waves

ENTERPRISE

Technical description of the Waves Enterprise

platform
Release 1.7.0

https:/ /wavesenterprise.com

Aug 29, 2023

PLATFORM INSTALLATION AND USAGE

1 System requirements 1
2 Deploying the platform in the trial mode (Sandbox) 2
2.1 Platform installation 2
2.2 Further actions o L 4
3 Deploying a platform with connection to Mainnet 10
3.1 Generating balance oL e 10
3.2 Account creation, token transfer and confirming transaction 10
3.3 Node deployment e e e e e 11
3.4 Node connection to the Mainnet L Lo 11
3.5 Further actions o e e 12
4 Deployment of the platform in a private network 14
4.1 Obtaining a private network license and associated files 14
4.2 Creation of anode account e 14
4.3 Platform configuration for operation in a private network0 oL L. 15
4.4 Genesis block signing and starting the network o000 oL 32
4.5 Attachment of the client application to the private network 33
5 Examples of node configuration files 34
5.1 mode.confo 34
5.2 accounts.conf Lo L e e e e e e 40
5.3 api-key-hash.conf. L e 40
5.4 Additional examples L L e e 41
6 Licenses of the Waves Enterprise blockchain platform 42
6.1 License types e e e e e e e e e 42
6.2 Duration of licenses L L e 43
7 Waves Enterprise Mainnet fees 44
8 gRPC tools 47
8.1 Preconfiguring the gRPC interface 47
8.2 What the gRPC interfaceisfor. o 47
9 REST API methods 55
9.1 REST APT usage. . . .« o o v v e e e e e e e e e 55
9.2 What the platform REST APILisfor 56
10 Development and usage of smart contracts 116

11

12

13

14

15

16

17

18

19

20

21

22

10.1 Preparing to work e
10.2 Smart contract development L. Lo
10.3 Uploading of a smart contract into a registry Lo
10.4 Installing of a smart contract into the blockchain
10.5 Smart contract execution oL oL e e e e e e

JavaScript SDK
11.1 Contents v o e e e e e e e e e

Confidential data exchange

12.1 Creation of a confidential data group Lo L
12.2 Updating a confidential data group e
12.3 Sending confidential data into the network oo oL,

Permission management

Connection and removing of nodes
14.1 Connecting a new node to a private network Lo
14.2 Removing node from a private network L oo oo

Node start with a snapshot

Architecture
16.1 Platform arrangement L. L
16.2 Arrangement of nodes and auxiliary services o oo

Waves-NG blockchain protocol

17.1 Description of a mining round oL oL Lo
17.2 Miner fee mechanism Lo e
17.3 Smart contract validators fee mechanism oL L Lo oL
17.4 Conflict resolution while generating blocks

Connection of a new node to blockchain network

Activation of blockchain features

19.1 Voting parameters e e e
19.2 Voting procedure oL e e e e e
19.3 Usage of activated features e
19.4 Preliminary activation of features L L oL
19.5 List of available feature identifiers Lo oo

Anchoring

20.1 How the Waves Enterprise anchoring works
20.2 Anchoring data transaction structure Lo
20.3 Errors that can occur during anchoring Lo oL o

Snapshooting

21.1 Components of the snapshooting mechanism
21.2 Generation and broadcasting of a snapshot in an operating blockchain
21.3 Snapshot REST API methods et
21.4 Network messages o v i i e e e e e e e e e e e e e e

Smart contracts

22.1 Development and installation of smart contracts
22.2 Call of a smart contract and saving of results of its operation
22.3 Restriction of smart contract calls L L

129
130

147
147
147
148

150

151
151
151

152

153
153
153

157
157
157
158
158

159

161
161
161
162
162
162

163
163
164
164

166
166
167
167
168

ii

23

24

25

26

27

28

29

30

31

32

33

34

22.4 Updating of smart contracts e
22.5 Validation of smart contracts e e e e e e
22.6 Parallel operation of smart contracts o
22.7 API methods available for smart contracts e

Transactions of the blockchain platform
23.1 Signing and sending of transactionso Lo
23.2 Processing of transactions in the blockchain oL L.

Atomic transactions
24.1 Processing of atomic transactions oL oL e
24.2 Generating of atomic transactions o e

Consensus algorithms

25.1 LPoS consensus algorithm e
25.2 PoA consensus algorithm L
25.3 CFT consensus algorithm

Cryptography

26.1 Hash coding e e
26.2 Electronic signature L e e e e
26.3 Data encryption L

Permissions
27.1 Description of permissions L Lo
27.2 Permission management L Lol

Client

28.1 Network stats L
28.2 Explorer e
28.3 Tokenso e
28.4 Contracts v v i e e e e e e e e e e e e e e e e
28.5 Data transfer e e e e e e e e e e e
28.6 Network settings o L e e e
28.7 Write to us e e e e e

Generators

29.1 AccountsGeneratorAppo e e e
29.2 GenesisBlockGenerator L
29.3 ApiKeyHash o e

Authorization and data services

30.1 Authorization service L e
30.2 Data serviCe i i e e e e e e e e e e e e e e
30.3 API methods of the integration services

External components of the platform

Official resources and contacts
32.1 Blockchain platform official resources L e
32.2 How to contact with us

Glossary

What is new at Waves Enterprise
341 1.7.3 0 . e e e e e

179
179
179

231
231
232

233
233
235
237

242
242
242
242

244
244
245

246
246
248
249
249
250
251
252

254
254
255
255

256
256
257
258

283

284
284
284

285

289

iii

34.2 LT.20 0 0 e e e 289

343 170 . . oL L 289
344 1.6.2. . ..o 289
345 L1.6.0. . o o e e 290
34.6 L1.5.2. . o L e e e 290
347 L5.0 . . o e e 290
348 1.4.0. . . L L 291
349 131 . . L L 291
3410 1.3.0 .« o L L e 291
B 0 292
3412 1.2.2 0 0 0 L e e e e 292
3413 1.2.0 .« o L L e 292
R 292
3415 1.1.0 .« o L L e 293
3416 1.0.0 . . o L o e e e e e 293

iv

CHAPTER

ONE

SYSTEM REQUIREMENTS

Hardware and system requirements for a computer for a new Waves Enterprise node deployment are stated
below.

Variant vCPU | RAM SSD JVM operation mode
Minimal requirements 2+ 4Gb 50Gb java -Xmx2048M -jar
Recommended requirements | 2+ 4+ Gb | 50+ Gb | java -Xmx4096M -jar

Hint: ‘Xmx” flag which defines the maximal size of the available JVM memory.

Environment requirements for the Waves Enterprise platform
* Oracle Java SE 11 (64-bit) or OpenJDK 11 and higher
¢ Docker CE

¢ Docker-compose

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://jdk.java.net/java-se-ri/11
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/

CHAPTER

TWO

DEPLOYING THE PLATFORM IN THE TRIAL MODE (SANDBOX)

To familiarize yourself with the Waves Enterprise blockchain platform, a free trial version running in a Docker
container is available to you. No license is required to install and use it, and the blockchain height is limited
to 30,000 blocks. With a block round time of 30 seconds, the full operation time of the platform in trial
mode is 10 days.

When you deploy the platform in the trial mode, you get a local version of the blockchain that allows you
to test the basic features:

* signing and sending of transactions;

¢ obtaining of data from the blockchain;

« installation and call of smart contracts;

« transfer of confidential data between nodes;

* testing node monitoring with InfluxDB and Grafana.

You can interact with the platform both through the client application and through gRPC and REST API
interfaces.

2.1 Platform installation

Before you start the installation, make sure you have Docker Engine and Docker Compose installed on your
machine. Also, familiarize yourself with the blockchain platform system requirements.

Note that you may need administrator rights to run commands on Linux (the sudo prefix followed by the
administrator password).

1. Create a working directory and place in it the docker-compose.yml file. You can download this file from
the official Waves Enterprise repository on GitHub with the latest platform release or in the terminal
using the wget utility:

’wget https://github.com/waves-enterprise/WE-releases/releases/download/v1.7.3/docker-compose.yml

2. Open a terminal and navigate to the directory containing the downloaded docker-compose.yml file.
Start the Docker container to deploy the platform:

docker run --rm -ti -v $(pwd):/config-manager/output wavesenterprise/config-manager:v1.7.3

Wait for the message about the end of the deployment:

’INFO [launcher] WE network environment is ready!

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.7.0

This will create 3 nodes with automatically generated credentials. Information about the nodes is available
in the file ./credentials.txt:

node-0

blockchain address:

public key:
keystore password:
keypair password:
API key:

node-1

blockchain address:

public key:
keystore password:
keypair password:
API key:

node-2

blockchain address:

public key:
keystore password:
keypair password:
API key:

3Nzi7jJ¥nlek6mMvtKbPhehxMQarAz9YQvF
7cLSA5AnvZgiL8Cnof fwxXPkpQhvviJC9eywBKSUsib8
OEtrVSL9gzj087jYx-gloQ
JInWk1lkauuZDHGXFJ-rNXQ

we

3Nxz6BYyk6CYrqH4Zudub5UYoHU6w7NXbZMs
VBkFFQmaHzv3YMiWLhh4qsCn4prUvteWs jgiiHEpWEpP
FsUp3xiX_NF-bQ9gu6t0sA
Qf2rBgBT9pnozLPO0k01yYw

we

3NtT9onn8VH1DsbioPVBuhU4pnuCtBtbsTr
8YkDPLsek5VF5bNY9g2dxAthd9AMmmRyvMPTv1H9iEpZ
T77fAroHavbWCS6Uir2oFg
bELB4EU1GDd5rS-RId_6pA

we

3. Run the finished configuration:

docker-compose up -d

Message when node and services start, successfully:

Creating network "platf_we-network" with driver "bridge"

Creating node-2 . done
Creating postgres . done
Creating node-0 . done
Creating node-1 . done
Creating auth-service ... done
Creating crawler . done
Creating data-service ... done
Creating frontend . done
Creating nginx-proxy . done

After successful launch of containers, the platform client will be available in your browser locally at 127.0.0.1
or localhost. The REST API of the node is located at 127.0.0.1/node-0 or localhost /node-0.

Note that the 80:80 port is provided for the local platform nginx server by default. If this port is occupied
by another application in your system, change the ports parameter of the nginx-proxy section in the docker-
compose.yml file, selecting the available port:

nginx-proxy:
image: nginx:latest
hostname: nginx-proxy
container_name: nginx-proxy
ports:
- "81:80"

After that, the client and the REST API will be available at 127.0.0.1:81 or localhost:81.

4. To stop running nodes, run the following command:

2.1. Platform installation 3

Technical description of the Waves Enterprise platform, Release 1.7.0

’docker—compose down

2.2 Further actions

2.2.1 Node monitoring configuration in the Sandbox mode
A node, running in the Sandbox mode, has the ability to set up monitoring of its performance using InfluxDB
and Grafana.

To install and configure monitoring, first stop the running containers using the docker-compose down com-
mand.

1. Install the Grafana Docker image:

docker run -d --name=grafana -p 3000:3000 grafana/grafana

2. Install the Docker image of InfluxDB:

docker run -d --name influxdb -p 8086:8086 -e INFLUXDB_DB=sandbox_influxdb -e INFLUXDB_
—ADMIN_USER=sandbox_influxdb_admin -e INFLUXDB_ADMIN_PASSWORD=sandbox_influxdb_pass
—quay.io/influxdb/influxdb:v2.0.3

Hint: Note that these steps are necessary to pre-install Grafana and InfluxDB. If you intend to use the
Docker Compose, you can skip them: after modifying the docker-compose.yml file below and starting the
containers, the images of both services will be downloaded and installed automatically, if not installed before.

3. Go to the ./configs/nodes/node-0 directory and open the node configuration file node.conf with ad-
ministrator rights. At the end of the configuration file, add the following parameters of the monitoring
services:

Performance metrics

kamon {
Set to "yes", if you want to report metrics
enable = yes

An anterval within metrics are aggregated. After it, them will be sent to the server
metric.tick-interval = 1 second

Reporter settings

influxdb {
hostname = "localhost"
port = 8086
database = "sandbox_influxdb"
time-units = "ms"

authentication {
user = '"sandbox_influxdb_admin"
password = '"sandbox_influxdb_pass"

}

environment.host = "node-0"

(continues on next page)

2.2. Further actions 4

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

}

Non-aggregated data (information about blocks, transactions, ...)
metrics {

enable = yes

node-id = "node-0"

influx-db {
uri = "http://localhost:8086"
db = "sandbox_influxdb"

username = "sandbox_influxdb_admin"
password = '"sandbox_influxdb_pass"

batch-actions = 100
batch-flash-duration = 1s

4. Open the docker-compose.yml file and add the monitoring services deployment parameters.
Full listing of the docker-compose.yml file

5. Launch the platform and enter the Grafana client application. To do this, start the platform containers
using the docker-compose up -d command and wait for the deployment to complete.

Then open the Grafana client available on port 3000:
http://127.0.0.1:3000/login

=/

Welcome to Grafana

Built better together

Email or username

Password

For client authentication, use the data set in the environment subcategory of services: grafana: section in
the docker-compose.yml file:

2.2. Further actions 5

http://127.0.0.1:3000/login

Technical description of the Waves Enterprise platform, Release 1.7.0

services:
grafana:
image: grafana/grafana:latest
hostname: grafana
container_name: grafana
environment:
GF_SECURITY_ADMIN_USER: 'admin'
GF_SECURITY_ADMIN_PASSWORD: 'pass'

6. Connect the platform database to Grafana. To do this, click the Configuration tab and go to the Data
Sources category:

{0} Configuration

O | B Data Sources

A Users

A Teams

¥ Plugins

tlt Preferences

o APl Keys

Add a new data source by clicking Add Data Source and select InfluxDB from the suggested list.
Then configure the database used by the platform.
HTTP section, URL field: http://influxdb:8086

InfluxDB Details section: enter data set in the environment subcategory of the services: influxdb: section
in the docker-compose.yml file:

influxdb:
image: influxdb
hostname: influxdb
container_name: influxdb
environment:
- INFLUXDB_DB=influxdb // database field
- INFLUXDB_ADMIN_USER=admin // wuser field
- INFLUXDB_ADMIN_PASSWORD=pass // password field

Click Save & Test. If the database is successfully connected, the message Data source is working will appear.
7. Set up data visualization in Grafana

To do this, click + (Add) on the left panel of the client and click the Import tab.

2.2. Further actions 6

Technical description of the Waves Enterprise platform, Release 1.7.0

it Settings

InfluxDB Default @

Query Language

InfluxQL

HTTP

URL http://influxdb:8086
Access Server (default)

Whitelisted Cookies

Auth
Basic auth With Credentials
TLS Client Auth With CA Cert

Skip TLS Verify

Forward OAuth Identity

In the Import via panel json window, insert the json file containing the data visualization parameters.
Then click Load. In the Options window, select the desired panel name, or leave the default sandbox name.
Click the Import button.

You will then be able to view your demo platform metrics on the panel you have created. Go to the
Dashboard/Manage tab and select the sandbox panel to open it.

