlias" : "keyl",
"password" : "password",

"sigType" : "CAdES_X_Long_Type_1",
}

Answer example

{

"signature" :
—"c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmt qaGdmamtkZmdoZmdkc2doZmQ jsnd jfvnksdnjfn="
}

GET /pki/keystoreAliases

This method returns all the keystore aliases based on the GOST cryptography.

Answer example

{

[

"3Mq9crNkTF£8oRPyisgtf4T jBvZxo4BL2ax",

"e19a135e-11£7-4£0c-9109-a3d1c09812e3"
]
}

POST /pki/verify

This method checks the detached digital signature for the sent data. The extendedKeyUsageList is optional
and may contain an array of object identifiers OID. It is useful for the determination of the scope of the
certificate. Any node with query parameters can check the certificate.

Request example

{
"inputData" : "SGVsbG8gd29ybGQh",
"signature" : "c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmtqaGdmamtkZmdoZmdkc2doZmQ=",
"sigType" : "CAdES_X_Long_Type_1",

"extendedKeyUsageList": [
"1.2.643.7.1.1.1.1",
"1.2.643.2.2.35.2"

]

}

20.1. Node REST API methods 139

Technical description of the Waves Enterprise platform, Release master

Answer example

{
"sigStatus" : "true"

}

Working with POST /pki/verify method

Using API Post /pki/verify method you can verify qualified digital signature. You need to install the root
certificate on the node for proper using of API Post /pki/verify. The CA root certificate uniquely identifies
the certification authority and is the basis in the chain of trust.

How to install a root certificate on a node

The root certificate is installing into the following Java directory:

-keystore /Library/Java/JavaVirtualMachines/jdk1.8.0_191.jdk/Contents/Home/jre/1lib/
—»security/cacerts

The default password for the Java cacerts certificate store is changeit. You can change the password if you
wish. Install certificates using the following command:

sudo keytool -import -alias testAliasCA_cryptopro -keystore /Library/Java/
—»JavaVirtualMachines/jdk1.8.0_191. jdk/Contents/Home/jre/lib/security/cacerts -file ~/
—Downloads/cert.cer

20.1.17 Privacy

Hint: Rules of the creating requests to a node, see How to use REST API section.

POST /privacy/sendData

Writing the confidential data to the node store.
Method request:

{
"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHdKUgEytUUz",
"password": "apgJP9atQccdBPA",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
|ltypell: |lfi1e|l’

"info': {
"filename":"Service contract #100/5.doc",
"size": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "some comments"
},

(continues on next page)

140 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"data":
—"TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGI5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlzIHNpbmd1bGFyIHBhc3Npb

"
—

"hash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta"

R4gZnJvbSBvdGhl

Parameters:

* sender blockchain address for data broadcast (corresponds the “privacy.owneraddress” parameter value
in the node configuration file);

e password access password to the private key of the node keystore;
¢ policyld the group ID managing data forwarding;

e type the type of the data;

¢ info the information about the data;

¢ data binary data;

e hash data hash.

Method answer:

{
"senderPublicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxualyrgsLksVy",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHdKUgEytUUz",
"dataHash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta",
"proofs": [
"2jM4tw4uDmspuXUBt6492T7 opuZskYhFGWIgkbq532BvLYRF6RIn3hVGNLUMLK8JSM61GkVgYvYJg9UscAayEYfc"
1,
"fee": 110000000,
"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQ5aa",
"type": 114,
"timestamp": 1571043910570

GET /privacy/{policyid} /recipients

Getting all addresses of participants, signed to the access group {policyid}.

Method answer:

L

"3NBVqYXrapgJP9atQccdBPAg JPwHDKkh6AS",
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

20.1. Node REST API methods 141

Technical description of the Waves Enterprise platform, Release master

GET /privacy/{policyid}/getHashes

Getting all addresses of participants, signed to the access group {policyid}.

Method answer:

[
"3GCFaCWtvLDnCOyX29YftMbn75gwfdwGsBn",
"3GGxcmNyq8ZAHzK7 or14Ma84khwWW8peBohJ",
"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn",
"3GKpShRQRTddF1yYhQ58ZnKMTnp2xdEzKqW"

GET /privacy/{policyid}/getHashes

Getting the array of identified hashes which are written with association to the {policyid}.

Method answer:

[
"FdfdNBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",
"eedfdNBVqYXrapgJP9atQccdBPAgJPwHDKKhGA"
]

GET /privacy/{policyld}/getData/{policyltemHash}

Getting the confidential data package by its identified hash.

Method answer:

c29tZV9iYXN1INjRfZW5 jb2R1ZF9zdHJpbmc=

GET /privacy/{policyld}/getinfo/{policyltemHash}

Getting the metadata for the confidential data package by the identified hash.

Method answer:

{
"sender": "3HYW75PpAeVukmbYo9P(3mzSHAKUgEytUUz",
"policy": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
"type": "file",
"info": {
"filename": "Contract ¥k100/5.doc",
"size": 2048,
"timestamp": 1000000000,
"author": "AIvanovQorg.com",
"comment": "Comment"
1,

"hash": "e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7£d6de15623f1"
}

142 Chapter 20.

REST API

Technical description of the Waves Enterprise platform, Release master

POST /privacy/forceSync

Forced getting the confidential data package by the identified hash.

Method answer:

{

"result": "success" // or "error"
"message": "Address '3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8' not in policy 'policyName'"
}

POST /privacy/getlnfos

Getting the meta information array about private data according with the provided group ID and data hash.

Request example:

{ "policiesDataHashes":

L
{
"policyId": "somepolicyId_1",
"datahashes": ["datahash_1","datahash_2"]
},
{
"policyId": "somepolicyId_2",
"datahashes": ["datahash_3",'"datahash_4"]
}
]
}

Method answer:

{
"policiesDataInfo': [
{
"policyId":"somepolicyId_1",
"datasInfo": [
{
"hash":"e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7fd6de15623f1",
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,
"type":"file",
"info":{
"filename":"Contract ¥100/5.doc",
"size'":2048,
"timestamp":1000000000,
"author":"AIvanov@Qorg.com",
"comment":"Comment"

"hash":"e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7fd6de15623f1",
"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,
"type":"file",
"info":{
"filename":"Contract ¥101/5.doc",
"size'":"2048",
"timestamp":1000000000,

(continues on next page)

20.1. Node REST API methods 143

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"author":"AIvanov@org.com",
"comment" : "Comment"

20.1.18 Transactions

Hint: The rules for generating node queries are given in module How to use REST API.

GET /transactions/info/{id}

Query transaction information by its ID.

Query Parameters:

"id" - Transaction ID

Method Response:

{
"type": 4,
"id": "52GGI9U2e6foYRKp5vAzsT(86aDAABfRJI7synz7ohBpl19",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",
"assetId": "E9yZC4cVhCDfbjFJCcI9CqkAtkoFy5KaCe64iaxHM2adG",
"amount": 100000,

"fee'": 100000,

"timestamp": 1549365736923,
"attachment": "string",
"signature":

—"GknccUA79dBcuWgKjqB7vYHens j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNkHEOA jtsUm" ,
"height": 7782
}

GET /transactions/address/{address} /limit/{limit}

Returns latest {limit} transactions from address {address}.

Method Response:

[

"type": 2,

(continues on next page)

144 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"id":
—"4XE4M9eSoVWVdHwWDYXqZsXhEc4q8PHOMDMUBegCSBBVHIyP2Yb1Z0Gi59¢c1Qzq2TowLmymLNkFQjWp95CdddnyBW" ,

"fee": 100000,

"timestamp": 1549365736923,

"signature":
—"4XE4M9eSoVWVdHWDYXqZsXhEc4q8PHOMDMUBegCSBBVHIyP2Yb1Z0Gi59¢c1Qzq2TowLmymLNkFQjWp95CdddnyBW" ,

"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",

"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",

"recipient": "3N9iRMou3pgmyPbFZn5QZQvBTQBkL2fR6R1",

"amount'": 1000000000

GET /transactions/unconfirmed

Returns all unconfirmed transactions from node utxpool.

Method Response:

[
{
"type" . 4’
"id": "52GGIU2e6foYRKp5vAzsT(86aDAABfRI7synz7ohBp19",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6AS",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkhGAS",
"assetId": "E9yZC4cVhCDfbjFJCc9CqkAtkoFybKaCe64iaxHM2adG",
"amount'": 100000,
"fee": 100000,
"timestamp": 1549365736923,
"attachment": "string",
"signature":
—"GknccUA79dBcwWgKjqB7vYHens j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNkHEOA jtsUm"
}
]

GET /transactions/unconfirmed/size

Return the number of transactions available in UTX pool.

GET /unconfirmed/info/{id}

Query transaction details from UTX pool by its ID.

20.1. Node REST API methods

145

Technical description of the Waves Enterprise platform, Release master

POST /transactions/calculateFee

Calculates fee amount for transferred transaction.

Query Parameters

"type" - Transaction type

"'senderPublicKey" - Public key of sender

"sender" is ignored

"fee" is ignored

and all the other parameters appropriate for a transaction of the given type.

Method Query

{
"type": 10,
"timestamp": 1549365736923,
"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
"alias": "ALIAS",

}
or
{
"type": 4,
"sender": "3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
"recipient": "3P8JYPHrnXSfsWP1LVXySdzU1P83FElssDa",
"amount": 1317209272,
"feeAssetId": "S8LQW8f7P5d5PZM7GtZEBgaqRPGSzS3DfPuiXrURJ4AJS",
"attachment": "string"
}

Method Response

{
"feeAssetId": null,
"feeAmount": 10000
}
or
{
"feeAssetId": "S8LQW8f7P5d5PZM7GtZEBgaqRPGSzS3DfPuiXrURJ4AJS",
"feeAmount": 10000
}

POST /transactions/sign
Signs a transaction with sender’s private key stored in node keystore. After signing, method response must
be sent to method input Broadcast.

It is necessary to enter the password into the password field in order to sign requests with the key from
keystore node.

Sample queries

146 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

o

Transaction type

Issue

Transfer

Reissue

Burn

Exchange

Lease

Lease Cancel

Alias

Mass Transfer

Data

Set Script

Sponsorship

101 | Permission (for Genesis block)
102 | PermissionTransaction
103 | CreateContractTransaction
104 | CallContractTransaction
105 | EzecutedContractTransaction
106 | DisableContractTransaction
107 | UpdateContract Transaction
110 | GenesisRegisterNode Transaction
111 | RegisterNode Transaction
112 | CreatePolicy Transaction
113 | UpdatePolicy Transaction
114 | PolicyDataHash Transaction

O 00| | O U x| W

| =
= =)

—
[\

—
w

—_
~

3. Issue

{
"type": 3,
"version":2,
"name": "Test Asset 1",
"quantity": 100000000000,
"description": "Some description'",

"sender": "3FSCKyfFo3566zwilJjSFLBwKvd826KXUaqgR",
"decimals": 8,

"reissuable'": true,

"fee": 100000000

}
4. Transfer
{
"type": 4,
"version": 2,
"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimZX",
"password": "",
"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimZX",
"amount": 40000000000,
"fee": 100000
}
10. Alias

20.1. Node REST API methods 147

Technical description of the Waves Enterprise platform, Release master

{
"type": 10,
"version": 2,
"fee": 100000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"alias": "hodler"
}
12. Data
{
"type": 12,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUopabH3"
"author": "3N9vL3apA4j2L5Po jHW8TYmfHx9Lo2ZaKPB",
"data":
L
{
"key": "objectId",
Iltypell . "String" .
"value": "obj:123:1234"
}
1,
"fee": 100000
}

13. Set Script

{
"type": 13,
"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"fee": 1000000,
"nmame": "faucet",
"script": "base64:AQQAAAAHIG1hdGNoMAUAAAACdHgG+RXSzQ=="

. _tx-sponsorship:

14. Sponsorship

{
"sender": "3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t",
"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",
"fee": 100000000,
"isEnabled": false,
"type": 14,
"password": "1234",
"version": 1
}

102. PermissionTransaction

Sample query

{
"type":102,

(continues on next page)

148

Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"sender" :"3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"senderPublicKey":"4WnvQPit2Dil1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"fee":0,

"proofs":[""],

"target":"3GPtj5osoYqHpyfmsFv7BMiyKsVzbG1lykfL",

"opType":"add",

"role":"contract_developer",

"dueTimestamp" :null

103. CreateContractTransaction

Sample query

{

"fee'": 100000000,

"image": "stateful-increment-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",

"contractName": "stateful-increment-contract",

"sender": "3PudkbvjVinPj1TkuuRahh4sGdgfr4YAUV2",

Ilpasswordll B nn R
"params": [],
"type": 103,
"version": 1,

Sample response

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619

104. CallContractTransaction

Sample query

{
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"fee": 10,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"type": 104,

"version": 1,
"contractVersion": 1
"password": "",

(continues on next page)

20.1. Node REST API methods 149

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"params": [

{
"type": "integer",
"key": "a",
"value": 1

1,

{
"type": "integer",
"key": "b",
"value": 100

}

Sample response

{
"type": 104,
"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,
"timestamp": 1549365736923,
"proofs": [
"294cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v"
1,
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"params": [
{
Ilkeyll : llall R
"type": "integer",
"value": 1
1,
{
Ilkeyll B llbll R
"type": "integer",
"value": 100
}

105. ExecutedContractTransaction

Sample response

{
"type": 105,
"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee'": 500000,
"timestamp": 1549365523980,
"proofs": [
"4BoG6w(nYyZWyUKzAwh5n1184tsEWUqQUTWmXMExvvCU95xgk4UFB8iCnHJ4Ghv JIm86REB69hKM7 s 2WLAWTSXquAs"
1,

(continues on next page)

150 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1,
Htxﬂ: {
"type": 103,
"id": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nghbwTXvJeYGo2",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 500000,
"timestamp": 1549365501462,
"proofs": [
"2ZK1YlecfQXeWsS5sfcTLMbW1KA3kwiOUp2H7z3Q6yVzMeGxT9xWIT6 jREQsmuDBcvk3DCCiWBdFHaxazU8pbo41"
1,
"version": 1,
"image": "localhost:5000/contract256",
"imageHash": "930d18dacb4f49e07e2637a62115510£045dab5cal6b9c7c503486828641d662",
"params": []
1,

"results": []

106. DisableContractTransaction

Sample query

{
"sender":"3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"password": "",
"contractId":"Fz3wqAWWcPMT4M1q6H7 crLKtToF JvbeLSvqjaU4Zwlpg",
"fee":500000,
"type":106

}

Sample response

{

"type": 106,

"id": "8Nw34YbosEVhCx18pd81HqYac4C2pGjyLKck8NhSoGYH",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M",
"fee": 500000,

"proofs": [

—"5GqPQkuRvG6LPXgPoCr9FogAdmhAaMbyFb5Uf jQPUKdSc6BLuQSz75LAWix10k2Z6PC5ezPpjqzqnr15i3RQmaEc" 1],
"version": 1,

"contractId": "Fz3wqAWWcPMT4M1q6H7crLKtToFJvbelLSvqjaU4ZwMpg",
"height": 1632

}

107. UpdateContractTransaction

Sample query

{
"image" : "registry.wvservices.com/we-sc/tdm-increment3:1028.1",
"sender" : "3Mxxz9pBYS5fJMARJINQmzYUHxiWAtvMzSRT",
"paSSWOId": HH’
"fee" : 100000000,
"contractId" : "EnsihTUHSNABORcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",
"imageHash" : "0eb5d280b9acf6efd8000184ad008757bb967b5266e9ebf476031fad1488c86a3",

(continues on next page)

20.1. Node REST API methods 151

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"type" : 107,
"version" : 1

}

Sample response

{
"senderPublicKey":
—"5qBRDmM74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fm55S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEy JuW",
Iltxll B
{
"senderPublicKey":
—"5qBRDmM74WKR5xK7LPs8vCy9QjzzqK4KCb8PL36fmb5S3kEi2XZETHFgMgp3D13AwgE8bBkYrzvEvQZuabMfEy JuW",
"image":"registry.wvservices.com/we-sc/tdm-increment3:1028.1",
"sender": "3Mxxz9pBYS5f JMARINQmzYUHxiWAtvMzSRT",
"proofs": [
—"3tNsTyteeZrxEbVSv5zPT6dr247nXsVWREv7Khx8spypgZQUdorCQZV2guTomutUTcyxhJUjNkQW4VmSgbCtgmlZ"] ,
"fee":0,
"contractId":"EnsihTUHSNABORcWXJbiWT98X3hYtCw3SBzK8nHQRCWA",
"id":"HdZdhXVveMT1vYzGTviCoGQU3aH6ZS3YtFpYujWeGCHE" ,
"imageHash":"17d72ca20bf9393eb4f4496fa2b8aa002e851908b77af1d5db6abcOb8eac0217",
"type":107,"version":1,"timestamp" : 1572355661572},
"sender" :"3HfRBedCpWi3vEzFSKEZDFXkyNWbWLWQmmG",
"proofs": [
—"28ADV8miUVNSEF jhqeF j6MADSXY jbxA3TsxSwFVs18 jXAsHVaBczvnyoUSaYJs jRNmaWgXbpbduccRxpKGTs6tro"],
"fee":0,"id" :"7niVY8mjzeKqLBePvhTxFRfLu7BmcwVfqaqtbWANSAA2",
"type":105,
"version":1,
"results":[],
"timestamp":1572355666866
}
}

110. GenesisRegisterNode
Sample query

{
"type": 110,
"id": "2Xgbsqgfbp5fiq4nsaloTk(sXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmJMgYLpvwynbxHPTFpFEfFdyLpJ",
"fee": O,
"timestamp": 1489352400000,
"signature":
—"2Xgbsqgfbpbfig4nsaAoTk(sXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmIMgYLpvwynbxHPTFpFEfFdyLpJ",
"targetPublicKey": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"target": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj"

Sample response

{
"signature":
—"2Xgbsqgfbpbfig4nsaloTk(sXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmIMgYLpvwynbxHPTFpFEfFdyLpJ",
"fee": O,
"id": "2Xgbsqgfbp5fiq4nsaloTk(sXc399tXdnKom8prEZqPW2Q7xZKNKCCqpkyMtmJMgYLpvwynbxHPTFpFEfFdyLpJ",
"type": 110,

"targetPublicKey": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",

(continues on next page)

152 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"timestamp": 1489352400000,
"target": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"height": 1

111. RegisterNode
Sample query

{
"type": 111,
"opType": "add",
"sender" : "3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz" ,
"password": "",
"targetPubKey": "apgJP9atQccdBPAgJPwH3NBVqYXrapgJP9at(QccdBPAgJPwHapgJP9at(QccdBPAgJPwHDKKhGAS",
"nodeName'": "Node #1",
"fee": 500000,
1

112. CreatePolicy

Sample query

{
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"policyName": "Policy# 7777",
"password": "sfgKYBFCFQ#$fsdf () *)",
"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
""3Nm84ERiJqKfuqSYxzMAhaJXdj2ughA7Ve7T",
"3NtNJV44wyxRXv2jyW3yXLx jIxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"
1,
"fee": 15000000,
"description": "Buy bitcoin by 1c",
"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"
1,
"type": 112

113. UpdatePolicy
Sample query

{
"policyId": "7wphGbhgbmUgzuN5wzgqwqtViTiMdFezSallfxRV58Lm",

"password": "sfgKYBFCFO#$fsdf () *)4",

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"proofs": [],

"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ER1iJqKfuqSYxzMAhaJXd j2ugA7Ve7T",

(continues on next page)

20.1. Node REST API methods 153

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"3NwJf jG5RpaDfxEhkwXgwD70X21NMFCx JHL"

1,

"fee": 15000000,

"opType": "add",

"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

1,

"type": 113,

}

114. PolicyDataHash

When a user sends confidential data to the network using the POST /privacy/sendData method, the node
automatically generates the 114 transaction.