See also
Deploying the platform in the trial mode (Sandboz)

Sandbox mode of the platform: fixing issues

2.2.2 Sandbox mode of the platform: fixing issues

1. Error when starting the container for platform deployment:

2021-02-07 16:26:59,289 INFO [launcher] ./output/configs/nodes/node-0/accounts.conf
2021-02-07 16:27:07,432 INFO [launcher] ./output/configs/nodes/node-1/accounts.conf
2021-02-07 16:27:19,948 INFO [launcher] ./output/configs/nodes/node-2/accounts.conf
2021-02-07 16:27:28,023 INFO [launcher] Creating blockchain section for the node config files
Traceback (most recent call last):
File "launcher.py", line 304, in <module>
create_new_network()
File "launcher.py", line 228, in create_new_network
create_blockchain(addresses, nodes)

(continues on next page)

2.2. Further actions 7

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

File "launcher.py", line 106, in create_blockchain
network_participants.append(ConfigFactory.from_dict ({"public-key": addresses.get_keys() [i],
IndexError: list index out of range

Cause: Second start of the container.

Solution: Delete the working directory with the platform files and start over by downloading the docker-
compose.yml file.

2. Platform startup error after successful deployment:

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container name "/node-1
—'" is already in use by container "47cfd7a517e¢160d201ae969b24392calbc2b9720c73e7324dac45daaa24814chb
—". You have to remove (or rename) that conCreating node-2 ... error

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container name '"/node-2
—" is already in use by container "ccd28832f1fb5457186e50d5e5Creating node-0 ... error
tainer to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The conCreating postgres

< error

eb8ac184f88195f1a560ee8ef7ade5c46£899d". You have to remove (or rename) that container to be abley
—to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container name "/
—postgres" is already in use by container
—"d4bcbd758faafccI9b2bc352b9cbeccbdc909£2959059b7abf17db0088916506d1". You have to remove (or,
—rename) that container to be able to reuse that name.

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container name '"/node-1
—'" is already in use by container "47cfd7a517e¢160d201ae969b24392calbc2b9720c73e7324dac45daaa24814chb
—'". You have to remove (or rename) that container to be able to reuse that name.

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container name '"/node-2
—'" is already in use by container '"ccd28832f1fb5457186e50d5e58f98ed3b35c944931589a42a0262a205a17393
—". You have to remove (or rename) that container to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The container name '"/node-0
—'" is already in use by container "7ed421ac8c8c5ca91a916970cleb8ac184£88195f1ab60ece8ef7adebc46£899d
<", You have to remove (or rename) that container to be able to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container name "/
—postgres" is already in use by container
—"d4bcbd758faafccO9b2bc352b9cbcc5dc909£2959059b7abf17db0088916506d1". You have to remove (or,
—rename) that container to be able to reuse that name.

ERROR: Encountered errors while bringing up the project.

Cause: Containers of individual nodes or services are already in use by running containers.

Solution: If you need to rebuild the platform again, stop it with the docker-compose down command. Use
the command docker stop [container ID] to stop running containers of nodes and services. You can
enter several running container IDs in a row, separated by a space, or stop all containers with the command
docker stop $(docker ps -a -q). Then use the command docker rm [container ID] to remove them.
The IDs of the containers used are available in error reports like the one above. You can remove multiple
containers or all used containers with a single command using a similar syntax.

3. Container startup error:

2.2. Further actions 8

Technical description of the Waves Enterprise platform, Release 1.7.0

ERROR: for nginx-proxy Cannot start service nginx-proxy: driver failed programming external,
—connectivity on endpoint nginx-proxy,

— (86add881e45535e666443cb00e6a6cb66£79a906e412d4£78d2db9d81c6d63d7) : Error starting userland,
—proxy: listen tcp 0.0.0.0:80: bind: address already in use

ERROR: for nginx-proxy Cannot start service nginx-proxy: driver failed programming externalj,
—connectivity on endpoint nginx-proxy,

— (86add881e45535e666443cb00e6a6cb66£79a906e412d4£78d2db9d81c6d63d7) : Error starting userland,
—proxy: listen tcp 0.0.0.0:80: bind: address already in use

ERROR: Encountered errors while bringing up the project.

Cause: The 80:80 port on your machine is occupied by another application.

Solution: Stop the containers with the docker-compose down command. Then change the ports parameter
of the nginx-proxy section in the docker-compose.yml file, selecting a free port:

nginx-proxy:
image: nginx:latest
hostname: nginx-proxy
container_name: nginx-proxy
ports:
- "81:80"

After that the client and REST API will be available at 127.0.0.1:81 or localhost:81. The rest of the services
will be available at the addresses with their former ports.

4. Error when navigating to 127.0.0.1 or localhost in Mozilla Firefox:

SSL_ERROR_RX_RECORD_TOO_LONG

Reason: By default, the localhost is accessed via HTTPS, but SSL is not provided when deploying the
platform in the Sandbox mode.

Solution: Enter the full address using HTTP: http://127.0.0.1 or http://localhost.
See also

Deploying the platform in the trial mode (Sandboz)

Node monitoring configuration in the Sandbox mode

See also

Transactions of the blockchain platform

Smart contracts

Confidential data exchange

gRPC tools

REST API methods

2.2. Further actions 9

CHAPTER

THREE

DEPLOYING A PLATFORM WITH CONNECTION TO MAINNET

In this platform deployment option, all of your transactions will be sent to the Mainnet, Waves Enterprise’s
core network. When working with the Mainnet, there are fees in WEST for each transaction.

To connect to Mainnet, you only need to install one node. In case you need to deploy a network of multiple
nodes with connection to the Mainnet, contact the technical support service for advice.

3.1 Generating balance

Please note that you must have at least 50,000 WEST on the node address or in leasing for the last 1,000
blocks from the current one. This amount constitutes the irreducible generating balance required to send
transactions and mine. If the number of tokens on the address becomes lower than the generating balance,
the node loses the ability to be selected as a miner and to send transactions until the balance is replenished
and a 1,000 blocks are generated subsequently.

3.2 Account creation, token transfer and confirming transaction

Before deploying the node software, create a WE account using the client. Then perform the following steps:

1. In the client, create a blockchain address using the Address not selected button in the upper right
corner of the application, or using the Create address button in the Tokens tab. Don’t forget to write
down or remember the seed phrase! With its help, you will always be able to restore access to your
address in case of losing your credentials. After creating the address, click the Use address button.

2. Transfer to the created address an amount in WEST that exceeds the generating balance. To do this,
go to the Tokens tab of the client and click the Add tokens via Waves Exchange button. Copy your
blockchain address, and then follow the prompts of the exchange service to purchase WEST.

3. Lease any number of WEST tokens to 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvaJu and save the identifier
for this transaction: it will be used to confirm your balance and ownership of your blockchain address.
Since tokens are leased to this address, you will be able to revoke them at any time in the future.

10

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://client.wavesenterprise.com/auth/login/main

Technical description of the Waves Enterprise platform, Release 1.7.0

3.3 Node deployment

Check out the system requirements for the blockchain platform.
After successful transfer of tokens, deploy the node:

1. Create a working directory and place in it the docker-compose.yml file. You can download this file from
the official Waves Enterprise repository on GitHub with the latest platform release or in the terminal
using the wget utility:

wget https://github.com/waves-enterprise/WE-releases/releases/download/v1.6.0/docker-compose.yml

2. Download the file mainnet.conf file from the official GitHub repository of Waves Enterprise, selecting
the current version of the platform. Then rename it to private_network.conf and place it in the
root, of the working directory.

3. Deploy your node:

docker run --rm -ti -v $(pwd):/config-manager/output/ wavesenterprise/config-manager:v1.6.0

After deploying the node, all generated addresses and passwords will be stored in the credentials.txt file in
the working directory.

3.4 Node connection to the Mainnet

1. Go to the Waves Enterprise Technical Support site and register.
2. Create a Participant Connection application for an entity or individual.

3. Fill in all the required fields of the form, in particular, the public key of the node to be connected. If
you plan to mine on Mainnet, check the box I ask for mining rights.

4. In the Confirmation of WEST token ownership field, enter the ID of the transaction by which you
leased the tokens to 3NrKDuHjUG7vSCiMMD259msBKcPRm4MvalJu.

5. Wait for the application review and confirmation of successful registration, and then start the node
whose public key you specified in the connection request:

docker-compose up -d node-0

After starting the container, the REST API of the node will be available at http://localhost:6862. To
stop your node, run the command docker-compose down.

6. To perform mining and send transactions, transfer 50,000 WEST or more to the address of the con-
nected node.

Hint: To view the status of your Mainnet license, use the GET /licenses/status request to the node.

3.3. Node deployment 11

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/tree/master/configs/v1.5.0
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.7.0

3.5 Further actions

3.5.1 Node update in the Mainnet

With each new release of the platform, we recommend that you update the nodes connected to Mainnet. All
users whose nodes are running on Mainnet receive an email notifying them that their node version has been
updated. If you haven’t received such an email, contact the technical support team.

In order to update your node, carry out the following:

1. Download the latest version of the docker-compose.yml file from the official Waves Enterprise repos-
itory on GitHub by selecting the latest release.

2. Place the docker-compose.yml file in the working directory of your node, replacing the old file.

3. If your node is working, stop it:

’docker—compose down ‘

4. After stopping the node, enter the following command:

’docker—compose up -d node-0 ‘

The first time you start a node, starting from version 1.4.0, the state migrator will automatically start. The
migration is performed automatically and takes a few minutes. If the migration is successful, you will see
the Migration finished successfully message, and the node will continue to run.

Attention: If you are not using Docker Compose, contact the technical support team for instructions on
how to update the node.

See also
Deploying a platform with connection to Mainnet
Mainnet: fizing issues

Waves Enterprise Mainnet fees

3.5.2 Mainnet: fixing issues

When deploying a platform with a connection to Mainnet, it is possible that such errors may occur during
the node deployment phase:

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container name '"/node-1
—'" is already in use by container "47cfd7a517e160d201ae969b24392calbc2b9720c73e7324dac4bdaaa24814chb
—". You have to remove (or rename) that conCreating node-2 ... error

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container name '"/node-2
" is already in use by container "ccd28832f1fb5457186e50d5e5Creating node-0 ... error
tainer to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The conCreating postgres ...

< error
eb8ac184f88195f1a560ee8ef7ade5c46£899d". You have to remove (or rename) that container to be abley
—to reuse that name.

(continues on next page)

3.5. Further actions 12

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/releases
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

ERROR: for postgres Cannot create container for service postgres: Conflict. The container name "/
—postgres" is already in use by container
"d4bc6d758faafcc9b2bc352b9cbcc5dc909£2959059b7abf17db0088916506d1". You have to remove (or,
—rename) that container to be able to reuse that name.

ERROR: for node-1 Cannot create container for service node-1: Conflict. The container name '"/node-1
—" is already in use by container "47cfd7a517e160d201ae969b24392calbc2b9720c73e7324dac4bdaaa24814ch
—". You have to remove (or rename) that container to be able to reuse that name.

ERROR: for node-2 Cannot create container for service node-2: Conflict. The container name '"/node-2
—'" is already in use by container "ccd28832f1fb5457186e50d5e58f98ed3b35c944931589a42a0262a205a17393
", You have to remove (or rename) that container to be able to reuse that name.

ERROR: for node-0 Cannot create container for service node-0: Conflict. The container name '"/node-0
—'" is already in use by container "7ed421ac8c8c5ca91a916970cleb8ac184£88195f1a560ee8ef7adebc46£899d
—'". You have to remove (or rename) that container to be able to reuse that name.

ERROR: for postgres Cannot create container for service postgres: Conflict. The container name "/
—postgres" is already in use by container
<"d4bc6d758faafccO9b2bc352b9cbec5dc909£2959059b7abf17db0088916506d1". You have to remove (or,
—rename) that container to be able to reuse that name.

ERROR: Encountered errors while bringing up the project.

Cause: Containers of individual nodes or services are already in use by running containers.

Solution: Stop the node with the docker-compose down command. Use the command docker stop
[container ID] to stop running containers of nodes and services. You can enter several running con-
tainer IDs in a row, separated by a space, or stop all containers with the command docker stop $(docker
ps -a -q). Then use the command docker rm [container ID] to remove them. The IDs of the contain-
ers used are available in error reports like the one above. You can remove multiple containers or all used
containers with a single command using a similar syntax.

After removing the extraneous containers, turn the platform around again.
See also

Deploying a platform with connection to Mainnet

Node update in the Mainnet
See also

Waves Enterprise Mainnet fees

Generators

3.5. Further actions 13

CHAPTER

FOUR

DEPLOYMENT OF THE PLATFORM IN A PRIVATE NETWORK

If your project or solution requires an independent blockchain, you can deploy your own blockchain network
based on the Waves Enterprise platform. Our experts will help you configure the delivery of the platform to
meet the needs of your project.

However, if you need to change any settings or configure the platform by yourself, this section provides a
step-by-step guide for deploying and manual configuring the platform for a private network.

4.1 Obtaining a private network license and associated files

To deploy the platform on a private network, you need to get the kind of license that suits your purposes:
trial, commercial or non-commercial.

To discuss the details of your license, contact Waves Enterprise Sales at sales@wavesenterprise.com.

After that, you will be sent the YAML file for Kubernetes needed for the initial deployment of the platform
and instructions on how to deploy and run the platform for your hardware configuration.

Before deployment, familiarize yourself with the blockchain platform system requirements.

4.2 Creation of a node account

After obtaining the license and initial deployment of the platform, you will need to create accounts for each
node of your future network.

To generate the keys use the AccountsGeneratorApp utility, which is included in the generators package.
You can download this package from the official repository of Waves Enterprise on GitHub by selecting the
platform version you use.

A node account includes an address and a key pair: public and private keys. The address and the public
key will be shown on the command line during account creation using the generators utility. Node’s private
key is written to the key storage file keystore.dat, which is placed in the directory of the node.

Note: If you use GOST cryptography, node account generation is only possible with the GUI and preinstalled
CryptoPro components. The key storage in this case is located in the system directory, the address of which
depends on the OS.

To create an account, the accounts.conf configuration file is used, which contains the account generation
parameters. This file is located in the directory of each node.

14

mailto:sales@wavesenterprise.com
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.7.0

To create a node account, go to its directory and place in it the downloaded file generators.jar. Then run it
by entering the file accounts.conf as an argument:

java -jar generators-x.x.x.jar AccountsGeneratorApp accounts.conf

When you create a key pair, you can make up your own password to protect the node’s key pair. Later
on, you can use it manually every time you start your node, or you can set global variables to ask for the
password at system startup. See the description of the account generator for more information on how to
use the password for a node key pair.

If you do not want to use a password to protect the key pair, press the Enter key, leaving the field blank.

The following messages will be displayed as a result of the utility operation:

2021-02-09 16:03:18,940 INFO [main] c.w.g.AccountsGeneratorApp$ - 1 Address:
—3Nu7MwQ1eSmDVwBzrNinyzR8wqb2yzdUcyN; public key: F4ytnnS6H72ypCEpgNKYftGotpdX83ZxtWRX2dyGzDiA
2021-02-09 16:03:18,942 INFO [main] c.w.g.AccountsGeneratorApp$ - Generator done

A keystore.dat file will be created in the directory of the node, which contains the account’s public key.