POST /transactions/broadcast

Sends a signed transaction to blockchain.

Method Query

{
"type":10,
"senderPublicKey":"G6h72icCSjdW2A89QWDb37hyXJoYKq3XuCUJY2joS3EU",
"fee":100000000,
"timestamp":1550591678479,
"signature":
—"4gQyPXzJFEzMbsCd9ubn3B2WauEc4172ssyrXCL882oNa8NfNihnpKianHXrHWnZs 1RzDLbQ9rcRYnSqxKWfEPJG",
"alias":"dajzmj6gfuzmbfnhamsbuxivc"

}

Method Response

{

"type":10,

"id":"9q7X84wFuVvKqRdDQeWbtBmpsHt9SXFbvPPtUuKBVxxr",
"sender":"3MtrNP7AkTRuBhX4CBti6iT21pQpEnmHtyw",
"senderPublicKey":"G6h72icCSjdW2A89QWDb37hyXJoYKq3XuCUJY2joS3EU",

"fee":100000000,

"timestamp":1550591678479,

"signature":

—"4gQyPXzJFEzMbsCd9ubn3B2WauEc4172ssyrXCL882oNa8NfNihnpKianHXrHWnZs 1RzDLbQ9rcRYnSqxKWEEPJG",
"alias":"dajzmj6gfuzmbfnhamsbuxivc"

}

154 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

POST /transactions/signAndBroadcast

Signs and sends a signed transaction to the blockchain.

Method Query

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password" : "sfgKYBFCFQ#$£fsdf () x%",

"recipients": [
""3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

1,

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [
""3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

1,

"type": 112

}

Method Response

{

"senderPublicKey": "3X6Qb6p96dY4drVt3x4XyHKCRvree4(DgNZyDWHzjJ79",

"policyName": "Policy for sponsored vl1",

"fee": 100000000,

"description": "Privacy for sponsored",

"owners": [
"3J5aKNX94deXJkywQwTFgbigTxJa36TDVg3",
"3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t"

1,

"type": 112,

"version": 2,

"sender": "3JSakKNX94deXJkywQuTFgbigTxJa36TDVg3",

"feeAssetId": "G16FvJk9vabwxj(swh9CQAhbZzn3QrwgWjwnZB3qNVox",

"proofs": [
"3vDVjp6UJeN9ahtNcQWt5WDVqCOKqdEsrrOHTToHf oXFd1HtVwnUPPt JKM8tAsCtby81XYQReL j33hLEZ8qbGA3V"

1,

"recipients": [
"3JSaKNX94deXJkywQuTFgbigTxJa36TDVg3",
"3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t"

1,

"id": "EyymzQcM2LrsgGDFFxeGn8DhahJbFYmorcBrEh8phv5S",

"timestamp": 1585307711344

20.1. Node REST API methods 155

Technical description of the Waves Enterprise platform, Release master

20.1.19 Utils

Hint: The rules for generating queries to the node are given in module How to use REST API.

POST /utils/hash/secure

Returns secure (double) hash of specified message.

Method query:

ridethewaves!

Method response:

{

"message": "ridethewaves!",

"hash": "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tClzjjLXqsu"
}

POST /utils/hash/fast

Returns hash of specified message.

Method query:

ridethewaves!

Method response:

{

"message": "ridethewaves!",

"hash": "DJ35ymschUFDmqCnDJewjcnVExVkWgX7mJDXhFy9X80Q"
}

POST /utils/script/compile

Response parameters:

"script" - Base64 script
"complexity" - script complexity
"extraFee" - the fee for outgoing transactions set by the script

Method query:

let x = 1
(X + 1) ==

Method response:

156 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£3450cMRkRKFgzTtXXnnv7upRHXJzZrLS

n
'y

"complexity": 11,
"extraFee": 10001

Ro8tUW6YMtEiZ

or

Method query:

x == 1

Method response:

{

"error": "Typecheck failed: A definition of 'x' is not found"

}

POST /utils/script/estimate

Decoding base64 script.
Method query:

AQQAAAABeAAAAAAAAAAAAQKAAAAAAAACCQAAZAAAAATFAAAAAXgAAAAAAAAAAAEAAAAAAAAAAATJdecYi

Method response:

{
"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£3450cMRkRKFgzTtXXnnv7upRHXJzZrLS

n
'y

"scriptText": "FUNCTION_CALL (FunctionHeader (==,List(LONG, LONG)),List(CONST_LONG(1), CONST_
—LONG(2)) ,BOOLEAN) ",

"complexity": 11,

"extraFee": 10001

Ro8tUW6YMtEiZ

GET /utils/time

Returns current node time.

Method response:

{
"system": 1544715343390,
"NTP": 1544715343390

20.1. Node REST API methods 157

Technical description of the Waves Enterprise platform, Release master

POST /utils/reloadwallet

Reloads node keystore. Runs if new key pair was created in keystore without restarting node.

Method response:

{

"message": "Wallet reloaded successfully"

}

20.2 Authorization service REST APl methods

You can read more about working with REST API in this section. The authorization service REST API
methods are accessed via HT'TPS protocol. Methods are closed by authorization and are marked with the

icon.

20.2.1 GET /status

Getting the authorization service status.

Method answer

{
"status": "OK"
}

20.2.2 POST /v1/user

Registering a new user.

Method request

{
"username": "string",
"password": "string",
"locale": "string"
1

Method answer

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
1

158 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.2.3 GET /v1/user/profile

Getting user data.

Method answer

{
"id": "string",
"name": "string",
"locale": "en",
"addresses": [
"string"
1,
"roles": [
"string"
]
}

20.2.4 POST /v1/user/address

Getting an user address.

Method request

{
"address": "string",
"type": "string"
X

Method answer

{

"addressId": "string"

}

20.2.5 GET /v1/user/doesEmailExist

Checking an user email address.

Method answer

{

"exist": true

}

20.2. Authorization service REST APl methods

159

Technical description of the Waves Enterprise platform, Release master

20.2.6 POST /v1/user/password/restore

Restoring an user account password.

Method request

{
"email": "string"

}

Method answer

{
"email": "string"

}

20.2.7 POST /v1/user/password/reset

Reseting an user password.

Method request

{
"token": "string",
"password": "string"

}

Method answer

{
"userId": "string"

}

20.2.8 GET /v1/user/confirm/{code}

Entering a confirmation code to reset an user account password.

20.2.9 POST /v1/user/resendEmail

Resending a password recovery code to the specified email address.

Method request

{
"email": "string"

}

Method answer

{
"email": "string"

}

160

Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.2.10 POST /v1/auth/login

Registering a new user in the authorization service.

Method request

{
"username": "string",
"password": "string",
"locale": "string"
1

Method answer

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
}

20.2.11 POST /v1/auth/token

Registering external services and applications in the authorization service.

Method request

{
"token": "string"

}

Method answer

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
X

20.2.12 POST /v1/auth/refresh

Getting a new refresh token.

Method request

{
"token": "string"

}

Method answer

20.2. Authorization service REST APl methods 161

Technical description of the Waves Enterprise platform, Release master

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
}

20.2.13 GET /v1/auth/publicKey

Getting the authorization service public key.

Method answer

MIICIjANBgkqhkiGOwOBAQEFAAOCAg8AMIICCgKCAGEATA90]/ZQTkk jf4UuMfUu
QIFDTYxYf6QBKMVJIng/wXyPYYkV8HVFYFizCaEciv3CXmBH77sXnuT1rEtvK7zHB
KvV870HmZuazjIgZVSkOn0Y7F8UUVNXnl1zVD1dPs0GJ60rM41DnC1W65mCrP3bjn
£V4RbmykN/1k7McA6EsMcLEGbKkFhmeq2Nk4hn2CQvoTkupJUn0CP1dh04bq11Q7
Ffj9K/FJq73wSXDoH+qqdRG9sfrtgrht JHerruhv3456e0zyAcD08+s JUQFKYS0B
SZMEndVzFS2ub9(Q8e7Bf cNxTmQPM4PhHO5wuTqL32qt3uJBx20141u30ND44ZxrDJ
BbVog730PjRYX j+kTbwUZI66SP4alcq8sypQyLwqKk5DtLRozSNOOIrupJJ/puZs
9zPEggL91TOrirbEhG1£5U8/6XN8GVXX4iMk2f D8FHLF JuXCD703j4JC2iWfFDC6a
uUkwUfqf jJB8BzIHkncoq0ZbpidEE21TW1l+svuEu/wyP5rN1yMiE/e/fZQqM2+00
cH5Qow6HH35Br10CSZciutUcd1U7YPQESJ5tryy1xn9bsMb+0nlocZTtvec/owdM
RmnJwmO j1nd+cc190KLG5/boeA+2zqWul jCbWRIcOoCmgbhuqZCHaHTBEAKDWcsC
VRz5qD6FPpePpT(Db6ss3bkCAWEAAQ==

20.3 REST API methods for the data service

20.3.1 Transactions

GET /transactions

Returns a list of transactions matching the search query criteria and filters applied.

Important: It is returned a maximum of 500 transactions for the API GET /transactions method

request.

Method Response:

[
{

nigr. "string” s

"type": 0,

"height": O,

"fee": O,

"sender": "string",

"senderPublicKey": "string",

"signature": "string",

"timestamp": O,

"version": 0

(continues on next page)

162 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

GET /transactions/count

Returns the number of transactions matching the search query criteria and filters applied.

Method Response:

{
"count": "string"

}

GET /transactions/id/{id}

Returns transaction by ID {id}.
Method Response:

{

|lid|l: ”String”,

“type“: 0,

"height": O,

"fee": O,

"sender": "string",
"senderPublicKey": "string",
"signature": "string",

"timestamp": O,
"version": 0

}

20.3.2 Token assets
GET /assets

Returns a list of token assets available in the blockchain (as token issue transactions).

Method Response:

[
{
l|id|l . ”Stril’lg”,
”type”: 0,
"height": O,
"fee": 0,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",

"timestamp": O,
"version": O,
"assetId": "string",
"name": "string",

(continues on next page)

20.3. REST API methods for the data service 163

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"description": "string",
"quantity": O,
"decimals": O,
"reissuable": true

20.3.3 Users

GET /users

Returns a list of users matching the search query criteria and filters applied.

Method Response:

[

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
1,
"balances": [
{
"assetId": "string",

"amount": O

3
]

GET /users/{userAddress}

Returns information about the user as per user’s address.

Method Response:

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
1,
"balances": [
{
"assetId": "string",
"amount": 0

}

(continues on next page)

164 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

20.3.4 Blocks

GET /blocks/{height}

Returns the block at the specified height.
Method Response:

{
"version": 0,
"timestamp": O,
"reference": "string",
"nxt-consensus": {
"base-target": O,

"generation-signature": "string"
I
"features": [
0
1,
"generator": "string",
"signature": "string",

"blocksize": 0,
"transactionCount": O,
"fee": 0,
"height": 0,
"transactions": [
{
"id": "string",
"type" . 0’
"height": 0,
"fee": O,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": 0

}

20.3.5 Data transactions
GET /api/vl/txlds/{key}

Returns a list of data transaction ID’s containing the specified key.

Method Response:

L
{

(continues on next page)

20.3. REST API methods for the data service 165

Technical description of the Waves Enterprise platform, Release master

(continued from previous page)

nig": "string"

GET /api/vl/txlds/{key}/{value}

Returns a list of data transaction ID’s containing the specified key and value.

Method Response:

L
{
"id": "string"
}
]

GET /api/vl/txData/{key}

Returns data transaction bodies containing the specified key.

Method Response:

[

{

"id": "string",
"type": "string",
"height": 0,

"fee": O,

"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": 0,

"key": "string",
"value": "string",
"position_in_tx": O

GET /api/vl/txData/{key}/{value}

Returns data transaction bodies containing the specified key and value.

Method Response:

[
{

"id": "string",

"type": "string",

"height": 0,

"fee": O,

"sender": "string",

"senderPublicKey": "string",

(continues on next page)

166 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"signature": "string",
"timestamp": O,
"version": 0,

"key": "string",
"value": "string",
"position_in_tx": O
}

20.4 How to use REST API

All API methods are including GET, POST or DELETE HTTPS requests to URL https://yournetwork.
com/nodeN/apidocs/swagger. json using the set of parameters. The requests groups with routes and end-
points are selected in the Swagger interface. The route is the URL of the HTTP method, and the endpoint
is the final part of the route, this is the access to the method. Example:

URL to the HTTPmethod

Route Endpoint

). A
r 1 r R

GET/transactions/unconfirmed/size

For requests requiring the following actions, mandatory authorization by apikeyhash is required. The
authorization type is specified in the node configuration file. If apikeyhash authorization type is selected,
it is necessary to specify the value of the secret phrase, the hash of which is wrote in the node configuration
file (restapi.apikeyhash field).

* access to the node keystore (for example, sign method);
¢ access to operations with confidential data access groups;
* access to the node configuration.

When authorized by token, the value of access token is specified in the corresponding field. If token
authorization is selected, then all REST API methods for node access are closed.

20.5 Authorization methods

Depending on the authorization method, different values are specified to get the access to the node REST
API

20.4. How to use REST API 167

Technical description of the Waves Enterprise platform, Release master

Available authorizations X

OAuth2 Bearer (apiKey)

Name: Authorization

In: header

Value:

Fbt5fKHesnQG2CXmsKf4TC

| Authorize Close

ApiKey or PrivacyApiKey (apiKey)

Name: X-API-Key
In: header

Value:

Authorize Close

e DAuth2 Bearer (apiKey) an access token value.

* ApiKey or PrivacyApiKey (apiKey) apikeyhash value for both access to the node REST API and
privacy methods.

20.5.1 apikeyhash authorization

The apikeyhash generation is happening during the node configuration. The value of the field restapi.
apikeyhash can be also generated using the /utils/hash/secure method of node REST API. It is required to
specify the access password to the keystore in the password field of the POST /transaction/sign request
for signing requests by the node keystore key.

Sample query:

curl -X POST

--header 'Content-Type: application/json'

--header 'Accept: application/json'

--header 'X-API-Key: 1' -d '1' 'http://2.testnet-pos.com:6862/transactions/calculateFee’

168 Chapter 20. REST API

Technical description of the Waves Enterprise platform, Release master

20.5.2 Token authorization

If the authorization service is used, the client receives a pair of tokens refresh and access for the node
and other services access. Tokens can be obtained via the authorization service REST API.

20.5. Authorization methods 169

Technical description of the Waves Enterprise platform, Release master

170 Chapter 20. REST API

CHAPTER
TWENTYONE

DOCKER SMARTCONTRACTS

21.1 Smart contract run with REST API

Hint: Technical description of contracts implementation is given in module Docker Smart Contracts.

21.1.1 Description of program logic

This module reviews an example of how to create and run a simple smart contract. The contract performs
increment the number transferred to the contract entry in calltransactions.

Program listing contract.py on Python:

import json
import os
import requests
import sys

def find_param_value(params, name):
for param in params:
if param['key'] == name: return param['value']
return None

def print_success(results):
print (json.dumps (results, separators=(',', ':')))

def print_error(message):
print (message)
sys.exit(3)

def get_value(contract_id):
node = os.environ['NODE_API']
if not node:
print_error("Node REST API address is not defined")
token = os.environ["API_TOKEN"]
if not token:
print_error("Node API token is not defined")
headers = {'X-Contract-Api-Token': token}

(continues on next page)

171

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

url = /internal/contracts/ /sum' .format (node, contract_id)
r = requests.get(url, verify=False, timeout=2, headers=headers)
data = r.json()

return datal['value']

if __name__ == '__main__"':
command = os.environ['COMMAND ']
if command == 'CALL':

contract_id = json.loads(os.environ['TX']) ['contractId']
value = get_value(contract_id)
print_success([{

"key" : "sum",

"type": "integer",

"value": value + 1}])

elif command == 'CREATE':
print_success([{
"key": "sum",
"type": "integer",
"value": 0}])
else:
print_error("Unknown command " format (command))

Description of operation
¢ The program expects to get the data structure in json format with the field “params”.
* It reads the values of the “a” fields.
* Returns the result as a value of field “{a} + 1” in json format.

Example of incoming parameters

"params": [

{
|lkeyll . lYaH .
"type":"integer",
"value":1

}

21.1.2 Installing a smart contract

1. Download and install Docker for Developers for your operating system.

2. Prepare a contract image. In the statefulincrementcontract folder, create the following files:
* contract.py

* Dockerfile

e run.sh

Listing of run.sh file

#!/bin/sh

python contract.py

172 Chapter 21. Docker Smartcontracts

https://www.docker.com/get-started

Technical description of the Waves Enterprise platform, Release master

Dockerfile File Listing

FROM python:alpine3.8

ADD contract.py /

ADD run.sh /

RUN chmod +x run.sh

CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

3. Install the image in Docker registry. Execute the following commands in the terminal:

docker run -d -p 5000:5000 --name registry registry:2

cd contracts/stateful-increment-contract

docker build -t stateful-increment-contract .

docker image tag stateful-increment-contract localhost:5000/stateful-increment-contract
docker start registry

docker push localhost:5000/stateful-increment-contract

4. Run the following command in the terminal to get the information about the container:

docker inspect 57c2c2d2643d
[
{
"Id": "sha256:57c2c2d2643da042ef8dd80010632ffdd11e3d2e3£85¢c20c31dce838073614dd",
"RepoTags": [
"wenode:latest"
1,
"RepoDigests": [1,
"Parent": "sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3bb8edf2686e1944bcc7133£07913",

IlCormnentll : |l|l,
"Created": "2019-10-25T14:15:03.856072509Z",
"Container": "",
"ContainerConfig": {
"Hostname": "",
"Domainname": "",
|lUser|l: |l||’

"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,

The smart contract identifier Id is the value of the imageHash field and it is used in transactions with the
created smart contract.

5. Sign a transaction to create a smart contract. In this example, the transaction is signed with the key
stored in the node keystore.

Hint: To create a key pair and the participant address, use the utility generators.jar. The procedure for
creating a key pair is given in item 1 of the module “Connecting to the Network”. The rules for generating
queries to the node are given in the module Node REST API.