4.3 Platform configuration for operation in a private network

Following files are used for configuration of the platform:

e The node.conf is the main configuration file of a node, which defines its operating principles and a
set of options.

e The api-key-hash.conf is a configuration file for generating api-key-hash and privacy-api-key-hash
field values; it is used to configure node authorization when choosing authorization method by api-key
hash. The guidelines for working with this configuration file will be given when configuring the autho-
rization method of the node.

Below is a step-by-step guide on how to manually configure a single node to work on a private network. If
you have multiple nodes deployed on your network, you will need to perform similar configuration steps for
each of them.

Step 1. General configuration of the platform

This step configures consensus, Docker smart contract execution and mining. All the parameters required
for this are located in the node.conf file.

Installation and usage of the platform

4.3.1 General platform configuration: consensus algorithm

The Waves Enterprise blockchain platform supports three consensus algorithms - PoS, PoA and CFT. De-
tailed information about the consensus algorithms used can be found in the article Consensus algorithms.

The consensus settings are located in the consensus block of the blockchain section:

consensus {
type - un

}

Select the preferred consensus type in the type field. Available values: pos, poa, and cft.

4.3. Platform configuration for operation in a private network 15

Technical description of the Waves Enterprise platform, Release 1.7.0

type = "pos” or the commented consensus block

If you do not select a consensus type in this field, leaving it blank, the default PoS algorithm will be used.
This option is equivalent to selecting the pos value. In this case other fields in the consensus block are not
required, you only need to configure the PoS mining operation in the genesis block:

consensus {

type = "pos"
}

genesis {
average-block-delay = "60s"
initial-base-target = 153722867
initial-balance = "16250000 WEST"

The following parameters of the genesis block in the blockchain section are responsible for mining with
PoS:

* average-block-delay - average block creation delay. The default value is 60 seconds.

e initial-base-target - the initial base number to regulate the mining process. The higher the value,
the more often the blocks are created. Also, the value of the miner balance affects the use of this
parameter in mining - the higher the balance of the miner, the lower the value of initial-base-target
becomes when calculating the queue of node-miner in the current round.

e initial-balance - the initial balance of the network. The greater the share of the miner’s balance
from the initial balance of the network, the smaller the value of initial-base-target becomes for
determining the miner node of the current round.

type — wpoaw

To configure the PoA consensus algorithm, add the following parameters to the consensus block:

consensus {

type = "poa"
round-duration = "17s"
sync-duration = "3s"

ban-duration-blocks = 100
warnings-for-ban = 3
max-bans-percentage = 40

}

round-duration - length of the block mining round in seconds.

e sync-duration - the block mining synchronization period in seconds. The total round time is the sum
of round-duration and sync-duration.

* ban-duration-blocks - the number of blocks for which the miner node is banned.

warnings-for-ban - the number of rounds during which the miner node receives warnings. At the end
of this number of rounds, the node is banned.

* max-bans-percentage - percentage of miner node from the total number of nodes in the network that
can be banned.

4.3. Platform configuration for operation in a private network 16

Technical description of the Waves Enterprise platform, Release 1.7.0

type = "cft”

The basic settings of the CFT are identical to those of the PoA consensus:

consensus {
type: cft
warnings-for-ban: 3
ban-duration-blocks: 15
max-bans-percentage: 33
round-duration: 7s
sync-duration: 2s
max-validators: 7
finalization-timeout: 4s
full-vote-set-timeout: 4s

In comparison with the PoA, the CFT has two additional configuration parameters needed to validate blocks
in a voting round:

¢ max-validators — limit of validators participating in a current round.

* finalization-timeout — time period, during which a miner waits for finalization of the last block in a
blockchain. After that time, the miner will return the transactions back to the UTX pool and start
mining the round again.

¢ full-vote-set-timeout - optional parameter which defines, how much time a miner will wait for the
full set of votes from all validators after the end of the round (node configuration file parameter:
round-duration).

While configuring CFT, please note the following recommendations:

e The sync-duration parameter must be different from zero. It is recommended to set the value from
1 to 5 seconds, depending on the size and complexity of transactions.

e Approximate calculation of the finalization-timeout parameter: (round-duration +
sync-duration) / 2. It is not recommended to underestimate this value to speed up finalization:
if the miner gathers the necessary number of votes before the end of this time, it will immediately
release the finalizing microblock.

o If there is a large number of miners in the network, limit the number of round validators by the
max-validators parameter. The validator selection mechanism will ensure that all validators rotate
evenly across rounds. Too many validators can adversely affect network performance. The recom-
mended range of values is: from 5 to 10.

e If the network is running under constant load, set the full-vote-set-timeout parameter. Until this
timeout expires, the miner waits for a full set of votes from the validators. If the validator encounters
any problem, the network uses the full-vote-set-timeout to create an additional time slot that
allows the lagging validator to complete synchronization. The recommended value is sync-duration
* 2, it should not exceed sync-duration + finalization-timeout.

See also
Consensus algorithms
Deployment of the platform in a private network
General platform configuration: mining
General platform configuration: execution of smart contracts

Installation and usage of the platform

4.3. Platform configuration for operation in a private network 17

Technical description of the Waves Enterprise platform, Release 1.7.0

4.3.2 General platform configuration: execution of smart contracts

If you are going to develop and execute smart contracts in your blockchain, set their execution parameters
in the docker-engine section of the node configuration file:

docker-engine {

enable = yes
integration-tests-mode-enable = no
docker-host = "uniz:///var/run/docker.sock"
execution-limits {

startup-timeout = 10s

timeout = 10s

memory = 512

memory-swap = O

}
reuse-containers = yes
remove-container-after = 10m
allow-net-access = yes

remote-registries = [
{
domain = "myregistry.com:5000"
username = "user"
password = '"password"
}
]
check-registry-auth-on-startup = no
default-registry-domain = 'registry.wavesenterprise.com”

contract-execution-messages-cache {
expire-after = 60m
max-buffer-size = 10
max-buffer-time = 100ms

}

contract-auth-expires-in = Im

grpc-server {
host = "192.168.97.3"

port = 6865
}
}
remove-container-on-fail = yes

enable — enable transaction processing for Docker contracts.

integration-tests-mode-enable — Docker contracts testing mode. When this option is enabled,
smart contracts are executed locally in the container.

docker-host — Docker daemon address (optional). If this field is commented out, the address of the
daemon will be taken from the system environment.

startup-timeout — time taken to create the contract container and register it in the node (in seconds).

timeout — the time taken to execute the contract (in seconds).

memory — memory limit for the contract container (in megabytes).

memory-swap — allocated amount of virtual memory for the contract container (in megabytes).

e reuse-containers — using one container for several contracts when using the same Docker image. To
enable this option, specify yes, to disable - no.

remove-container-after — the time interval of container inactivity, after which it will be removed.

4.3. Platform configuration for operation in a private network 18

Technical description of the Waves Enterprise platform, Release 1.7.0

* allow-net-access — permission to access the network.
* remote-registries — Docker registry addresses and authorization settings.

e check-registry-auth-on-startup — check authorization for Docker registries at node startup. To
enable this option, specify yes, to disable - no.

* default-registry-domain — default Docker registry address (optional). This parameter is used if no
repository is specified in the contract image name.

* contract-execution-messages-cache — settings of the cache with the execution status of transactions
on Docker contracts.

* expire-after — time to store the status of the smart contract.
* max-buffer-size and max-buffer-time — settings for size and time of the status cache.

e contract-auth-expires-in — lifetime of the authorization token used by smart contracts for calls to
the node.

» grpc-server — gRPC server settings section for Docker contracts with the gRPC API.
* host — network address of the node (optional).
e port — port of the gRPC server. Specify the listening port for gRPC requests used by the platform.

e remove-container-on-fail —removes the container if an error occurred during its startup. To enable
this option, specify yes, to disable - no.

See also
Deployment of the platform in a private network
Development and usage of smart contracts
General platform configuration: consensus algorithm
General platform configuration: mining

Installation and usage of the platform

4.3.3 General platform configuration: mining

The blockchain mining parameters are in the miner section of the node configuration file:

miner {
enable = yes
quorum = 2
interval-after-last-block-then-generation-is-allowed = 10d
micro-block-interval = 5s
min-micro-block-age = 3s
max-transactions-in-micro-block = 500
minimal-block-generation-offset = 200ms

enable - activation of the mining option. Enable - yes, disable - no.

¢ quorum - required number of node miners to create a block. The 0 value will allow to generate blocks
offline and is used only for test purposes in networks with one node. When specifying this value, take
into account that your own miner node does not sum up with the value of this parameter, i.e. if you
specify quorum = 2, then you need at least 3 miner nodes for mining.

interval-after-last-block-then-generation-is-allowed - enable block generation only if the
last block is not older the given period of time (in days).

4.3. Platform configuration for operation in a private network 19

Technical description of the Waves Enterprise platform, Release 1.7.0

* micro-block-interval - an interval between microblocks (in seconds).

* min-micro-block-age - a minimal age of the microblock (in seconds).

* max-transactions-in-micro-block - a maximum number of transactions in the microblock.

* minimal-block-generation-offset - a minimal time interval between blocks (in milliseconds).
The mining settings depend on the planned size of transactions on your network.

Also, blockchain mining is closely related to the chosen consensus algorithm. The following parameters of
the miner section must be taken into account when configuring the consensus parameters:

* micro-block-interval - an interval between microblocks (in seconds).

* min-micro-block-age - minimum age of microblock. The value is specified in seconds and must not
exceed the value of micro-block-interval.

* minimal-block-generation-offset - a minimal time interval between blocks (in milliseconds).

The values of microblock creation parameters must not exceed or otherwise conflict with the values of
average-block-delay for PoS and round-duration for PoA and CFT. The number of microblocks in a
block is not limited but depends on the size of the transactions included in the microblock.

See also
Deployment of the platform in a private network
General platform configuration: consensus algorithm
General platform configuration: execution of smart contracts
Waves-NG blockchain protocol

Step 2. Precise platform configuration

This step configures the node’s gRPC and REST API tools, their authorization, TLS, and confidential data
access groups. You may need these settings if you change the pre-set settings for your hardware or software
configuration.

All necessary parameters are also located in the node.conf node configuration file. The api-key-hash.conf
file is also used to configure authorization, which is necessary when selecting the authorization method by a
given api-key string hash.

You will also need the keytool utility included in the Java SDK or JRE to configure TLS.

4.3.4 Precise platform configuration: gRPC and REST API authorization
Authorization is necessary to provide access to the gRPC and REST API tools of a node. For this purpose,
the Waves Enterprise blockchain platform supports two types of authorization:

* api-key string hash authorization;

o JWT token (oAuth 2) authorization.

Attention: Authorization by api-key hash is a simple means of accessing a node, but the security
level of this authorization method is relatively low. An intruder can gain access to a node if the string
api-key reaches him. If you want to improve security of your network, we recommend using JWT token
authentication via an authorization service.

The auth section of the node configuration file is used to configure authorization.

4.3. Platform configuration for operation in a private network 20

Technical description of the Waves Enterprise platform, Release 1.7.0

type = ”api-key”

Authorization by hash of the key string api-key is used in the default node. When selecting the authorization
method by hash of the key string api-key the section auth contains the following parameters:

auth {
type = "api-key"

Hash of API key string
api-key-hash = "G3PZAsY6EA8esgpKxB2UYTQJZJPzc14gLnNbm2xvcDf6"

Hash of API key string for Privacydp: routes
privacy-api-key-hash = "G3PZAsY6EA8esgpKxB2UYTQJZJPzcl4gLnNbm2xvcDf6"

* api-key-hash - hash from the REST API access key string.
e privacy-api-key-hash - hash from the key string to access privacy methods.

To fill these parameters you will need the ApiKeyHash utility from the package generators-x.x.x.jar,
which you can download from the official repository of Waves Enterprise on GitHub, selecting the platform
version you use.

Place this file in the root folder of the platform and also create a file api-key-hash. conf:

apikeyhash-generator {
waves-crypto = yes
api-key = "some string for api-key"

}

In this file, enter the string that you want to hash and use for authorization in the api-key parameter.

Enter the finished file api-key-hash.conf as an argument when you run the ApiKeyHash utility of the
generators package:

java -jar generators-x.x.x.jar ApiKeyHash api-key-hash.conf

Output example:

Api key: some string for api-key
Api key hash: G3PZAsY6EA8esgpKxB2UYTQJZJPzc14gLnNbm2xvcDf6

2021-02-11 16:31:21,586 INFO [main] c.w.g.ApiKeyHashGenerator$ - Generator done

Specify the resulting Api key hash value in the api-key-hash and privacy-api-key-hash parameters in
the auth section of the node configuration file as indicated above.

type = 7oauth2”

When selecting authorization by JWT-token, the auth section of the node configuration file looks like this:

auth {
type: "oauth2"
public-key: "AuthorizationServicePublicKeyInBase64"

}

The public key for oAuth is generated during the initial deployment of the node. It is located in the
file ./auth-service-keys/jwtRS256.key.pub. Copy the line between ----- BEGIN PUBLIC KEY----- and

4.3. Platform configuration for operation in a private network 21

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.7.0

————— END PUBLIC KEY----- and paste it as the public-key parameter of the auth section of the node

configuration file.

Hint: The REST API and gRPC interfaces use the same api-key for authorization by key string and

public-key for authorization by JWT-token.

See also

Deployment of the platform in a private network

Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: node gRPC and REST API configuration

Precise platform configuration: TLS

4.3.5 Precise platform configuration: node gRPC and REST API configuration

The gRPC and REST API parameters for each node are in the api section of the configuration file:

api {
rest {
Enable/disable REST API
enable = yes

Network address to bind to
bind-address = "0.0.0.0"

Port to listen to REST API requests
port = 6862

Enable/disable TLS for REST
tls = no

Enable/disable CORS support
cors = yes

Maxz number of transactions

returned by /transactions/address/{address}/limit/{limit}

transactions-by-address-1limit = 10000

distribution-address-limit = 1000
}

grpc {
Enable/disable gRPC API
enable = yes

Network address to bind to
bind-address = "0.0.0.0"

Port to listen to gRPC API requests
port = 6865

Enable/disable TLS for GRPC
tls = no

(continues on next page)

4.3. Platform configuration for operation in a private network

22

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

Parameters for internal gRPC services. Recommended to be left as is.
services {
blockchain-events {
max-connections = 5
history-events-buffer {
enable: false
size-in-bytes: 50MB
}
}

privacy-events {
max-connections = 5
history-events-buffer {
enable: false
size-in-bytes: 50MB
}
}

contract-status-events {
max-connections = 5
}
}

rest — ” block

The rest { } block is used for setting of the REST API interface. It includes following parameters:
* enable - activation of the node REST API. Enabling - yes, disabling - no.
* bind-address - network address of the node where the REST API interface will be available.
* port - port for listening REST API requests.
* tls - enable/disable TLS for REST API requests. Enable - yes, disable - no.
* cors - support of cross-domain requests to REST APIL. Enable - yes, disable - no.

* transactions-by-address-limit - maximum number of transactions returned by GET /
transactions/address/{address}/1limit/{limit} method.