Query Body
{
"fee": 100000000,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338£64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",

(continues on next page)

21.1. Smart contract run with REST API 173

https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"sender": "3PudkbvjV1inPjlTkuuRahh4sGdgfr4YAUV2",
"password": "",

"params": [],

"type": 103,

"version": 1

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --

—header 'X-Contract-Api-Token' -d ' {\
"fee": 100000000, \
"image": "stateful-increment-contract:latest", \
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", \
"contractName": "stateful-increment-contract", \
"sender": "3PudkbvjVinPji1TkuuRahh4sGdgfr4YAUV2", \
llpasswordll : nn 5 \

"params": [], \
"type": 103, \
"version": 1 \
}' 'http://localhost:6862/transactions/sign’

Sample response

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",
"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38DwsbskqgDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5¢c8£828584b65",
"contractName'": "stateful-increment-contract",
"params": [],
"height": 1619

6. Send the signed transaction to the blockchain. The response from the sign method must be transferred
to the input for the broadcast method.

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-Contract-Api-Token' -d '{ \
{
"type": 103, \
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", \
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew", \
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \
"fee": 500000, \
"timestamp": 1550591678479, \
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR56Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1, \

(continues on next page)

174 Chapter 21. Docker Smartcontracts

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 1, \
"image": "stateful-increment-contract:latest", \
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5¢c8£828584b65", \
"contractName": "stateful-increment-contract", \
"params": [], \
"height": 1619 \
}
}' 'http://localhost:6862/transactions/broadcast’

7. Use the transaction ID to check that the contract initiation transaction is placed in the blockchain.

Sample response

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67nb5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619

21.1.3 Smart Contract Execution

1. Sign a calltransaction to call (execute) the smart contract.
In the “contractID” field, specify the contract initialization transaction ID.

Query Body

{
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7ngh5wTXvJeYGo2",
"fee": 10,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"password": "",
"type": 104,
"version": 1,
"params": [
{
"type": "integer",
"key": "a",
"value": 1

Sample query

21.1. Smart contract run with REST API 175

Technical description of the Waves Enterprise platform, Release master

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-Contract-Api-Token' -d '{ \
"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqhbwTXvJeYGo2", \

"fee": 10, \
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \
IIpasswordll B nn B \

"type": 104, \
"version": 1, \
"params": [\
{\
"type": "integer", \
|Ikeyll: Ilall’ \
"value": 1 \
LI
I\
}' 'http://localhost:6862/transactions/sign’

Sample response

{
"type": 104,
"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,
"timestamp": 1549365736923,
"proofs": [
"2q4cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v"
1,
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"params": [
{
llkeyll B Ilall .
"type": "integer",
"value": 1

}

2. Send the signed transaction to the blockchain. The response from the sign method must be transferred
to the input for the broadcast method.

Sample query

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-Contract-Api-Token' -d '{ \
"type": 104, \
"id": "9fBrL2nb5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP", \
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdaulNpgdWXLsq", \
"fee": 10, \
"timestamp": 1549365736923, \
"proofs": [\
"2q4cTBhDKEDkFxr7iYaHPAvlidzaKo5rDaTxPF5VHryy YTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v" \
1.\

"yersion": 1, \

(continues on next page)

176 Chapter 21. Docker Smartcontracts

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nqhbuTXvJeYGo2", \

"params": [\
{\
"key": nan, \

"type": "integer", \
"value": 1 \
A
I\
}' 'http://localhost:6862/transactions/broadcast’

3. Get the result of smart contract execution by its ID.

Sample response

[
{
"key": "1+1",
"type": "integer",
"value": 2
1
]

21.2 API methods available to smart contract

Docker containerbased smart contracts can use node REST API. Smart contract developers can use limited
list of REST API methods. This list is represented below, these methods are available directly from the
container.

Addresses methods

* GET /addresses
GET /addresses/publicKey/{publicKey}
GET /addresses/balance/{address}
GET /addresses/data/{address}
GET /addresses/data/{address}/{key}

Crypto methods
o POST /erypto/encryptCommon
* POST /erypto/encryptSeparate
o POST /crypto/decrypt
Privacy methods
* GET /privacy/{policyid}/getData/{policyitemhash}
* GET /privacy/{policyid}/getInfo/{policyitemhash}
* GET /privacy/{policyid}/hashes
* GET /privacy/{policyid}/recipients
Transactions methods

* GET /transactions/info/{id}

21.2. API methods available to smart contract 177

Technical description of the Waves Enterprise platform, Release master

* GET /transactions/address/{address} /limit/{limit}
Contracts methods

A smart contract can use Coniracts methods implementing the separated /internal/contracts/ route,
which is totally identical to the regular Contracts methods.

* GET /internal/contracts/{contractld}/{key}
GET /internal/contracts/ezecutedtzfor/{id}
GET /internal/contracts/{contractld}
GET /internal/contracts
PKI methods

* PKI /verify

21.2.1 Docker contract authorization
A smart contract requires an authorization to use the node REST API. There are following steps for the
correct REST API methods usage by the smart contract:

1. The following variables should be defined in the Docker contract environment:

e NODE_API an URL address to the node REST API.

e APT_TOKEN an authorization token of the Docker contract.

e COMMAND commands for the Docker contract creation and call.

e TX a transaction which is required to the Docker contract for work (103 107 codes).

2. The Docker contract developer assigns the value of the variable API_TOKEN to the request header
XContractApiToken. The node specifies JWT authorization token into the variable API_TOKEN for the
contract creation and execution.

3. The contract code should pass the received token in the request header (XContractApiToken) each
time the node API is accessed.

21.3 Smart contract run with gRPC

In addition to using the REST API a smart contract can work with the node via the gRPC framework.
gRPC is a highperformance remote procedure call (RPC) framework that runs over the HTTP /2 protocol.
The protobuf protocol is used as a tool for describing of data types and serialization.

Hint: Technical description of contracts implementation is given in module Docker Smart Contracts.

gRPC framework supports 10 programming languages. You can find the list in official gRPC docs. We use
an example of creating a Python smart contract that performs an increment operation (increasing a given
number by one).

178 Chapter 21. Docker Smartcontracts

https://jwt.io/
https://grpc.io/
https://en.wikipedia.org/wiki/Protocol_Buffers
https://grpc.io/
https://grpc.io/docs/tutorials/

Technical description of the Waves Enterprise platform, Release master

21.3.1 Description of the smart contract

In our example 108 transaction initializes the initial state of the contract for the creation, keeping the
numeric key sum with 0 value in it:

{
llkeyll: "SI].m" R
"type": "integer",
"value": 0

}

Each next 104 call transaction increases the key value sum by one (sum = sum + 1).
How the smart contract works after the call:

1. After the program runs, it checks for the presence of environment variables. There are environment
variables which are used by the contract:

¢ CONNECTION_ID — connection ID passed by the contract when connecting to a node.

¢ CONNECTION_TOKEN — authorization token passed by the contract when connecting to a
node.

e NODE — a node IP address or a node domain name.
¢ NODE_PORT — a gRPC port of the service which is deployed on the node.

The values of the NODE and NODE_PORT variables are taken from :ref:"dockerengine.grpcserver
<dockerconfiguration™> section of the configuration file. Other variables are generated by
the node and passed to the container when creating a smart contract.

2. Using NODE and NODE_PORT variables values the contract creates gRPC connection to a node.

3. Then gRPC ContractService service’s Connect method is called (see additional info in the con-
tract.proto file). This method accepts ConnectionRequest parameter which is specifying the connec-
tion ID (CONNECTION_ID environment variable). Also in the methods metadata you need to specify
the authorization head which contains an authorization token (CONNECTION_TOKEN environment vari-
able).

4. In the case of successful result gRPC stream is return including the ContractTransactionResponse
objects for the execution. The ContractTransactionResponse object contains two fields:

e transaction — a contract creation or call transaction.

¢ auth_token — an authorization token, specified in the authorization head of metadata
of gRPC method being called.

If transaction contains a creation transaction (transaction type — 103), the initial state is
initialized for the contract. If transaction contains a call transaction (transaction type —
104), the following actions are performed:

* the node receives a request of the value of the sum key (the GetContractKey method of
the ContractService service);

* the key value increases by one, sum = sum + 1);

* a new key value is saved on the node (the CommitExecutionSuccess method of the
ContractService service), i.e. the contract state is updated.

21.3. Smart contract run with gRPC 179

Technical description of the Waves Enterprise platform, Release master

21.3.2 Smart contract creation
1. Download and install Docker for Developers (https://www.docker.com /get-started) for your operating
system.

2. Prepare an image of the contract. The contract folder must contain the following files:
¢ src/contract.py
* Dockerfile
* run.sh
¢ src/protobuf/contract.proto
¢ src/protobuf/common.proto
e src/protobuf/common_pb2.py
* src/protobuf/contract_pb2.py
* src/protobuf/contract_pb2_grpc.py

src/protobuf/common_pb2.py, src/protobuf/contract_pb2.py, src/protobuf/
contract_pb2_grpc.py files should be generated by the gRPC compiler using the
contract.proto and common.proto protobuf files.

Important: After compiling the files you need to change the import directive in the
generated files:

¢ it must be import protobuf.common_pb2 as common__pb2 in the contract_pb2.py
file;

e it must be import protobuf.contract_pb2 as contract__pb2 in the
contract_pb2_grpc.py file.

3. Install the image in the Docker image repository. If you are using a local repository, run the following
commands in the terminal:

docker run -d -p 5000:5000 --name registry registry:2

cd contracts/grpc-increment-contract

docker build -t grpc-increment-contract .

docker image tag grpc-increment-contract localhost:5000/grpc-increment-contract
docker start registry

docker push localhost:5000/grpc-increment-contract

4. Use docker inspect command to get more info about smart contract:

docker inspect 57c2c2d2643d
[
{
"Id": "sha2b6:57c2c2d2643da042e£8dd80010632ffdd11e3d2e3£85c20c31dce838073614dd",
"RepoTags": [
"wenode:latest"
1,
"RepoDigests": [],
"Parent": '"sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3b58edf2686e1944bcc7133£07913",
"Comment": "",
"Created": "2019-10-25T14:15:03.856072509Z",
"Container": "",

(continues on next page)

180 Chapter 21. Docker Smartcontracts

https://www.docker.com/get-started

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"ContainerConfig": {
"HOStname” : nn .
"Domainname": "",
"USGI‘" . nn R
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,

Important: The smart contract identifier Id is the value of the imageHash field and it is used in transactions
with the created smart contract.

5. Sign the 103 transaction for the smart contract creation. In our example the transaction is signed with
a key stored in the node’s keystore. See REST API section for a description of the rest API nodes and
rules for generating transactions.

Request sample of the contract creation transaction:

{
"fee": 100000000,
"image": "localhost:5000/grpc-increment-contract",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "grpc-increment-contract",
"sender": "3PudkbvjVinPj1TkuuRahh4sGdgfr4YAUV2",
"password": "",
"params": [],
"type": 103,
"version": 2,

Curlrequest sample:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-Contract-Api-Token' -d '{ \
"fee": 100000000, \
"image": "localhost:5000/grpc-increment-contract", \
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", \
"contractName": "grpc-increment-contract", \
"sender": "3PudkbvjVinPji1TkuuRahh4sGdgfr4YAUV2", \
"password": "", \
"params": [], \
"type": 103, \
"version": 2 \
}' 'http://localhost:6862/transactions/sign’

Response sample:

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",
"fee": 100000000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],

(continues on next page)

21.3. Smart contract run with gRPC 181

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"version": 2,

"image": "localhost:5000/grpc-increment-contract",

"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "grpc-increment-contract",

"params": [],

"height": 1619

6. Send the signed transaction to the blockchain. A response from the sign method should be passed to
broadcast method input.

Request sample for sending a smart contract creation transaction to the blockchain:

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38DwsbskgDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphqdyGQQ8Fx j4BYA4TaqYVubqxtWzGMPQyVeKYv"],
"version": 1,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619

Curlrequest sample:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-Contract-Api-Token' -d '{ \
"type": 103, \
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky", \
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhgew", \
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \
"fee": 100000000, \
"timestamp": 1550591678479, \
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR56Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1, \
"version": 2, \

"image": "localhost:5000/grpc-increment-contract", \
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", \
"contractName": "grpc-increment-contract", \

"params": [], \
"height": 1619 \
}' 'http://localhost:6862/transactions/broadcast’

Response sample:

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38DwsbskqDs jMVT2M",

(continues on next page)

182 Chapter 21. Docker Smartcontracts

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

"fee": 100000000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVubqxtWzGMPQyVeKYv" 1,
"version": 2,
"image": "localhost:5000/grpc-increment-contract",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "grpc-increment-contract",
"params": [],
"height": 1619

Compare transaction identifiers of both operations (id field) and make sure, that the initialization contract
transaction has placed in the blockchain.

21.3.3 Smart contract call

1. Sign the 104 transaction for the smart contract call.

Request sample of the contract call transaction:

{
"contractId": "2sqPS2VAKmK77FoNakwl1VtDTCbDSa7ngh5wTXvJeYGo2",
"fee": 15000000,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"password": "",
"type": 104,
"version": 2,
"contractVersion": 1,
"params": []

2. Send the signed transaction to the blockchain. A response from the sign method should be passed to
broadcast method input.

Request sample for sending a smart contract call transaction to the blockchain:

{
"type": 104,
"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 15000000,
"timestamp": 1549365736923,
"proofs": [

"2q4cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v"

1,
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",
"params": []

Curlrequest sample:

21.3. Smart contract run with gRPC 183

Technical description of the Waves Enterprise platform, Release master

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --
—header 'X-Contract-Api-Token' -d '{ \

"type": 104, \

"id": "9fBrL2nbTN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP", \

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", \

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq", \

"fee": 15000000, \

"timestamp": 1549365736923, \

"proofs": [\

""2q4cTBhDKEDkFxr7iYaHPAvidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4dv"

<\
1.\
"yversion": 1, \
"contractId": "2sqPS2VAKmK77FoNakw1VtDTCbDSa7nqhbuTXvJeYGo2", \
"params": [] \
}' 'http://localhost:6862/transactions/broadcast’

Response sample:

L
{
"key": "sum",
"type": "integer",
"value": 2
}
]

Use the smart contract identifier to get info about an execution result.

21.3.4 Files samples

run.sh listing:

#!/bin/sh

eval $SET_ENV_CMD
python contract.py

Dockerfile listing:

FROM python:3.8-slim-buster

RUN apt update && apt install -yq dnsutils

RUN pip3 install grpcio-tools

ADD src/contract.py /

ADD src/protobuf/common_pb2.py /protobuf/

ADD src/protobuf/contract_pb2.py /protobuf/

ADD src/protobuf/contract_pb2_grpc.py /protobuf/
ADD run.sh /

RUN chmod +x run.sh

ENTRYPOINT ["/run.sh"]

Python smart contract listing:

import grpc
import os
import sys

(continues on next page)

184 Chapter 21. Docker Smartcontracts

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

from protobuf import common_pb2, contract_pb2, contract_pb2_grpc

CreateContractTransactionType = 103
CallContractTransactionType = 104

AUTH_METADATA_KEY = "authorization"

class ContractHandler:
def __init__(self, stub, connection_id):

self.client = stub
self.connection_id = connection_id
return

def start(self, connection_token):

self.__connect (connection_token)

def __connect(self, connection_token):

request = contract_pb2.ConnectionRequest (
connection_id=self.connection_id
)
metadata = [(AUTH_METADATA_KEY, connection_token)]
for contract_transaction_response in self.client.Connect(request=request,

- metadata=metadata) :

self.__process_connect_response(contract_transaction_response)

def __process_connect_response(self, contract_transaction_response):

print("receive: ".format (contract_transaction_response))
contract_transaction = contract_transaction_response.transaction
if contract_transaction.type == CreateContractTransactionType:
self.__handle_create_transaction(contract_transaction_response)
elif contract_transaction.type == CallContractTransactionType:
self.__handle_call_transaction(contract_transaction_response)
else:
print ("Error: unknown transaction type

""" format (contract_transaction.type),

—file=sys.stderr)

def __handle_create_transaction(self, contract_transaction_response):

create_transaction = contract_transaction_response.transaction
request = contract_pb2.ExecutionSuccessRequest(
tx_id=create_transaction.id,
r esults=[common_pb2.DataEntry(
key="sum",
int_value=0)]
)
metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_token)]
response = self.client.CommitExecutionSuccess(request=request, metadata=metadata)
print("in create tx response '{}'".format(response))

def __handle_call_transaction(self, contract_transaction_response):

call_transaction = contract_transaction_response.transaction
metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_token)]

contract_key_request = contract_pb2.ContractKeyRequest(
contract_id=call_transaction.contract_id,
key="sum"

(continues on next page)

21.3.

Smart contract run with gRPC 185

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

)
contract_key = self.client.GetContractKey(request=contract_key_request, metadata=metadata)
old_value = contract_key.entry.int_value

request = contract_pb2.ExecutionSuccessRequest(
tx_id=call_transaction.id,
results=[common_pb2.DataEntry(
key="sum",
int_value=old_value + 1)]
)

response = self.client.CommitExecutionSuccess(request=request, metadata=metadata)
print("in call tx response '{}'".format(response))

def run(connection_id, node_host, node_port, connection_token):

NOTE (gRPC Python Team): .close() is possible on a channel and should be

used in circumstances in which the with statement does not fit the needs

of the code.

with grpc.insecure_channel('{}:{}'.format(node_host, node_port)) as channel:
stub = contract_pb2_grpc.ContractServiceStub(channel)
handler = ContractHandler (stub, connection_id)
handler.start(connection_token)

CONNECTION_ID_KEY = 'CONNECTION_ID'
CONNECTION_TOKEN_KEY = 'CONNECTION_TOKEN'
NODE_KEY = 'NODE'

NODE_PORT_KEY = 'NODE_PORT'

if __name__ == '__main__"':

if CONNECTION_ID_KEY not in os.environ:
sys.exit("Connection id is not set")

if CONNECTION_TOKEN_KEY not in os.environ:
sys.exit("Connection token is not set")

if NODE_KEY not in os.environ:
sys.exit ("Node host is not set")

if NODE_PORT_KEY not in os.environ:
sys.exit("Node port is not set")

connection_id = os.environ['CONNECTION_ID']
connection_token = os.environ['CONNECTION_TOKEN']
node_host = os.environ['NODE']

node_port = os.environ['NODE_PORT']

run(connection_id, node_host, node_port, connection_token)

contract.proto listing:

syntax = "proto3";
package wavesenterprise;

option java_multiple_files = true;
option java_package = '"com.wavesplatform.protobuf.service";
option csharp_namespace = "WavesEnterprise";

import "google/protobuf/wrappers.proto";
import "common.proto";

(continues on next page)

186 Chapter 21. Docker Smartcontracts

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

service ContractService {
rpc Connect (ConnectionRequest) returns (stream ContractTransactionResponse);
rpc CommitExecutionSuccess (ExecutionSuccessRequest) returns (CommitExecutionResponse);
rpc CommitExecutionError (ExecutionErrorRequest) returns (CommitExecutionResponse);
rpc GetContractKeys (ContractKeysRequest) returns (ContractKeysResponse) ;

rpc GetContractKey (ContractKeyRequest) returns (ContractKeyResponse);

message ConnectionRequest {
string connection_id = 1;

}

message ContractTransactionResponse {
ContractTransaction transaction = 1;
string auth_token = 2;