¢ distribution-address-1limit - maximum number of addresses specified in the limit field and returned
by GET /assets/{assetId}/distribution/{height}/1limit/{1limit} method.

grpc — ” block

The grpc { } block is used to configure the gRPC toolkit of a node. It includes the following parameters:
e enable - activation of the gRPC interface on the node.
* bind-address - the network address of the node where the gRPC interface will be available.
* port - the listening port of the gRPC requests.
* tls - enable/disable TLS for gRPC requests. This option requires setting of the node TLS.

The services{ } section contains parameters of public gRPC services that collect data from the platform
components:

4.3. Platform configuration for operation in a private network 23

Technical description of the Waves Enterprise platform, Release 1.7.0

* blockchain-events - service for collecting data on events in the blockchain network;
e privacy-events - service for collecting data on events related to privacy groups;
* contract-status-events - service for collecting data on statuses of smart contracts.
In this section, we recommend to use the default parameters mentioned in the example.
See also
Deployment of the platform in a private network
Precise platform configuration: gRPC and REST API authorization
Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: TLS

4.3.6 Precise platform configuration: TLS

In order to work with the node TLS, apart its configuration in the node config file, a user should get a
keystore file itself with the use of the keytool utility:

keytool \

-keystore we.jks -storepass 123456 -keypass 123456 \

-genkey -alias we -keyalg RSA -validity 9999 \

-dname "CN=Waves Enterprise,0U=security,0=WE,C=RU" \

-ext "SAN=DNS:welocal.dev,DNS:localhost,IP:51.210.211.61,IP:127.0.0.1"

keystore - keystore file name.

storepass - keystore password, which should be stated in the keystore-password section of the node
config file.

* keypass - private key password, which should be stated in the private-key-password section of the
config file.

* alias - an alias name (upon a user decision).

* keyalg - keypair generation algorithm.

e validity - keypair validity time in days.

¢ dname - distinguished name according to the X.500 standard, connected with the keystore alias.

* ext - extensions that are used for key generation, all possible host names and IP addresses should be
stated for work in different networks.

As a result of the keytool utility execution, the keystore file with the filename we.jks will be obtained. In
order to connect with the node operating with the TLS, a user should also generate a client certificate:

keytool -export -keystore we.jks -alias we -file we.cert

The obtained certificate file we.cert should be imported into the trusted certificate storage. If the node is
located in one network with a user, it will be enough to state a relative path to the we. jks file in the node
config file, as demonstrated above.

In case the node is located in another network, a we . cert certificate file should be imported into the keystore:

keytool -importcert -alias we -file we.cert -keystore we. jks

4.3. Platform configuration for operation in a private network 24

Technical description of the Waves Enterprise platform, Release 1.7.0

Then also specify the relative path to we. jks in the t1ls section of the node configuration file.

The tls section contains the following parameters:

tls {

type = EMBEDDED

keystore-path = ${node.directory}"/we_tls. jks"
keystore-password = ${TLS_KEYSTORE_PASSWORD}
private-key-password = ${TLS_PRIVATE_KEY_PASSWORD}
}

* type - TLS mode status. Possible options: DISABLED (disabled, in this case other options should
be excluded or commented) and EMBEDDED (enabled, the certificate is signed by a node provider and
packed within a JKS file (keystore); the certificate directory and keystore access parameters should be
stated by a user in the fields below).

* keystore-path - keystore relative path within the node directory: ${node.directory}"/we_tls.
jks".

¢ keystore-password - password for the node keystore. Specify the password you set earlier with the
storepass flag for the keytool utility.

* private-key-password - password for the private key. Specify the password you set earlier with the
keypass flag for the keytool utility.

See also
Deployment of the platform in a private network
Precise platform configuration: gRPC and REST API authorization
Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: node gRPC and REST API configuration

4.3.7 Precise platform configuration: node gRPC and REST API configuration

If you use privacy API methods to manage confidential data, configure the access to confidential data for
which the privacy section of the node configuration file is intended (example using the PostgreSQL database
and enabling periodic deletion of files that are not in the blockchain):

privacy {

storage {

vendor = postgres

schema = "public"

migration-dir = "db/migration"

profile = "slick.jdbc.PostgresProfile$"

jdbc-config {
url = "jdbc:postgresql://postgres:5432/node-1"
driver = "org.postgresql.Driver"
user = postgres
password = wenterprise
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000

numThreads = 20

(continues on next page)

4.3. Platform configuration for operation in a private network 25

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

cleaner {
enabled: yes
interval: 10m
confirmation-blocks: 100
pending-time: 72h

Before changing it, decide on the database that you plan to use to store confidential data. The Waves
Enterprise blockchain platform supports interaction with PostgreSQL database or Amazon S3.

If using PostgreSQL DBMS, you will need to install the JDBC interface. When using Amazon S3, the
information must be stored on the Minio server.

After installing the appropriate DBMS for your project, proceed to configuring the block of the privacy
section. Specify the DBMS you use in the vendor parameter:

* postgres - for PostgreSQL;
e 53 - for Amazon S3.

If you do not use privacy API methods, specify none and comment out or delete the rest of the parameters.

vendor = postgres

When using the PostgreSQL DBMS, the storage block of the privacy section looks like this:

storage {

vendor = postgres

schema = "public"

migration-dir = "db/migration"

profile = "slick.jdbc.PostgresProfile$"

jdbc-config {
url = "jdbc:postgresql://postgres:5432/node-1"
driver = "org.postgresql.Driver"
user = postgres
password = wenterprise
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000
numThreads = 20

}

schema - the used scheme of interaction between elements within the database. By default, the public
scheme is used, but if your database provides another scheme, specify its name.

migration-dir - directory for data migration.

profile - name of the profile for JDBC access.

url - address of the PostgreSQL database.

driver - name of the JDBC (Java SataBase Connectivity) driver that allows Java applications to
communicate with the database.

e user - user name to access the database.

4.3. Platform configuration for operation in a private network 26

https://www.postgresqltutorial.com/install-postgresql/
https://aws.amazon.com/s3/getting-started/?nc=sn&loc=6&dn=1
https://jdbc.postgresql.org/documentation/head/index.html
https://min.io/download/

Technical description of the Waves Enterprise platform, Release 1.7.0

» password - password to access the database.
¢ connectionPool - name of the connection pool, HikariCP by default.
* connectionTimeout - time of connection inactivity before it is broken (in milliseconds).

e connectionTestQuery - a test query to test the connection to the database. For PostgreSQL, it is
recommended to send SELECT 1.

¢ queueSize - the size of the query queue.
¢ numThreads - number of simultaneous connections to the database.

During the installation of the database running PostgreSQL, create an account to access the database. Then
enter the login and password you specified in the user and password fields. When installing JDBC, set the
profile name, which you then specify in the profile field.

In the url field, specify the address of the database you are using in the following format:

jdbc:postgresql://<POSTGRES_ADDRESS>: <POSTGRES_PORT>/<POSTGRES_DB>

* POSTGRES_ADDRESS - PostgreSQL host address.
e POSTGRES_PORT - PostgreSQL host port number.
¢ POSTGRES_DB - name of the PostgreSQL database.

You can specify the database address along with the account data using the user and password parameters:

privacy {
storage {

url = "jdbc:postgresql://yourpostgres.com:5432/privacy_node_O7user=user_privacy_node_0@company&
—password=7nZL7Jr41q0WUHz5qKdypA&sslmode=require"

}

In this example, user_privacy_node_O@company is the username, 7nZL7Jr41q0WUHz5qKdypA is its password.
You can also use the command sslmode=require to require a password when authorizing.

vendor = s3

When using Amazon S3 DBMS, the storage block of the privacy section looks like this:

storage {

vendor = s3

url = "http://localhost:9000/"
bucket = "privacy"

region = "aws-global"
access-key-id = "minio"
secret-access-key = "miniol123"
path-style-access-enabled = true
connection-timeout = 30s
connection-acquisition-timeout = 10s
max-concurrency = 200
read-timeout = Os

}

e url - address of the Minio server to store data. By default, Minio uses the port 9000.

4.3. Platform configuration for operation in a private network 27

Technical description of the Waves Enterprise platform, Release 1.7.0

* bucket - name of the S3 database table to store data.

* region - name of the S3 region, the parameter value is aws-global.

* access-key-id - identifier of the data access key.

* secret-access-key - data access key in the S3 repository.

* path-style-access-enabled = true - unchangeable parameter to specify the path to S3 table.

* connection-timeout - period of inactivity before the connection is broken (in seconds).

* connection-acquisition-timeout - period of inactivity during connection establishment (in seconds).
* max-concurrency - number of concurrent accesses to the storage.

* read-timeout - period of inactivity when reading data (in seconds).

During installation of the Minio server, you will be prompted for a login and password to access the data.
Enter your username in the access-key-id field and your password in the secret-access-key field.

cleaner section

The cleaner section is designed to configure the periodic deletion of confidential data that is stored in the
database, but for one reason or another did not get into the blockchain (for example, in case of transaction
rollback). This section includes the following parameters:

* enabled - enable/disable periodic deletion of files that did not hit the blockchain.
e interval - interval for cleaning the files.

e confirmation-blocks - the period of time in blocks during which the hash data transaction exists in
the blockchain, and after which it is deleted.

e pending-time - the maximum period of time for which a file with data is saved without hitting the
blockchain.

See also
Deployment of the platform in a private network
Precise platform configuration: gRPC and REST API authorization
Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: TLS

4.3.8 Precise platform configuration: anchoring

If you plan to use the data anchoring from your network to a larger network, configure the data transfer
settings in the anchoring block of the node’s configuration file. In the terminology of the configuration
file, targetnet is the blockchain to which your node will perform anchoring transactions from the current
network.

anchoring {
enable = yes
height-range
height-above
threshold = 20
tx-mining-check-delay = 5 seconds
tx-mining-check-count = 20

= 30
=8

(continues on next page)

4.3. Platform configuration for operation in a private network 28

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

targetnet-authorization {
type = "oauth2" # "api-key" or "oauth2"
authorization-token = ""

authorization-service-url = "https://client.wavesenterprise.com/authServiceAddress/v1/
—auth/token"
token-update-interval = "60s"

a,pi_key_ha,sh — nn
privacy-api-key-hash = ""
}

targetnet-scheme-byte = "V"

targetnet-node-address = "https://client.wavesenterprise.com:6862/NodeAddress"
targetnet-node-recipient-address = ""

targetnet-private-key-password = ""

wallet {
file = "node-1_mainnet-wallet.dat"
password = "small"

}
targetnet-fee = 10000000
sidechain-fee = 5000000

}

Anchoring parameters

* enable - enable or disable anchoring (yes / no);

* height-range - the block interval, after which the private blockchain node sends transactions to the
Targetnet for anchoring;

* height-above - the number of blocks in Targetnet, after which the private blockchain node creates a
confirmation anchoring transaction with the data of the first transaction. It is recommended to set the
value not exceeding the maximum value of rollback of blocks in Targetnet (max-rollback);

e threshold - the number of blocks that is subtracted from the current height of the private blockchain.
Anchoring transaction sent to Targetnet will receive information from the block at current-height -
threshold. If the value 0 is set, the block value at the current block height is written to the anchoring
transaction. It is recommended to set the value close to the maximum rollback value in the private
blockchain (max-rollback);

e tx-mining-check-delay - the wait time between checks of transaction availability for anchoring in
Targetnet;

* tx-mining-check-count - the maximum number of checks for transaction availability for anchoring
in the Targetnet, after completion of which the transaction is not considered to enter the network.

Depending on the mining settings on the Targetnet, the distance between anchoring transactions may vary.
The set value of height-range defines the approximate interval between anchoring transactions. The actual
time for anchoring transactions to hit a mined block on the Targetnet network may be longer than the time
it takes to mine the number of height-range blocks on the Targetnet network.

4.3. Platform configuration for operation in a private network 29

Technical description of the Waves Enterprise platform, Release 1.7.0

Authorization parameters for anchoring
* type - type of authorization when using anchoring: * api-key - authorization by an api-key-hash; *
auth-service - authorization by aJWT-token through authorization service.

If you choose authorization by api-key-hash, it is sufficient to specify the key value in the api-key parame-
ter. If you choose authorization by a JWT-token, you must specify type = "auth-service" and uncomment
and fill in the parameters below:

¢ authorization-token - permanent authorization token;
* authorization-service-url - URL of the authorization service;

* token-update-interval - interval for authorization token update.

Targetnet access parameters
A separate keystore.dat file is generated for the node that will send anchoring transactions to the Targetnet
with the key pair for access to the Targetnet.

* targetnet-scheme-byte - Targetnet network (Waves Enterprise Mainnet - V);

* targetnet-node-address - full network address of the node together with the port number in the
Targetnet network to which transactions will be sent for anchoring. The address must be specified
together with the connection type (http/https), port number and parameter NodeAddress: http://
node.weservices.com:6862/NodeAddress;

* targetnet-node-recipient-address - the address of the node in the Targetnet network, to which
the transactions for anchoring will be written, signed by the key pair of this address;

* targetnet-private-key-password - node private key password to sign anchoring transactions.

The network address and port for anchoring to the Targetnet network can be obtained from Waves Enter-
prise technical support specialists. If you use multiple private blockchains with mutual anchoring, use the
appropriate private network settings.

Key pair file parameters for signing anchoring transactions in Targetnet (wallet section)
e file - file name and path to the file storage directory with the key pair for signing anchoring transac-
tions in the Targetnet network. The file is located on the private network node;

 password - the password of the key pair file.

Fee parameters

* targetnet-fee - a fee for issuing a transaction for anchoring in the Targetnet network;
* sidechain-fee - a fee for issuing a transaction in the current private blockchain.
See also
Deployment of the platform in a private network
Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: TLS

4.3. Platform configuration for operation in a private network 30

Technical description of the Waves Enterprise platform, Release 1.7.0

4.3.9 Precise platform configuration: snapshot

The node.consensual-snapshot block of the node configuration file is used for the snapshot mechanism con-
figuration:

node. consensual-snapshot {
enable = yes
snapshot-directory = ${node.data-directory}"/snapshot"
snapshot-height = 12000000
wait-blocks-count = 10
back-off {
max-retries = 3
delay = 10m
}

consensus-type = CFT

This block includes following parameters:

e snapshot-directory — directory on a hard drive to save snapshot data. By default, it is the snapshot
subdirectory in the directory with node data;

* snapshot-height — height of the blockchain at which the data snapshot will be created;

¢ wait-blocks-count — number of blocks after data snapshot creation is finished, after which the node
sends a message to its peers (addresses from the peers list in the node configuration file) that the data
snapshot is ready;

* back-off — settings section for retries to create a data snapshot in case of errors: max-retries — total
number of retries; delay — interval between retries (in minutes);

¢ consensus-type — consensus type of the genesis block of the new network. Possible values: POA, CFT.
See also
Deployment of the platform in a private network
Snapshooting

Precise platform configuration: snapshot

4.3.10 Precise platform configuration: node in the watcher mode

The blockchain node can be configured for operation in the watcher mode.
In this mode, the node functions as follows:
e The watcher node does not obtain or send unconfirmed transactions.
¢ The watcher node does not create new blocks.
¢ The watcher node does not upload or execute smart contracts.
¢ The UTX pool of the watcher node does not synchronize with other nodes.
¢ The watcher node obtains data of microblocks, blocks and transactions for updating its state.

This mode allows to create nodes that are able to obtain the actual blockchain state, but do not participate
in mining and do not overflow the network with corresponding messages.

4.3. Platform configuration for operation in a private network 31

Technical description of the Waves Enterprise platform, Release 1.7.0

Configuration

To set the node in the watcher mode, change the mode parameter in the node.network section of the
configuration file:

node {

network {
ENUM: default or watcher
mode = default

¢ default - the standard operational mode;
* watcher - the watcher mode.
See also
Deployment of the platform in a private network
Precise platform configuration: gRPC and REST API authorization
Precise platform configuration: node gRPC and REST API configuration
Precise platform configuration: node gRPC and REST API configuration

Full examples of configuration files to configure each node are given by here.

4.4 Genesis block signing and starting the network

After configuring your network’s nodes, you must create a genesis block, the first private blockchain block
which contains the transactions that determine a node’s initial balance and permissions.

A genesis block is signed by the GenesisBlockGenerator utility included in the generators package. It uses
the node configuration file node.conf that you set up as an argument:

java -jar generators-x.x.x.jar GenesisBlockGenerator node.conf

As a result of the utility’s work, the fields genesis-public-key-base-58 and signature located in the
genesis block of the blockchain section of the node configuration file will be filled with the generated
values of the public key and signature of the genesis block.

Example:

genesis-public-key-base-58: "4ozcAj...penxrm"
signature: "5QNVGF...7Bj4Pc"

Note: If you use GOST cryptography, the process of signing a genesis block is the same. However, the
CryptoPro components must be pre-installed.

After signing the genesis block, the platform is fully configured and ready to run the network. You can
launch it according to the instructions received from Waves Enterprise specialists.

4.4. Genesis block signing and starting the network 32

Technical description of the Waves Enterprise platform, Release 1.7.0

4.5

Attachment of the client application to the private network

Once the network is up and running, attach a Waves Enterprise client application to it: with this, network
users can send transactions to the blockchain, as well as broadcast and call smart contracts.

1.

Open your browser and enter the network address of your computer with the deployed node software
in the address bar.

Register to the web client using any valid email address and log in to the web client.

Open the Select address -> Create address page. To open the menu after the first login, you must
enter the password that you entered when you registered your account.

Select Add address from the node keystore and click Continue.

Fill in the fields below. The required values are given in the credentials.txt file for the first node
in the working directory.

Address name — specify the name of the node;
Node URL - specify the http://<computer network address>/<node address> value;

Type of authorization on the node — select the authorization type you configured earlier: by JWT-token
or by api-key;

Blockchain address — specify the address of your node;

Key pair password — specify the password to the node key pair if you have set it up while generating
the account.

Client description is provided in the article Client.

See also

Ezamples of node configuration files

Generators

Installation and usage of the platform

4.5. Attachment of the client application to the private network 33

CHAPTER

FIVE

EXAMPLES OF NODE CONFIGURATION FILES

5.1 node.conf

This configuration example:
* uses the PoA consensus algorithm;

* uses the second genesis version;

* enables the sender permission for the network participants (see Permissions);

¢ enables mining for three nodes;

* disables the TLS;

 enables the gRPC and REST API tools without TLS, as well as execution of smart contracts;

* enables api-key hash authorization for gRPC and REST API;

e uses privacy methods with a PostgreSQL database for storage of confidential data;

* the function of periodic deletion of sensitive data that is not on the blockchain is disabled.

Fields whose values you get when using the generators package or set yourself based on your hardware and

software configuration are marked as /FILL/.
Each section is provided with an additional comment.

node.conf:

node {

Type of cryptography
waves-crypto = yes

Node owner address
owner-address = " /FILL/ "

NTP settings
ntp.fatal-timeout = 5 minutes

Node "home'" and data directories to store the state
directory = "/node"

data-directory = "/node/data"

Location and name of a license file
license.file = ${node.directory}"/node.license"

wallet {

(continues on next page)

34

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

Path to keystore.
file = "/node/keystore.dat"

Access password
password = " /FILL/ "
}

Blockchain settings
blockchain {
type = CUSTOM
fees.enabled = false
consensus {

type = "poa"
round-duration = "17s"
sync-duration = "3s"

ban-duration-blocks = 100
warnings-for-ban = 3
max-bans-percentage = 40
}
custom {
address-scheme-character = "E"
functionality {
feature-check-blocks-period = 1500
blocks-for-feature-activation = 1000
pre-activated-features = { 2 =0, 3 =0, 4 =0, 5=0, 6 =0, 7
101 = 0 }
}

Mainnet gemests settings
genesis {
version: 2
sender-role-enabled: true
average-block-delay: 60s
initial-base-target: 153722867

Filled by GenesisBlockGenerator
block-timestamp: 1573472578702

initial-balance: 16250000 WEST

Filled by GenesisBlockGenerator
genesis-public-key-base-58: ""

Filled by GenesisBlockGenerator
signature: ""

transactions = [
Initial token distribution:
- recipient: target's blockchain address (baseb8 string)
- amount: amount of tokens, multiplied by 10e8 (integer)
#

0, 10 = 0, 100 = 0,4

Ezample: { recipient: "3HQSr3VFCiE6JcWwV1yX8zttYbAGKTLV3Gz", amount: 30000000 WEST,

;)}
#
Note:
Sum of amounts must be equal to imitial-balance abowve.

(continues on next page)

5.1. node.conf

35

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

#
{ recipient: " /FILL/ ", amount: 1000000 WEST },
{ recipient: " /FILL/ ", amount: 1500000 WEST },
{ recipient: " /FILL/ ", amount: 500000 WEST 1},

]
network-participants = [
Initial participants and role distribution
- public-key: participant's baseb8 encoded public key;
- roles: list of roles to be granted;
#
Ezample: {public-key: "EPzkVA9iQejsj@ikovyzkkY8iHnbXsR3wjgkgE7ZWITt", roles:,
— [permissioner, miner, connection_manager, contract_developer, issuer]}
#
Note:

There has to be at least one miner, one permissioner and one connection_manager fory,
—the network to start correctly.
Participants are granted access to the network via GenesisRegisterNodeTransaction.
Role list could be empty, then given public-key will only be granted access to the,
—network.
#
{ public-key: " /FILL/ ", roles: [permissioner, sender, miner, connection_manager,
< contract_developer, issuer]},
{ public-key: " /FILL/ ", roles: [miner, sender]},
{ public-key: " /FILL/ ", roles: []},
]
}
}
}

Application logging level. Could be DEBUG | INFO | WARN | ERROR. Default value is INFO.
logging-level = DEBUG

tls {

Supported TLS types:

« EMBEDDED: Certificate is signed by node's provider and packed into JKS Keystore. The samey
—file 2s used as a Truststore.

Has to be manually imported into system by user to avoid certificate warnings.

« DISABLED: TLS is fully disabled

type = DISABLED

type = EMBEDDED

keystore-path = ${node.directory}"/we_tls. jks"

keystore-password = ${TLS_KEYSTORE_PASSWORD}

private-key-password = ${TLS_PRIVATE_KEY_PASSWORD}
}

P2P Network settings
network {
Network address
bind-address = "0.0.0.0"
Port number

port = 6864
Enable/disable network TLS
tls = no

ENUM: regular or watcher

(continues on next page)

5.1. node.conf 36

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

mode = regular

Peers network addresses and ports
Ezample: known-peers = ["node-1.com:6864", "node-2.com:6864"]
known-peers = [/FILL/ 1]

Node name to send during handshake. Comment this string out to set random mode name.
Ezample: node-name = "your-we-node-name"
node-name = " /FILL/ "

How long the information about peer stays in database after the last communication with 1t
peers-data-residence-time = 2h

String with IP address and port to send as external address during handshake. Could be sety
—automatically if uPnP 1is enabled.

Ezample: declared-address = "your-node-address.com:6864"

declared-address = "0.0.0.0:6864"

Delay between attempts to connect to a peer
attempt-connection-delay = b5s

}

New blocks gemerator settings
miner {
enable = yes
Important: use quorum = 0 only for testing purposes, while Tunning a single-node network;
In other cases always set quorum > 0
quorum = 2
interval-after-last-block-then-generation-is-allowed = 10d
micro-block-interval = 5s
min-micro-block-age = 3s

max-transactions-in-micro-block = 500
minimal-block-generation-offset = 200ms
}
Nodes REST API settings
api {
rest {

Enable/disable REST API
enable = yes

Network address to bind to
bind-address = "0.0.0.0"

Port to listen to REST API requests
port = 6862

Enable/disable TLS for REST
tls = no

grpc {
Enable/disable gRPC API
enable = yes

Network address to bind to

(continues on next page)

5.1. node.conf 37

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

bind-address = "0.0.0.0"

Port to listen to gRPC API requests
port = 6865

Enable/disable TLS for gRPC
tls = no

auth {
type: "api-key"

Hash of API key string
You can obtain hashes by running ApiKeyHash generator
api-key-hash: " /FILL/ "

Hash of API key string for Privacydpi routes
privacy-api-key-hash: " /FILL/ "

#Settings for Privacy Data Ezchange
privacy {
storage {
vendor = postgres

for postgres wendor:

schema = "public"

migration-dir = "db/migration"

profile = "slick.jdbc.PostgresProfile$"

jdbc-config {
url = "jdbc:postgresql://postgres:5432/node-1"
driver = "org.postgresql.Driver"

user = postgres

password = wenterprise
connectionPool = HikariCP
connectionTimeout = 5000
connectionTestQuery = "SELECT 1"
queueSize = 10000
numThreads = 20

for s3 wvendor:

url = "http://localhost:9000/"
bucket = "privacy"

region = "aws-global"

access-key-1d = "minzio"

secret-access-key = "miniol23"
path-style-access-enabled = true
connection-timeout = 30s

connection-acquisition-timeout = 10s
maz-concurrency = 200

read-timeout = Os

(continues on next page)

5.1. node.conf

38

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

cleaner {
enabled: no

The amount of time between cleanups
interval: 10m

How many blocks the data hash transaction exzists on the blockchain, after which 2t will be,

—removed from cleaner monitoring
confarmation-blocks: 100

The mazimum amount of time that a file can be stored without getting into the blockchain
pending-time: 72h
3
}

Docker smart contracts settings
docker-engine {
Docker smart contracts enabled flag
enable = yes

For starting contracts in a local docker
use-node-docker-host = yes

default-registry-domain = "registry.wavesenterprise.com/waves-enterprise-public"
Bastic auth credentials for docker host
#docker-auth {

wusername = "some user"
password = "some password"
#}

Optional connection string to docker host
docker-host = "unix:///var/run/docker.sock"

Optional strimng to node REST API if we use remote docker host
node-rest-api = "node-0"

Ezecution settings
execution-limits {
Contract ezecution timeout
timeout = 10s
Memory limit in Megabytes
memory = 512
Memory swap value in Megabytes (see https://docs.docker.com/config/containers/resource_
—constraints/)
memory-swap = O

}

Reuse once created container on subsequent ezecutions
reuse-containers = yes

Remove contatiner with contract after specified duration passed
remove-container-after = 10m

Remote registries auth information
remote-registries = []

(continues on next page)

5.1. node.conf

39

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

Check registry auth on node startup
check-registry-auth-on-startup = yes

Contract ewecution messages cache settings
contract-execution-messages-cache {
Time to exzpire for messages in cache
expire-after = 60m
Maxz number of messages in buffer. When the limit is reached, the node processes all messages,
—1tn batch
max-buffer-size = 10
Maz time for buffer. When time 1s out, the node processes all messages in batch
max-buffer-time = 100ms

5.2 accounts.conf

In this example, Waves Crypto encryption is enabled, the standard network identification byte is used and
the keystore node update option for generating 1 key pair is disabled.

Password which you have to enter by yourself is marked as /FILL/.

accounts.conf:

accounts-generator {
waves-crypto = yes
chain-id =V
amount = 1
wallet = ${user.home}"/node/keystore.dat"
wallet-password = "/FILL/"
reload-node-wallet {
enabled = false
url = "http://localhost:6862/utils/reload-wallet"
}
}

5.3 api-key-hash.conf

In this example, Waves Crypto encryption is enabled.

api-key-hash.conf:

apikeyhash-generator {
waves-crypto = yes
api-key = "some string for api-key"

}

5.2. accounts.conf 40

Technical description of the Waves Enterprise platform, Release 1.7.0

5.4 Additional examples

For more examples of configuration files with comments, see the official Waves Enterprise GitHub repository.
See also
Deployment of the platform in a private network

Generators

5.4. Additional examples 41

https://github.com/waves-enterprise/WE-releases/tree/master/configs/v1.7.3

CHAPTER

SIX

LICENSES OF THE WAVES ENTERPRISE BLOCKCHAIN PLATFORM

The Waves Enterprise blockchain platform is a commercial product oriented for use in the corporate and
government sectors and distributed through user licenses. The scheme for obtaining a license to use the

platform is as follows:

License Management |

Client

User v

Auth service

k.

¥

~

License Management |

License Management

Service

A

h

Administration Tool |

Support Team member

To access and manage the obtained licenses, the License management service is provided. The specifics of

working with it are described in the platform installation manuals:
Deploying a platform with connection to Mainnet

Deployment of the platform in a private network

6.1 License types

You do not need a license to familiarize yourself with the features of the platform. A detailed description of
the functionality of the platform and its installation procedure in the trial mode is given in the article :ref:’

Deploying the platform in the trial mode (Sandbox) <sandbox>".

The following types of licenses are available for full use of the platform:

* Trial License allows you to get acquainted with the platform and technology during the implementation
of the partner’s pilot project. It is issued under a contract for the duration of the pilot project, or for

the time of development and debugging of the product.

¢ Commercial license allows you to use the platform for commercial projects. It is issued for a period

determined by the contractual relationship with the partner.

42

https://client.wavesenterprise.com/admin-license/auth

Technical description of the Waves Enterprise platform, Release 1.7.0

¢ Non-commercial license allows you to use the platforms in the implementation of projects not aimed at
generating profit. It is issued for a period determined by the contractual relationship with the partner.

¢ Mainnet license is a special license that allows you to use the Waves Enterprise Mainnet blockchain
network to exchange data and perform partner transactions. When working in Mainnet, there are fees
for the transactions performed.

Each type of license applies to one node.

6.2 Duration of licenses

Licenses also differ in terms of duration, which is negotiated when the contract is concluded:
* 3 months is the standard validity period of a trial license.

¢ Lease for the duration of the use of the platform is determined by the time frame of the project
implemented using the blockchain platform.

e 1 year.
* 2 years.
¢ Unlimited license.

When the license expires, the covered node loses the ability to form new blocks and send new transactions
to the network.

To discuss the number of licenses and nodes on your network and other terms of partnership with Waves
Enterprise, contact the Waves Enterprise sales team at sales@Qwavesenterprise.com.