}

message ContractTransaction {
string id = 1;
int32 type = 2;
string sender = 3;
string sender_public_key = 4;
string contract_id = 5;
repeated DataEntry params = 6;
int64 fee = 7;
int32 version = 8;
bytes proofs = 9;
int64 timestamp = 10;
AssetId fee_asset_id = 11;

oneof data {
CreateContractTransactionData create_data = 20;
CallContractTransactionData call_data = 21;
}
}

message CreateContractTransactionData {
string image = 1;
string image_hash = 2;
string contract_name = 3;

}

message CallContractTransactionData {
int32 contract_version = 1;

}

message ExecutionSuccessRequest {
string tx_id = 1;
repeated DataEntry results = 2;

}

(continues on next page)

21.3. Smart contract run with gRPC 187

Technical description of the Waves Enterprise platform, Release master

continued from previous page
g

message ExecutionErrorRequest {
string tx_id = 1;
string message = 2;

}

message CommitExecutionResponse {

}

message ContractKeysRequest {
string contract_id = 1;
google.protobuf.Int32Value limit = 2
google.protobuf.Int32Value offset =
google.protobuf.StringValue matches
KeysFilter keys_filter = 5;

N W e

4;

message KeysFilter {
repeated string keys = 1;
}

message ContractKeysResponse {
repeated DataEntry entries = 1;

}

message ContractKeyRequest {
string contract_id = 1;
string key = 2;

}

message ContractKeyResponse {
DataEntry entry = 1;
}

message AssetId {
string value = 1;

}

common.proto listing:

syntax = "proto3";
package wavesenterprise;

option java_multiple_files = true;
option java_package = "com.wavesplatform.protobuf
option csharp_namespace = "WavesEnterprise";

message DataEntry {
string key = 1;
oneof value {
int64 int_value 10;
bool bool_value = 11;
bytes binary_value = 12;
string string_value = 13;

.common";

188

Chapter 21. Docker Smartcontracts

Technical description of the Waves Enterprise platform, Release master

21.4 gRPC services available to smart contract

You can use the official GitHub page for to download all required protobuf files. The list of all files is as
follows:

* address.proto addresses methods.

e common.proto a common file for proper work of others protobuf files.
e crypto.proto methods for working with data encryption.

e permission.proto permission methods.

e pki.proto PKI methods.

e privacy.proto privacy methods.

e util.proto methods for utility tools.

Every protobuf file (except common.proto) contains a set of small blocks (message) that include a set of
keyvalue fields. A list of such blocks for each file is provided below.

address.proto
* GetAddresses geting all addresses of participants whose key pairs are stored in the node keystore.
* GetAddressData getting all data recorded to address account {address}.

contract.proto
e Connect connecting a contract to a node.

e CommitExecutionSuccess getting the result of successful contract execution and sending the results
to the node.

¢ CommitExecutionError getting a contract execution error and sending the results to the node.
* GetContractKeys getting the contract result execution by its ID (contract creation transaction ID).

* GetContractKey getting a contract execution value by its ID (contract creation transaction ID) and
key {key}.
crypto.proto

* EncryptSeparate data encryption separately for the each recipient with the unique key.

e EncryptCommon data encryption with a single CEK key for all recipients and the CEK wraps into a
unique KEK for the each recipient.

e Decrypt data decryption. The decryption is available only if the message recipient’s key is in the
node’s keystore.

permission.proto

* GetPermissions getting roles (permissions) assigned to specified address {address} which are valid
at the moment.

* GetPermissionsForAddresses getting roles (permissions) assigned to specified address list which are
valid at the moment.

pki.proto
e Sign a creation a detached digital signature for sent data.
e Verify check the detached digital signature for sent data.

privacy.proto

21.4. gRPC services available to smart contract 189

https://github.com/waves-enterprise/WE-releases

Technical description of the Waves Enterprise platform, Release master

* GetPolicyRecipients getting all addresses of participants, signed to the access group {policyid}.
* GetPolicyOwners getting all addresses of owners, signed to the access group {policyid}.

e GetPolicyHashes getting the array of identified hashes which are written with association to the
{policyid}.

e GetPolicyItemData getting the confidential data package by its identified hash.

e GetPolicyItemInfo getting the metadata for the confidential data package by the identified hash.

util.proto

* GetNodeTime gitting current node time.

190 Chapter 21. Docker Smartcontracts

CHAPTER
TWENTYTWO

ROLE MANAGEMENT

The list of possible roles in the blockchain platform is given in module “Authorization of participants”.

Important: The prerequisite for changing permissions of participants (adding or deleting roles) is the
availability of the participant’s private key with the “permissioner” role in the node keystore from which the
query is made.

22.1 Option 1 (through REST API)

Participant permissions are managed by signing (sign method) and broadcasting (broadcast method) of
permission transactions through Node REST API.

Query object for sign method:

{
"type":102,
"sender" : 3GLWx8yUFcNSL3DERBkZyE4ATpyAyNiEYsKG,
"senderPublicKey" :4WnvQPit2Di1iYXDgDcXnJZ5yroKW54vauNoxdNeMi2g,
"fee":0,
"proofs":[""],
"target":3GPtj50soYqHpyfmsFv7BMiyKsVzbG1lykfL,
"opType":"add",
"role":"contract_developer",
"dueTimestamp" :null

Query fields:
* type the type of the transaction for the participant permission management (type = 102);
¢ sender the participant address with the permission to issue permission transactions;
e proofs the transaction signature;
 target the participant address, for which permissions are required to be assigned or deleted;

e role participant permissions to be assigned or removed. Possible values: “miner”; “issuer”, “dex”,

“permissioner”; “blacklister”, “banned”, “contract _developer”, “connection manager”;

» opType the type of the operation “add” (add permissions) or “remove” (delete permissions);
¢ dueTimestamp the permission validity date in the timestamp format. The field is optional.

Transfer the response from the node to the broadcast method.

191

Technical description of the Waves Enterprise platform, Release master

22.2 Option 2 (using the utility)

Using the Generators utility the process can be automated.

Example of console launching:

java -jar generators.jar GrantRolesApp [configfile]

Example of configuration:

permission-granter {
waves-crypto = no
chain-id = T
account = {
addresses = [
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w"
]
storage = ${user.home}"/node/keystore.dat"
password = '"some string as password"
}
send-to = [
"devnet-aws-fr-2.we.wavesnodes.com:6864"
]
grants = [
{
address: "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w"
assigns = [
{
permission = "miner",
operation = "add",
due-timestamp = 1527698744623
1,
{
permission = "issuer",
operation = "add",
due-timestamp = 1527699744623
1,
{
permission = "blacklister",
operation = "add"
1,
{
permission = "permissioner",
operation = "remove"
}
]
}
]
txs-per-bucket = 10
}

The field “duetimestamp” limits the role validity; Fields “nodes”, “roles” are mandatory.

If the node is already assigned any of the roles specified in the config, then the case is handled in accordance
with the rules:

192 Chapter 22. Role management

Technical description of the Waves Enterprise platform, Release master

Current node status Status received | Processing result
from transaction
No role assigned New role Success role assigned
Role assigned with- | Role with due- | Checking dueDate; if less than current, then IncorrectDate-
out dueDate Date time, otherwise Success role assigned with duedate
Role assigned with | Role with due- | Checking dueDate; if less than current, then IncorrectDate-
dueDate Date time, otherwise Success updating dueDate
Role assigned with | Role without | Success role assigned without dueDate
dueDate dueDate
Role assigned | Role removal Checking node address; if <> for genesis address, then Success
with/without due- role removed
Date

22,2, Option 2 (using the utility) 193

Technical description of the Waves Enterprise platform, Release master

194 Chapter 22. Role management

CHAPTER
TWENTYTHREE

PARTICIPANTS CONNECTION TO THE NETWORK

The moment of the first node running is the beginning of the new blockchain net creation. You can create
the blockchain net from the starting only one node, further you can add new nodes as required.

e Connect a new node into the existing network.

¢ Delete unnecessary nodes from the network.

23.1 Connection of a new node to the existing net

You can add new nodes into the net at any time. The configuration files setting is described in the section
Installing and running the Waves Enterprise platform. Perform all these actions and run the node. The
following steps are making:

1.
2.

The new node user gives the public key and the node description to the net administrator.

The network administrator (the node with “Connectionmanager” role) uses the received public key and
description for the 111 RegisterNode transaction creation with the "opType": "add" parameter.

Transaction falls to the block and further into the nodes states of network participants. As a result of
the transaction among the stored data, each participant of the network stores the public key and the
address of the new node.

If necessary, the network administrator can add additional roles to the new node using the transaction
102 Permit.

The user runs the node.

After starting, the node sends handshakemessage with its public key to the participants from the
“peers” list of its configuration file.

Network participants compare the public key from the handshake message and the key from transaction
111 RegisterNode sent earlier by the network administrator. If the check is successful, the network
participant updates its database and sends the Peers Message message to the network.

Having successfully connected, the new node synchronizes with the network and receives the address
table of the network participants.

195

Technical description of the Waves Enterprise platform, Release master

23.2 Deleting the node

1. The network administrator creates the 111 RegisterNode transaction with the parameter "opType":
"remove" and the public key of the removed node within.

2. This transaction is fell into the block and approved by other nodes.

3. After accepting the transaction the nodes find the public key specified in the transaction 111 Regis-
terNode in their state and delete it from there.

4. Then nodes delete the network address of the removed node from the network .knownpeers of the node
configuration file.

196 Chapter 23. Participants connection to the network

CHAPTER
TWENTYFOUR

CONFIDENTIAL DATA EXCHANGE

Before you can share the confidential data, you need to create access groups. Using transactions, you can
add or change access groups to the confidential data.

24.1 Creation of the confidential data access group

The confidential data access group can be created by any network participant. You need to specify the range
of participants, which will get the data. Then any of participant will perform the following actions:

1.