See also

Waves Enterprise Mainnet fees

6.2. Duration of licenses 43

mailto:sales@wavesenterprise.com

44

Technical description of the Waves Enterprise platform, Release 1.7.0

CHAPTER

SEVEN

WAVES ENTERPRISE MAINNET FEES

Trans- | Transaction | Fee Description
action | name
num-
ber
1 Genesis no fee Initial binding of the balance to the addresses of the nodes created at
transaction blockchain startup
3 Issue 1 WEST | Token issue. Fee can be paid in WEST only
Transac-
tion
4 Transfer 0.01 Token transfer
Transac- WEST
tion
5 Reissue 1 WEST | Token reissue
Transac-
tion
6 Burn 0.05 Token burning
Transac- WEST
tion
8 Lease 0.01 Token leasing
Transac- WEST
tion
9 Lease 0.01 Cancelling of token leasing
Cancel WEST
Transac-
tion
10 Create 1 WEST | Creation of an address alias
Alias
Transac-
tion
11 MassTrans- | 0.05 Mass transfer of tokens. The minimum fee is specified, fee amount
fer Trans- | WEST depends on number of addresses in a transaction
action
12 Data 0.05 Transaction with data in the form of fields with a key-value pair. The
Trans- WEST commission is always charged to the author of the transaction. The
action per kilo- | minimum fee is specified fee amount depends on data size
byte
13 SetScript 0.5 Transaction binding a script with a RIDE contract to an account
Transac- WEST
tion
14 Spon- 1 WEST | Sponsorship setting or cancelling
sorship
Rt
tion 45
15 SetAs- 1 WEST | Transaction binding a script with a RIDE contract to an asset
setScript
101 Genesis no fee Appointment of a first network administrator for further permission

Technical description of the Waves Enterprise platform, Release 1.7.0

See also
licenses

Deploying a platform with connection to Mainnet

46

CHAPTER

EIGHT

GRPC TOOLS

The Waves Enterprise blockchain platform provides the ability to interact with the blockchain using a gRPC
interface.

gRPC is a high-performance Remote Procedure Call (RPC) framework developed by Google Corporation.
The framework works via the HTTP/2. The protobuf serialization format is used to transfer data between
the client and the server. The format describes the data types used.

Officially, gRPC supports 10 programming languages. A list of supported languages is available in the official
gRPC documentation.

8.1 Preconfiguring the gRPC interface

Before using the gRPC interface:
1. decide on the programming language you will use to interact with the node;

2. install the gRPC framework for your programming language according to the official gRPC documen-
tation;

3. download and unpack the protobuf package we-proto-x.x.x.zip for the platform version you are using
and the protoc plugin to compile the protobuf files;

4. make sure that the gRPC interface is started and configured in the configuration file of the node, with
which data will be exchanged.

To communicate with the node via the gRPC interface, the default port is 6865.

8.2 What the gRPC interface is for

You can use the gRPC interface of each node for the following tasks:

47

https://grpc.io/docs/languages/
https://grpc.io/docs/languages/
https://grpc.io/docs/languages/
https://grpc.io/docs/languages/
https://github.com/waves-enterprise/WE-releases/releases
https://developers.google.com/protocol-buffers/docs/downloads

Technical description of the Waves Enterprise platform, Release 1.7.0

8.2.1 gRPC: monitoring of blockchain events
The gRPC interface has the ability to track certain groups of events occurring in the blockchain. Information
about the selected groups of events is collected in streams, which are sent to the gRPC interface of the node.

A set of fields for serializing and transmitting blockchain event data are given in the files that are located in
the messagebroker directory of the we-proto-x.x.x.zip package:

* messagebroker_blockchain_events_service.proto — main protobuf file;
* messagebroker_subscribe_on_request.proto — a file that contains fields with request parameters;

* messagebroker_blockchain_event.proto — a file that contains response fields with event group data
and error messages.

To track a specific group of events on the blockchain, send a query SubscribeOn(startFrom,
transactionTypeFilter) that initializes a subscription to the selected event group.

Query parameters:
startFrom — the moment when the event tracking starts:
e CurrentEvent — start tracking from the current event;
* GenesisBlock — getting all events of the selected group, starting from the genesis block;
* BlockSignature — the start of tracking from the specified block.
transactionTypeFilter — filter output events by transactions that are produced during these events:
e Any — output events with all types of transactions;
e Filter — output events with transaction types specified as a list;
¢ FilterNot — display events with all transactions except those specified in this parameter as a list.

connectionld — optional parameter which can be sent in order to alleviate identification of the request in the
node logs.

Together with the SubscribeOnRequest query, authorization data is sent: the JWT token or the api-key
passphrase, depending on the authorization method used.

Information about events

After a successful request is sent to the gRPC interface, the following groups of events will receive data:
1. MicroBlockAppended — successful microblock mining:
* transactions — full transaction bodies from the received microblock.
2. BlockAppended — successful completion of a mining round with a block formation:
* block_signature — signature of an obtained block;
¢ reference — signature of a previous block;
e tx_ids — list of transaction IDs from the received block;
* miner_address — miner address;
* height — height at which the resulting block is located;
¢ version — version of the block;
e timestamp — time of block formation;

e fee — total fee amount for transactions within the block;

8.2. What the gRPC interface is for 48

Technical description of the Waves Enterprise platform, Release 1.7.0

* block_size — size of a block (in bytes);
e features — list of blockchain soft-forks that the miner voted for during the round.
3. RollbackCompleted — block rollback:
e return_to_block_signature — signature of the block to which the rollback occurred;
* rollback_tx_ids — list of IDs of transactions that will be deleted from the blockchain.

4. AppendedBlockHistory — wndopmarus o Tpauzaknusax cHOpMUPOBAaHHOrO Ojoka. JlawmHbIH THO
cobbrruii mocrynaer Ha gRPC-unrepdeiic 10 mocTukeHus TeKyIeid BbICOTHI OJOKYEHHA, eCIH B 3alMpOce B
Ka4vecTBe OTIIPABHON TOYKHM [IJId MMOJydeHus coObiTuil yka3anbl GenesisBlock mim BlockSignature. Ilocie
JIOCTUZKEHHS TEKYIeil BbICOTbI HAYMHAIOT BHIBOJUTHCHA TEKYIIHE COOBbITUS 110 33/ [aHHBIM (DUIbTPAM.

Response data:
e signature — block signature;
» reference — signature of a previous block;
¢ transactions — full transaction bodies from the microblock;
¢ miner_address — miner address;
e height — height at which the resulting block is located;
e version — version of the block;
* timestamp — time of block formation;
e fee — total fee amount for transactions within the block;
* block_size — size of a block (in bytes);

¢ features — list of blockchain soft-forks that the miner voted for during the round.

Information about errors
The ErrorEvent message with the following error options is provided to display information about errors
during blockchain event tracking:

* GenericError — a general or unknown error with the message text;

* MissingRequiredRequestField — the required field is not filled in when forming a SubscribeOnRequest
query;

* BlockSignatureNotFoundError — the signature of the requested block is missing in the blockchain;

* MissingAuthorizationMetadata — no authorization data was entered when forming the SubscribeOn
query;

e InvalidApiKey — wrong passphrase when authorizing by api-key;
* InvalidToken — wrong JWT-token when authorizing by OAuth.
See also

gRPC tools

8.2. What the gRPC interface is for 49

Technical description of the Waves Enterprise platform, Release 1.7.0

8.2.2 gRPC: obtaining node configuration parameters
To get the node configuration parameters, the method and request NodeConfig is used. This method is
packed in the util node info service.proto protobuf file.

The NodeConfig query does not require any additional parameters. The following configuration parameters
for the node that was queried are displayed in the response:

¢ version - version of the blockchain platform in use;

* crypto_type - cryptographic algorithm in use;

¢ chain_id - identifying byte of the network;

¢ consensus - consensus algorithm in use;

e minimum_fee - minimum transaction fee;

e minimum_fee - additional transaction fee;

* max-transactions-in-micro-block - a maximum number of transactions in a microblock;
* min_micro_block_age - minimum time of microblock existence (in seconds);

* micro-block-interval - interval between microblocks (in seconds);

* pos_round info: when using the PoS consensus algorithm, the average_block_delay parameter is
displayed (the average block creation delay time, in seconds);

» poa_round_info: when using the PoA consensus algorithm, the parameters round_duration (block
mining round length, in seconds) and sync_duration (block mining synchronization period, in seconds)
are displayed.

See also

gRPC tools

8.2.3 gRPC: information about transaction according to their IDs
To get information about a transaction by its ID, two requests packaged in the con-
tract transaction service.proto file can be sent to the gRPC interface of the node:

e TransactionExists - request for the existence of a transaction with the specified ID;

e TransactionInfo - request information about the transaction with the specified ID.

Both requests require entering the tx id parameter - the ID of the transaction for which information is
requested.

The response to the TransactionExists query:
* exists - Boolean data type: true - exists, false - does not exist.

The response to the " TransactionInfo” query contains the following information about the transaction:
* height - the height of the blockchain at which the transaction has been sent;
* transaction - name of the transaction.

See also

gRPC tools

8.2. What the gRPC interface is for 50

Technical description of the Waves Enterprise platform, Release 1.7.0

8.2.4 gRPC: obtaining information about smart contract state
To get node configuration parameters, there is a query ContractExecutionStatuses. The fields of this
query are contained in the protobuf file util contract status service.proto.

The ContractExecutionStatuses query requires the tx id parameter - the transaction ID of the smart
contract call whose status information is to be retrieved.

Information about smart contract state

The response to the ContractExecutionStatuses query outputs the following smart contract data:
¢ sender - participant who sent the smart contract to the blockchain;
e tx_id - smart contract call transaction ID;

* Status - information about execution of the smart contract: 0 - successfully executed (SUCCESS); 1
- executed with an error (ERROR); 2 - not executed (FAILURE);

¢ code - code of an error that occurred during the execution of the smart contract;
* message - error message;

* timestamp - time of the smart contract call;

e signature - smart contract signature.

See also

gRPC tools

8.2.5 gRPC: obtaining information about UTX pool size

The query about the UTX pool size UtxInfo is sent as a subscription: after sending it, the response from
the node comes once every 1 second. This request requires no additional parameters and is located in the
transaction public service.proto file.

In response to the query the UtxSize message is returned, which contains two parameters:
e size - UTX pool size in kilobytes;
e size_in_bytes - UTX pool size in bytes.

See also

gRPC tools

8.2.6 gRPC: generation and checking of data digital signatures (PKI)
For networks using GOST cryptography, the gRPC interface has the ability to form a disconnected digital
signature for transmitted data, as well as to verify it.
For this purpose, two methods packed in the protobuf file contract pki service.proto are provided:
* Sign — generating a disconnected DS for the data transmitted in the request.

* Verify — verifying a disconnected DS for the data transmitted in the request.

8.2. What the gRPC interface is for 51

Technical description of the Waves Enterprise platform, Release 1.7.0

Generating a disconnected digital signature

The Sign method requires the following parameters:
* input_data — data for which a DS is required (as an array of bytes in base64 encoding);
¢ keystore_alias — name of the storage for the DS private key;
* password — a password for the private key storage;

e sig_type — DS format. Supported formats: 1 — CAdES-BES; 2 — CAdES-X Long Type 1;°°3" " —
CAdES-T.

The method response contains the signature field with generated digital signature in base64 format.

Verifying a disconnected digital signature

The Verify method requires following parameters:
+ input_data — data signed by a DS (as an array of bytes in base64 encoding);
e signature — digital signature in the form of an array of bytes in base64 encoding;

* sig_type — DS format. Supported formats: 1 — CAJES-BES; 2 - CAdES-X Long Type 1; 3 - CAdES-
T

* extended_key_usage_list — list of object identifiers (OIDs) of cryptographic algorithms that are used
in DS generation (optional field).

Method response contains a status field with boolean data type: true — signature is valid, false — signature
is compromised.

Verifying an advanced qualified digital signature

The verify method has the ability to verify an advanced qualified digital signature. To verify the AQDS
correctly, install the root AQDS certificate of the certification authority (CA) on your node, which will be
used to validate the signature.

The root certificate is installed in the cacerts certificate storage of the Java virtual machine (JVM) you are
using the keytool utility:

sudo keytool -import -alias certificate_alias -keystore path_to_your_JVM/lib/security/cacerts -
—file path_to_the_certificate/cert.cer

After the -alias flag, specify your preferred certificate name in the repository.

The cacerts certificate storage is located in the /1ib/security/ subdirectory of your Java virtual machine.
To find out the path to the virtual machine on Linux, use the following command:

readlink -f /usr/bin/java | sed "s:bin/java::"

Then add /1ib/security/cacerts to the resulting path and paste the resulting absolute path to cacerts
after the -keystore flag.

After the -file flag, specify the absolute or relative path to the received EDS certificate of the Certification
Authority.

The default password for cacerts is changeit. If necessary, you can change it using the keytool utility:

8.2. What the gRPC interface is for 52

Technical description of the Waves Enterprise platform, Release 1.7.0

sudo keytool -keystore cacerts -storepasswd

See also

gRPC tools

8.2.7 gRPC: encryption and decryption methods

The gRPC interface of the node provides the ability to encrypt arbitrary data using the encryption algorithms
of the Waves Enterprise blockchain platform, as well as to decrypt them. For this purpose, a set of requests
packed in the contract crypto service.proto file is provided:

* EncryptSeparate - encryption of data with unique CEK keys separately for each recipient, each CEK
is encrypted (wrapped) with a separate KEK key;

e EncryptCommon - data encryption with a single CEK key for all recipients, each CEK key is encrypted
(wrapped) with a separate KEK key for each recipient;

¢ Decrypt - decrypt data.

Hint: Decryption of data is possible if the recipient’s key is in the keystore of the node.

Encryption queries and responses

The EncryptSeparate and EncryptCommon queries require the following data:
¢ sender - an address of data sender;
¢ password - password to the encrypted data;
* encryption_data - data to be encrypted (as an array of bytes in base64 encoding);
e recipients_public_keys - public keys of the recipients participating in the network;

* crypto_algo - cryptographic algorithm in use. Available values: 1 - GOST 28147-89; 2 - GOST
34.12-2015; 3 - AES.

The response to the EncryptSeparate request includes the following data for each recipient:
* encrypted_data - encrypted data;
* public_key - recipient public key;
» wrapped_key - result of key encryption for a recipient.
In response to the EncryptCommon query the following data is received:
* encrypted_data - encrypted data;

e recipient_to_wrapped_structure - a structure in the “key : value” format containing the public keys
of the recipients with the corresponding key encryption results for each of them.

8.2. What the gRPC interface is for 53

Technical description of the Waves Enterprise platform, Release 1.7.0

Decryption query and response

When Decrypt is requested, the following data is entered:
* recipient - recipient’s public key from the node keystore;
¢ password - password to the encrypted data;
* encrypted_data - encrypted data;
» wrapped_key - result of key encryption for a recipient;
* sender_public_key - the public key of the data sender;

* crypto_algo - cryptographic algorithm in use. Available values: 0 - algorithm unknown, 1 - GOST
28147-89; 2 - GOST 34.12-2015; 3 - AES.

In response to the Decrypt query, the decrypted_data field is received, containing the decrypted data in
the form of an array of bytes in base64 encoding.

See also

gRPC tools

8.2.8 gRPC: sending transactions into the blockchain
The gRPC interface supports the ability to send transactions to the blockchain by sending a Broadcast
request packaged in the transaction public service.proto file.
The Broadcast method requires following parameters:
* version - transaction version;
e transaction - name of the transaction along with the set of parameters intended for it.

For each transaction, there is a separate protobuf file describing the request and response fields. These fields
are universal for gRPC and REST API queries and are given in the article Transactions of the blockchain
platform.

See also
gRPC tools
Description of transactions
Waves Enterprise Mainnet fees

Each of these tasks has its own set of methods packed in the corresponding protobuf files. You can find a
detailed description of each set of methods in the articles above.

gRPC methods of the node, as opposed to REST API methods, do not require authorization. Also all the
methods packaged in protobuf files that are placed in the contract directory are available for both node and
smart contracts. When used in smart contracts, these methods require authorization.

See also

gRPC services used by smart contracts

8.2. What the gRPC interface is for 54

CHAPTER

NINE

REST API METHODS

Attention: Waves Enterprise blockchain platform is phasing out the REST API methods, changing
them gradually with gRPC methods. No REST API methods will be developed in new versions of the
platform.

The REST API allows users to remotely interact with a node via JSON requests and responses. The APT is
accessed via the https protocol. The Swagger framework is used as an interface to the REST APIL.

9.1 REST API usage

All REST API method calls are GET, POST or DELETE https queries to the URL https://yournetwork.
com/node-N/api-docs/swagger. json, containing appropriate parameter sets. The desired groups of queries
can be selected in the Swagger interface by selecting routes - the URLs to individual REST API methods.
At the end of each route, there is an endpoint - a method reference.

Example of a UTX pool size query:

Route Endpoint

). A
r 1 r R

GET/transactions/unconfirmed/size

s ucnonb3oBanus npakTudecku Becex Meronos REST API tpebyercs apropusanus 1o api-key o JWT-
TOKEHY.

When authorizing by api-key, specify the value of the selected passphrase, and when authorizing by JWT-
token - the value of access-token.

At the same time, for methods related to access to the node, only authorization by api-key is provided:
* access to the keystore of a node (e.g. the sign method);
» working with private data access groups;
¢ access to the node configuration.

If authorization by JWT-token is used, access to these methods will be denied.

95

Technical description of the Waves Enterprise platform, Release 1.7.0

9.2 What the platform REST API is for

You can use the REST API to perform the following tasks:

9.2.1 REST API: transactions

Methods of the transactions group are provided to work with transactions.

Signing and sending transactions

The node REST API uses a JSON representation of a transaction to send requests.

The basic principles of work with transactions are given in the Transactions of the blockchain platform. A
description of the fields for each transaction is given in the Description of transactions section.

The POST /transactions/sign method is used to sign transactions. This method signs the transaction with
the sender’s private key stored in the keystore of the node. To sign requests with the key from the keystore
of the node, be sure to specify the key pair password in the password field.

Example signature request transaction 3:

POST /transactions/sign:

{
"type": 3,
"version": 2,
"name'": "Test Asset 1",
"quantity": 100000000000,
"description": "Some description",
"sender": "3FSCKyfFo3566zwilJjSFLBwKvd826KXUagR",
"decimals": 8,
"reissuable'": true,
"password": "1234",
"fee": 100000000

}

The POST /transactions/sign method in the response returns the fields needed to publish the transaction.
Example response with transaction 3:

POST /transactions/sign:

{
"type" . 3’
"id": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHIpWrcxcmrhB",
"sender": "3N65yEf310jBZUvpud4LCo7n8D73juFthelJ]",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,
"timestamp": 1549378509516,
"proofs": [
—"NqZGcbcQ82FZrPh6aCE juoInNnkPTvyhrNg329YWydaYcZTywXUwDxFAknTMEGuFrEndCjXBtrueLWaqbJhpeiG" 1,
"version": 2,
"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"name": "Test Asset 1",
"quantity": 10000,

(continues on next page)

9.2. What the platform REST API is for 56

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"reissuable'": true,

"decimals": 8,

"description": "Some description",
"chainId": 84,

"script": "base64:AQa3b8tH",
"height": 60719

The POST /transactions/broadcast method is designed to broadcast a transaction. The response fields of
the sign method are input to this method. A transaction can also be sent to the blockchain using other tools
given in the article Transactions of the blockchain platform.

In addition to separate methods for signing and sending transactions, there is a combined method POST
/transactions/signAndBroadcast. This method signs and sends the transaction to the blockchain without
intermediate transfer of information between the methods.

Example request and response of the method with transaction 112:

POST /transactions/signAndBroadcast:

Query:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy for sponsored v1",

"password" : "sfgKYBFCFQ#$fsdf () x%",

"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR8STF",
"3NxAooHUoLsAQvxBSqjEQ1WK3LwWGjiiCxx"

:l’

"fee": 100000000,

"description": "Privacy for sponsored",
"owners": [

""3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

] s
"type": 112
}
Response:
{
"senderPublicKey": "3X6Qb6p96dY4drVt3x4XyHKCRvree4(DgNZyDWHzjJ79",
"policyName": "Policy for sponsored vi",
"fee'": 100000000,
"description": "Privacy for sponsored",
"owners": [

"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7VeT7T"

1,

"type": 112,

"version": 2,

(continues on next page)

9.2. What the platform REST API is for 57

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId": "G16FvJk9vabwxj(swh9CQAhbZzn3QrwgWjwnZB3gNVox",

"proofs": [
"3vDVjp6UJeN9ahtNcQWt5WDVqCIKqdEsrrOHTToHf oXFd1Ht VwnUPPt JKM8tAsCtby81XYQReL j33hLEZ8qbGA3V"

1,

"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
"3NtNJV44wyxRXv2jyW3yXLxjIxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

1,

"id": "EyymzQcM2LrsgGDFFxeGn8DhahJbFYmorcBrEh8phv5S",

"timestamp": 1585307711344

Information about transactions

The transactions group also includes the following methods of obtaining information about transactions
in the blockchain:

GET /transactions/info/-id”

Obtaining information about a transaction by its {id} identifier. The transaction identifier is specified in
the POST /transactions/sign or POST /transactions/signAndBroadcast methods response.

The method returns transaction data similar to the POST /transactions/broadcast and POST /transac-
tions/signAndBroadcast methods responses.

Response example:

POST /transactions/signAndBroadcast:

{
"type": 4,
"id": "52GG9U2e6foYRKp5vAzsT(86aDAABfRJI7synz7ohBpl19",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",
"assetId": "E9yZC4cVhCDfbjFJCc9CqkAtkoFybKaCe64iaxHM2adG",
"amount": 100000,

"fee'": 100000,

"timestamp": 1549365736923,
"attachment": "string",
"signature":

—"GknccUA79dBcuWgKjqB7vYHens j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNkHEOA jtsUm" ,
"height": 7782
}

9.2. What the platform REST API is for 58

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /transactions/address/—address”/limit/~limit”

The method returns the data of the last {1imit} transactions of the address {address}.

For each transaction, data similar to the POST /transactions/broadcast and POST /transac-
tions/signAndBroadcast methods responses are returned.

Response example with one transaction:

GET /transactions/address/{address}/limit/{limit}:

[
[
{

"type": 2,
"id": "4XE4M9eSoVWVdHwWDYXqZsXhEc4q8PHOmDMUBegCSBBVHIyP2Yb1Z0Gi59¢c1Qzq2TowLmymLNkFQjWp95CdddnyBW
"fee": 100000,
"timestamp": 1549365736923,
"signature":

—"4XE4M9eSoVWVdHWDYXqZsXhEc4q8PHOmDMUBegCSBBVHIyP2Yb1Z0Gi59¢c1Qzq2TowLmymLNkFQjWp95CdddnyBW" ,
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3N9iRMou3pgmyPbFZn5QZQvBTQBkL2fR6R1",
"amount": 1000000000

GET /transactions/unconfirmed

The method returns the data of all transactions from the UTX pool of the node.

For each transaction, data similar to the POST /transactions/broadcast and POST /transac-
tions/signAndBroadcast methods responses are returned.

Response example with one transaction:

GET /transactions/unconfirmed:

[
{

"type": 4,
"id": "52GGIU2e6foYRKp5vAzsT(86aDAABfRI7synz7ohBpl19",
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",
"assetId": "E9yZC4cVhCDfbjFJCcOCqkAtkoFybKaCe64iaxHM2adG",
"amount": 100000,

"fee': 100000,

"timestamp": 1549365736923,
"attachment": "string",
"signature":

—"GknccUA79dBcwWgKjgB7vYHcns j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNkHEOA jtsUm"
}
]

9.2. What the platform REST API is for 59

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /transactions/unconfirmed /size

The method returns the number of transactions in the UTX pool as a number.
Response example:

GET /unconfirmed/info/{id}:

{
"size'": 4

}

GET /unconfirmed/info/-id”

The method returns the data of the transaction that is in the UTX pool by its {id}.

The method response contains transaction data similar to the POST /transactions/broadcast and POST
/transactions/signAndBroadcast methods’ responses.

Response example:

GET /unconfirmed/info/{id}:

{
"type": 4,
"id": "52GGIOU2e6foYRKp5vAzsT(86aDAABfRI7synz7ohBp19",
"sender": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",
"senderPublicKey": "CRxqEuxhdZBEHX42MU4FfyJxuHmbDBTaHMhM3Uki7pLw",
"recipient": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"assetId": "E9yZC4cVhCDfbjFJCc9CqkAtkoFyb5KaCe64iaxHM2adG",
"amount": 100000,

"fee": 100000,

"timestamp": 1549365736923,
"attachment": "string",
"signature":

—"GknccUA79dBcwWgKjqB7vYHecns j7caYETfncJhRkkaetbQon7DxbpMmvKOLYqUkirJp17geBJCRTNkHEOA jtsUm",
"height": 7782
}

POST /transactions/calculateFee

The method returns the amount of commission for the sent transaction.

The request specifies parameters similar to POST /transactions/broadcast request. The method’s response
returns the identifier of the asset where the commission is charged (null for WAVES).

Response example:

GET /unconfirmed/info/{id}:

{
"feeAssetId": null,
"feeAmount": 10000
}
See also
REST API methods

9.2. What the platform REST API is for 60

Technical description of the Waves Enterprise platform, Release 1.7.0

Transactions of the blockchain platform

Description of transactions

9.2.2 REST API: generation and checking of data digital signatures (PKI)

A group of pki methods is provided for generating and verifying digital signatures.

The principle of POST /pki/sign and POST /pki/verify methods is similar to the gRPC methods con-
tract_pki_ service.proto.

All methods of the group are available only for networks with GOST cryptography.

GET /pki/keystoreAliases

The method returns a list with the names of all available signature private key storages.
Response example:

GET /pki/keystoreAliases:

{
[
"3Mq9crNkTF£80oRPyisgtf4T jBvZxo4BL2ax",
"e19a135e-11£7-4f0c-9109-a3d1c09812e3"
1
1

POST /pki/sign
The method generates a disconnected DS for the data transmitted in the request. The request consists of
the following fields:

 inputData — data for which a DS is required (as an array of bytes in base64 encoding);

* keystoreAlias — name of the storage for the DS private key;

¢ password — a password for the private key storage;

* sigType — DS format. Supported formats: 1 — CAdES-BES; 2 - CAdES-X Long Type 1; 3 - CAJES-T.

Query example:

POST /pki/sign:

{
"inputData" : "SGVsbG8gd29ybGQh",
"keystoreAlias" : "keyl",
"password" : "password",
"sigType" : 1,

}

The method returns the signature field containing the generated disconnected DS.

Response example:

POST /pki/sign:

9.2. What the platform REST API is for 61

Technical description of the Waves Enterprise platform, Release 1.7.0

{
"signature" : "c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmtqaGdmamtkZmdoZmdkc2doZmQjsndjfvnksdnjfn="

}

POST /pki/verify
The method is designed to verify the disconnected DS for the data transmitted in the request. The request
consists of the following fields:

* inputData — data signed by a DS (as an array of bytes in base64 encoding);

* signature — digital signature in the form of an array of bytes in base64 encoding;

* sigType — DS format. Supported formats: 1 — CAdES-BES; 2 - CAdES-X Long Type 1; 3 - CAdES-T;

* extended_key_usage_list — list of object identifiers (OIDs) of cryptographic algorithms that are used
in DS generation (optional field).

Query example:

POST /pki/verify:

{
"inputData" : "SGVsbG8gd29ybGQh",
"signature" : "c2RmZ3NkZmZoZ2ZkZ2hmZGpkZ2ZoamhnZmtqaGdmamtkZmdoZmdkc2doZmQ=",
"sigType" : "CAdES_X_Long_Type_1",

"extendedKeyUsageList": [
"1.2.643.7.1.1.1.1",
"1.2.643.2.2.35.2"

1

X

Method’s response contains a sigStatus field with boolean data type: true — signature is valid, false —
signature is compromised.

Response example:

POST /pki/verify:

{
"sigStatus" : "true"

}

Verifying an advanced qualified digital signature

The POST /pki/verify method has the ability to verify an advanced qualified digital signature. To verify
the AQDS correctly, install the root AQDS certificate of the certification authority (CA) on your node, which
will be used to validate the signature.

The root certificate is installed in the cacerts certificate storage of the Java virtual machine (JVM) you are
using the keytool utility:

sudo keytool -import -alias certificate_alias -keystore path_to_your_JVM/lib/security/cacerts -
—file path_to_the_certificate/cert.cer

After the -alias flag, specify your preferred certificate name in the repository.

9.2. What the platform REST API is for 62

Technical description of the Waves Enterprise platform, Release 1.7.0

The cacerts certificate storage is located in the /1ib/security/ subdirectory of your Java virtual machine.
To find out the path to the virtual machine on Linux, use the following command:

readlink -f /usr/bin/java | sed "s:bin/java::"

Then add /1ib/security/cacerts to the resulting path and paste the resulting absolute path to cacerts
after the * -keystore' flag.

After the -file flag, specify the absolute or relative path to the received EDS certificate of the Certification
Authority.

The default password for cacerts is changeit. If necessary, you can change it using the keytool utility:

sudo keytool -keystore cacerts -storepasswd

See also
REST API methods
Cryptography

9.2.3 REST API: encryption and decryption methods

REST API methods of the crypto group are provided to implement encryption methods.

The working principle of this group of methods is similar to the set ¢RPC-methods con-
tract_crypto_ service.proto.

POST /crypto/encryptSeparate
Encryption of data transmitted in the request, is performed with unique keys CEK separately for each
recipient, each CEK is encrypted (wrapped) with a separate key KEK.
The following data are submitted in the query:
¢ sender - an address of data sender;
* password - password to the encrypted data;
* encryptionText - data to be encrypted (as a string);
e recipients_public_keys - public keys of the recipients participating in the network;

e crypto_algo - ucnosib3yeMblit ajgroput™ iudposanus. JlocrynHble 3Hadenns: gost-28147 - 'OCT
28147-89; gost-3412-2015-k - TOCT 34.12-2015; aes - AES.

If your network uses GOST encryption, only the algorithms gost-28147 and gost-3412-2015-k are available
to you. If GOST encryption is disabled, only the aes encryption algorithm is available.

Query example:

POST /crypto/encryptSeparate:

{
"sender": "3MsHHc8LvyjPCKeSst9vsYcsHeQVzH6YJKL",
"password": "",
"encryptionText": "some string to encrypt",
"recipientsPublicKeys": [

(continues on next page)

9.2. What the platform REST API is for 63

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"3MuNFC1Z8Tuy73pMzVUT6yowk4anWASMNNE"

]’
"cryptoAlgo": "aes"
}

The response includes the following data for each recipient:
* encrypted_data - encrypted data;
e public_key - recipient public key;
» wrapped_key - result of key encryption for a recipient.
Response example:

POST /crypto/encryptSeparate:

{

"encryptedText": "IZ5Kk5YNspMWl/jmlTizVxD6Nik=",

"publicKey":
—"BbR650oLxp3iwPekwirA4VwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc",

"wrappedKey" :
—"uWVoxJAzruwTDDSbphDS31T jSQX6CSWXivp3x34uE3XtnMqqK9swoaZ3LyAgFDR706CfkgzFkWmTen4qAZewPfBbwR"

}’

POST /crypto/encryptCommon
Encryption of data transmitted in the request with a single CEK key for all recipients, each CEK key is
encrypted (wrapped) with a separate KEK key for each recipient.

The POST /crypto/encryptCommon request contains data similar to the POST /erypto/encryptSeparate
request.

The response includes the following data for each recipient:
* encrypted_data - encrypted data;

e recipient_to_wrapped_structure - a structure in the “key : value” format containing the public keys
of the recipients with the corresponding key encryption results for each of them.

Response example:

POST /crypto/encryptCommon:

{

"encryptedText": "NpCCig2i3jzoOxBnfqjfedbti8Y=",

"recipientToWrappedStructure": {
"6R650Lxp3iwPekwirA4VuwwUXaySz6W6YKXBKBRL352pwwcpsFcjRHI1VVHLp63LkrkxsNod64VipffeiZz5i2qXc":

"M8pAe8HnKiWLE1HsC1ML5t8b7giWxiHfvagh7Y3F7rZL8ql1tqMCIMYJo4qz4b3xjcuuliVs7tY3k70Sigb3AwlDkkw",
"9LopMj2GqWxBYgnZ2gxalNxwXqxXHuWd6ZAdVqkprR1fFMNvDUHYUCwFxsB79B9sefgxNdqwNtqzuDS8Zmn48w3S" :

"Dogn6gPvBBeSu2vdwgFYMbDHM4knEGMbqPn8Np76mNRRoZXLDioofyVbSSaTTEr4cviwzEwVMugiy2wuzFWk3zCiT3"

}

3

9.2. What the platform REST API is for 64

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /crypto/decrypt
Decryption of data encrypted with the cryptographic algorithm used by the network. Decryption is possible
if the recipient’s key is in the keystore of the node.
The following data are submitted in the query:
e recipient - recipient’s public key from the node keystore;
¢ password - password to the encrypted data;
e encryptedText - encrypted string;
* wrapped_key - result of key encryption for a recipient;
* senderPublicKey — a public key of data sender;
e crypto_algo - encryption algorithm in use. Available values: gost-28147; gost-3412-2015-k; aes.

If your network uses GOST encryption, only the algorithms gost-28147 and gost-3412-2015-k are available
to you. If GOST encryption is disabled, only the aes encryption algorithm is available.

Query example:

POST /crypto/decrypt:

{
"recipient": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"password": "1234bqwert",
"encryptedText": "t859AE7idnjPpn31UiorfzSGwcGPMVdOhQelHAhoIOMOX0QPBc8TUhn+8pKRCL8evH2Ra9Vc",
"wrappedKey": "2nfob2yW76xj2r(BWZkzFD2UjYymWqQUCpFqbSWQiSYnuaw6DZoAde8KsTCMxPFVHA",
"senderPublicKey": "CgqRPcPnexY533gCh2SSvBXh5bcalgMs7KFGntawHGww" ,
"cryptoAlgo": "aes"

The decryptedText field, which contains the decrypted string, arrives in response to the request.
Response example:

POST /crypto/decrypt:

{

"decryptedText": "some string for encryption",
}

See also

REST API methods

Cryptography

9.2.4 REST API: confidential data exchange and obtaining of information about confidential
data groups

Learn more about confidential data exchange and access groups in the article Confidential data exchange.

A set of methods from the Privacy group is provided to implement these functions using the REST API:

9.2. What the platform REST API is for 65

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /privacy/sendData
The method is designed to send sensitive data to the blockchain, available only to members of the access
group defined for this data. The method request contains the following information:

» sender — blockchain address from which the data should be sent (corresponds to the value of the
“privacy.owner-address” parameter in the configuration file of the node);

¢ password — password to access the private key in the node keystore;
e policyId — identifier of a group that will have access to the data to be forwarded;
¢ info — information about data being sent;
* data — string containing data in base64 format;
e hash — data sha256-hash in base58 format.
Examples of a query and a response:
POST /privacy/sendData:
Query:

{

"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHAKUgEytUUz",
"password": "apgJP9atQccdBPA",

"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"info": {
"filename":"Service contract #100/5.doc",
"size'": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "some comments"
} 3
"data":
—"TWFuIGlzIGRpc3Rpbmd1aXNoZW(sIG5vdCBvbmx5IGI5IGhpcyByZWFzb24sI1GJ1dCBieSBOaGlzIHNpbmd1bGEyIHBhc3Npb24gZnJvbS]
"hash": "FRog42mnzTA292ukng6PHoEK9Mpx9GZNrEHecfvpwmta"
}
Response:
{

"senderPublicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxualJyrgsLkoVY",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHdKUgEytUUz",

"dataHash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta",
"proofs": [

(g}

—"2jM4tw4uDmspuXUBt6492T7opuZskYhFGWOgkbq532BvLYRF6RIn3hVGNLUMLK8JISM61GkVgYvYJg9UscAayEYT

"
—

1,

"fee": 110000000,

"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQ5aa",
"type": 114,

"timestamp": 1571043910570

3

9.2. What the platform REST API is for 66

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /privacy/sendDataV2

The POST /privacy/sendDataV2 method is similar to the POST /privacy/sendData method but allows you
to attach a file in the Swagger window without having to convert it to base64 format. The Data field is
missing in this version of the method.

Examples of a query and a response:
POST /privacy/sendDataV2:
Query:

{

"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHAKUgEytUUz",
"password": "apgJP9atQccdBPA",

"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"info'": {
"filename":"Service contract #100/5.doc",
"size'": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "some comments"
1,
"hash": "FRog42mnzTA292ukng6PHoEK9Mpx9GZNrEHecfvpwmta"
}
Response:
{

"senderPublicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxualyrgsLkbVy",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"sender": "3HYW75PpAeVukmbYo9P(3mzSHAKUgEytUUz",

"dataHash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta",
"proofs": [

(g}

—"2jM4twduDmspuXUBt6492T7opuZskYhFGWIgkbq532BvLYRF6RIn3hVGNLUMLK8JSM61GkVgYvYJg9UscAayEYE

"
—

1,

"fee": 110000000,

"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQ5aa",
"type": 114,

"timestamp": 1571043910570

}

GET /privacy/-policy-id” /recipients

The method is designed to get the addresses of all members recorded in group {policy-id}.

The response of the method returns an array of strings with the addresses of the members of the access
group.

Response example:

GET /privacy/{policy-id} /recipients:

[
"3NBVqYXrapgJP9atQccdBPAgJPwHDKkKh6AS",
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
]

9.2. What the platform REST API is for 67

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /privacy/—policy-id”/owners

The method is designed to get the addresses of the owners of access group {policy-id}.
The response of the method returns an array of strings with the addresses of the owners of the access group.
Response example:

GET /privacy/{policy-id} /owners:

[
"3GCFaCWtvLDnCOyX29YftMbn75gwfdwGsBn",
"3GGxcmNyq8ZAHzK7or14Ma84khwW8peBohJ",
"3GRLFi4rz3SniCuC7rbd9UuD2KUZyNh84pn",
"3GKpShRQRTddF1yYhQ58ZnKMTnp2xdEzKqW"
]

GET /privacy/—policy-id” /hashes

The method is designed to get an array of identification hashes of data that are bound to the {policy-id}
access group.

The response of the method returns an array of strings with the identity hashes of the access group data.

Response example:

GET /privacy/{policy-id} /hashes:

[
"FdfdNBVqYXrapgJP9at(QccdBPAgJPwHDKkhGAS" ,
"eedfdNBVqYXrapgJP9atQccdBPAgJPwHDKkhGA"
1

GET /privacy/—policyld”/getData/-policyltemHash”

The method is designed to retrieve a packet of confidential data of {policyId} access group by the identi-
fication hash {policyItemHash}.

The response of the method returns the hash sum of the confidential data.

Response example:

GET /privacy/{policyld}/getData/{policyItemHash}:

c29tZVI9iYXN1NjREZW5jb2R1ZF9zdHJpbmc=

GET /privacy/—policyld”/getInfo/—policyltemHash”
The method is designed to retrieve the confidential data packet metadata of {policyId} access group by
the identification hash {policyItemHash}.
The method response returns the following data:
¢ sender — an address of confidential data sender;
e policy_id — a confidential data group identifier;

* type — type of confidential data (file);

9.2. What the platform REST API is for 68

Technical description of the Waves Enterprise platform, Release 1.7.0

e info — an array containing a file data: filename — the name of the file; size — the size of the file;
timestamp — a Uniz Timestamp (in milliseconds) for uploading the file to the network;

¢ author — file author;

e comment — optional comment to the file;

¢ hash — confidential data identifying hash.
Response example:

GET /privacy/{policyld}/getInfo/{policyltemHash}:

{
"sender": "3HYW75PpAeVukmbYo9P(3mzSHdKUgEytUUz",
"policy": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",
"type": "file",
"info": {
"filename": "Contract ¥100/5.doc",
"size'": 2048,
"timestamp": 1000000000,
"author": "AIvanovQorg.com",
"comment": "Comment"
1,
"hash": "e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7£d6de15623f1"
}

POST /privacy/forceSync

The method is designed to force a packet of confidential data. It is used if a transaction with confidential
data for an access group is present in the blockchain, but for some reason this data was not written to the
node’s confidential data repository. In this case, the method allows to forcibly download the missing data.

The response includes the following data:
¢ sender — address of the node participating in the access group that sends the request;
e policy — a confidential data group identifier;

* source — address of the node from which the missing data should be downloaded. In case the node is
unknown, set the parameter to null or leave the field empty: in this case the file will be downloaded
from the storage of the first node in the access group list.

Method response contains a result field with data retrieval result and a message field with possible error
text. In case of successful reception, success is returned, confidential data is written to node storage.

If an error occurs, error is returned, the message field contains a description of the error.
Examples of a query and a response:

POST /privacy/forceSync:

Query:
{
"sender": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkh6A8",
"policy": "my_policy"
"source": "3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz",
}
Response:

9.2. What the platform REST API is for 69

Technical description of the Waves Enterprise platform, Release 1.7.0

{

"result": "error"

"message": "Address '3NBVqYXrapgJP9atQccdBPAgJPwHDKKh6GA8' not in policy 'my_
—policy'"
}

POST /privacy/getInfos

The method is designed to obtain an array of confidential data metadata by access group identifier and
identification hash.

The response includes the following data:

* policiesDataHashes — an array of data with two elements for each individual access group: policyId
— access group identifier; datahashes — an array of sensitive data hashes to get metadata for each of
them.

The method response returns an array of data for each individual hash of sensitive data, similar to the
response of the GET /privacy/{policyId}/getInfo/{policyItemHash} method.

Examples of a query and a response:

POST /privacy/getInfos:

Query:

{ "policiesDataHashes":
L
{
"policyId": "somepolicyId_1",
"datahashes": ["datahash_1",'"datahash_2"]

} 3
{
"policyId": "somepolicyId_2",
"datahashes": ["datahash_3","datahash_4"]
}
]
}
Response:
{

"policiesDataInfo": [
{
"policyId":"somepolicyId_1",
"datasInfo": [
{
"hash":
—"e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7fd6de15623f1",

"sender" :"3HYW75PpAeVukmbYo9PQ3mzSHAKUgEytUUz",
|ltype|l : Ilfilell R

"info":{
"filename":"Contract ¥100/5.doc",
"size':2048,

"timestamp":1000000000,
"author":"AIvanovQorg.com",
"comment" :"Comment"

(continues on next page)

9.2. What the platform REST API is for 70

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

}
},
{
"hash":
—"e67ad392ab4d933£39d5723aeed96c18c491140e119d590103e7fd6de15623f1",
"sender":"3HYW75PpAeVukmbYo9P(3mzSHdKUgEytUUz",
"type":"file",
"info':q{
"filename":"Contract ¥101/5.doc",
"size'":"2048",
"timestamp":1000000000,
"author":"AIvanov@org.com",
"comment":"Comment"

See also
REST API methods
Confidential data exchange

9.2.5 REST API: validation of addresses and aliases of network participants

The following methods of the addresses group are provided for validating addresses and aliases on the
network:

GET /addresses/validate/-addressOrAlias”

Validation of a given recipient or its alias {addressOrAlias} on the blockchain network of a working node.

Response example:

GET /addresses/validate/{addressOrAlias}:

{
addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc",
valid: true

}

9.2. What the platform REST API is for 71

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /addresses/validateMany

Validation of multiple addresses or aliases passed to the addressesOrAliases field as an array. The in-
formation in the response for each address is identical to the GET /addresses/validate/{addressOrAlias}

method response.

Examples of query and response for one address, one existing and one non-existing alias:

POST /addresses/validateMany:

Query:

{
addressesOrAliases: [
"3HSVTt jim3FmV21HWQ1LurMhFz jut7AalAc",
"alias:T:asdfghjk",
"alias:T:1nvA1iDA11ass99911%~&$$$ "

]
}
Response:
{
validations: [
{
addressOrAlias: "3HSVTtjim3FmV21HWQ1LurMhFzjut7AalAc",
valid: true
1,
{
addressOrAlias: "alias:T:asdfghjk",
valid: true
1,
{

addressOrAlias: "alias:T:1nvA1iDA11ass99911%~&$$$ ",
valid: false,

reason: "GenericError(Alias should contain only following characters:

—abcdefghi jklmnopqrstuvuxyz) "
1
]
}

-.01234567890_

See also

REST API methods

9.2.6 REST API: signing and validating messages in the blockchain

The following methods of the addresses group are provided for signing and validating messages:

9.2. What the platform REST API is for

72

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /addresses/sign/—address”

The method signs the string passed in the message field with the addressee {address} private key and then
serializes it in base58 format. The response of the method returns the serialized string, the addressee’s public
key and signature.

Examples of a query and a response:
POST /addresses/sign/{address}:

Query:

{
"message": "mytext"

}

Response:

{

"message": "wWshKhJj",

"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":
—"62PFG855