The network participant, the future owner of the group, is creating the 112 CreatePolicy with the
following parameters:

sender the public key of the access group creator.

description the description of the access group.

policyName the name of the access group.

recipients public keys of access group participants, which will have the access to the confidential data.

owners public keys of access group participants, which, in addition to the data access, can change the
lineup of the group participants.

This transaction is fell into the block and approved by other nodes.

After accepting the transaction the nodes which are the access group participants will get the access
to the confidential data.

24.2 Changing the access group

Access groups can only be changed by their owners. The following actions are performed to change the list
of participants in the access group:

1.

The group owner creates the 1138 UpdatePolicy transaction with the following parameters:

policyld identifier of the access group;

sender the public key of the access group owner;

opType the option of the adding (add) or the removing (remove) the group participants;

recipients public keys of access group participants, which are added or removed from the access group;

owners public keys of access group participants, which are added or removed from the access group.

. This transaction is fell into the block and approved by other nodes.

197

Technical description of the Waves Enterprise platform, Release master

3. After accepting the transaction the information about participants of the changed access group will
update.

24.3 Exchanging the confidential data

Important: The size of the transferred data via API method POST /privacy/sendData to the network is
up to 20 MB.

1. Using the API POST /privacy/sendData tool the client sends the data to the network (API parameters:
sender, password, policy ID, data type, data information, data and hash).

2. Access group participants use the GET /privacy/{policyld}/getData/{policylternHash} tool for getting
information about data and its further download.

Follow these steps for the values creation of the data and hash fields:

1. Translate the data byte sequence into the Base64 encoding.

2. Place the result of the data conversion to the "data": "29sCt...RgdC60LL" field of the API POST
/privacy/sendData.
3. Specify the data hash sum according to the SHA256 algorithm in the "hash": "9wetTB...

SU2zr1Uh" field. You need to specify the hash result in the Base58 encoding.
4. Send the data to the network by pressing the Try it out! button.

5. Node automatically will create the 11/ PolicyDataHash transaction as a result of the data sending.

198 Chapter 24. Confidential data exchange

CHAPTER
TWENTYFIVE

DATA ENCRYPTION OPERATIONS

Symmetric CEK and KEK keys are used to encrypt/decrypt data. CEK (Content Encryption Key) is the
key for the encrypting text data, KEK (Key Encryption Key) is the key for encrypting the CEK. The CEK
key is generated by a node randomly using the appropriate hashing algorithms. The KEK key is generated
by a node based on DiffieHellman algorithm, using public and private keys of sender and recipients, and is
used to encrypt the CEK key.

The symmetric CEK key is unreachable and does not appear in the encryption process. It is transmitted
from the sender to the recipient in the encrypted form (wrappedKey) via open communication channels along
with the encrypted message. One of such channels can be a record to the blockchain — a DataTransaction
or a smart contract state. The KEK key does not transmit from the sender to recipients, it is restored by
the recipient based on its private key and the known public key of the sender (DiffieHellman key exchange
algorithm).

‘ BLOCKCHAIN .
| OVER PUBLIC NETWORK !

O %@‘3@

SENDER "S" RECIPIENTS "A" /"B" /"C"

N o
ENCRYPT NERE @ = Do 1 | CALcULATE B B
- " i PRIV KEY Al
VESSAGE ek ENCRYPTED ' encrrere : ﬂ [PRIV KEY A [PuB KEY s}
CALCULATE _ X B Lo Lo B B) B
KEK B = EI ‘ B | : DECRYPT + =
= mmEe B oz
ENCRYPT * B = B L B 1 | DECRYPT + = E)
CEK E 3 Ry E p ENCRYPTED MESSAGE
REPEAT FOR B AND C Do B o REPEAT FOR B AND C

WRAPPED
KEY A

Fig. 1: Encryption procedure of the text data based on the DiffieHellman algorithm

Encryption/decryption process includes the following actions:

199

Technical description of the Waves Enterprise platform, Release master

. Use the POST /crypto/encryptSeparate method to encrypt data for each recipient separately. Param-

eters in the request object:

sender the sender address;

password a key pair password of the sender, which is generated at the same time as the account itself;
encryptionText the text for the encryption;

recipientsPublicKeys an array with recipients public keys list inside.

Use the POST /erypto/encryptCommon method to encrypt data for all recipients with a single CEK
key.

Use the POST /crypto/decrypt method for the decryption. Parameters in the request object:
recipient the recipient address.

password a key pair password of the recipient, which is generated at the same time as the account
itself.

encryptedText the encrypted text data.
wrappedKey the wrapped key obtained by encoding the data.
senderPublicKey the sender public key.

200

Chapter 25. Data encryption operations

CHAPTER
TWENTYSIX

GLOSSARY

Account
A client data set which is stored in database and used for client identification
Alias

A user’s login associated with his address as a result of the transaction, the result of which is used to
record the alias address matching in the database, and it is possible to specify this alias in the subsequent
transactions

Anonymous network
Unpermissioned public blockchain which can be accessed by any participant as an anonymous person
Blockchain

A decentralized, distributed and public digital ledger that is used to record in such way that any involved
record cannot be altered retroactively, without the alteration of all subsequent blocks

Genesis block

The first block in the blockchain which contains special genesis transactions distributing the initial balance
and permissions

Access group

A table inside the node state containing the net participants list which can exchange the privacy data
according to this policy

Cryptocurrency

A form of digital currency based on encryption algorithms and ran inside decentralized platforms built on
the blockchain

Consensus

The way to agree on a single point of the data value in a network between participants
Mining

The process by which transactions are verified and added to a blockchain

Mainnet

A real network where transactions are executing, tokens are issuing and storing

Node

A computer which is ran the node software and connected to the blockchain network

Peer

201

Technical description of the Waves Enterprise platform, Release master

A net address of the node
Private key

A privately held string of data that allows you to sign transactions and to get access to tokens. The private
key is inextricably bound to the public key

Public network
Permissioned public blockchain where each participant is known and registered in the network
Public key

A string of data bound with the private key and used for interactions with net participants. The public key
is applied to transactions to confirm the correctness of the user’s signature made on the private key

Public address

A public address is the cryptographic hash of a public key and a net byte. They act as email addresses that
can be published anywhere, unlike private keys

Swagger

API tool

Seed phrase

A set from 24 accidentally chosen words for restoring the access to the tokens
Smart account

An account with specified features for creating and running smartcontracts
Smart asset

A token with an attached script, during each new transaction with such a token the transaction will be
confirmed first by the script, then by the blockchain

Smart contract

A computer program code that is capable of facilitating, executing, and enforcing the negotiation or perfor-
mance of an agreement between participant

State
The full history of transactions which is stored in the node DB
Token

An account unit, a blockchain asset, which is not a cryptocurrency and is intended to represent the digital
balance, it is an equivalent of the company’s shares

Transaction

An operation that participants on the blockchain network use to interact with eachother
Participant

A blockchain participant who send transactions to the net for getting approve

Hash

A unique configuration of the symbols (letters and digits), it is a result of the hash function performing over
the data according with the specified algorithm. Hash uniquely identifies the object

Private network

Permissioned private blockchain where all transactions are controlled by a central authority

202 Chapter 26. Glossary

Technical description of the Waves Enterprise platform, Release master

Gateway

The app for tokens transfer from one blockchain net to another one
Airdrop

A distribution of cryptocurrency to users, entirely for free

PoS (ProofofStake)

A consensus algorithm based on the stake which is used for choosing the node for checking transactions and
generating a new block

PoA (ProofofAuthority)

A consensus algorithm in a private blockchain that grants to the most authority nodes the right to check
transactions and generate a new block

203

Technical description of the Waves Enterprise platform, Release master

204 Chapter 26. Glossary

CHAPTER
TWENTYSEVEN

WHAT IS NEW IN THE WAVES ENTERPRISE

27.1 1.2.3

The following sections have been rebuilt:
* Docker Smart Contracts
e Description of the node configuration file parameters and sections

* Privacy data access groups configuration

27.2 1.2.2

The following pages have been added:

e REST API Debug methods

e Full REST API description on the APT Docs page
The following sections have been rebuilt:

* Installing and running the Waves Enterprise platform

27.3 1.2.0

The following pages have been added:
e A new section Integration services, which includes Authorization service and Data preparation service
e Obtaining a license section was added
e A new REST API Licenses method was added
e A new Smart contract run with gRPC section was added
* A new gRPC services available to smart contract section was added
The following sections have been rebuilt:
e Installing and running the Waves Enterprise platform

e The Cryptography section was renovated. Part of information was moved into Data encryption opera-
tions section

e Changes in the node configuration file

205

https://docs-out.vostokservices.com/en/1.2.1/api.html

Technical description of the Waves Enterprise platform, Release master

e Transactions

27.4 1.1.2

The following sections have been rebuilt:
* Sandbox
e Changes in the node configuration file
¢ Node installation was converted into “Installing and running the Waves Enterprise platform”
e Participants connection to the network
e Anchoring settings
o Authorization type configuration for the REST API access
e Connection of the node to the “Waves Enterprise Partnernet”
e Connection of the node to the “Waves Enterprise Mainnet”

o System requirements

27.5 1.1.0

The following pages have been added:

o API methods available to smart contract

* Sandbox

¢ Changes in the node configuration file
The following sections have been rebuilt:

e Docker Smart Contracts

e Ezample of starting a contract

* Node installation

¢ Additional services deploy

27.6 1.0.0

The following pages have been added:
o Authorization service

The following sections have been rebuilt:
¢ Node configuration
* Mainnet and Partnernet connection
* REST API
* Node installation

Changes in the node configuration file node.conf

206 Chapter 27. What is new in the Waves Enterprise

Technical description of the Waves Enterprise platform, Release master

e The NTP server section is added
e The auth section is added into the authorization type selection of the REST API section

27.6. 1.0.0 207

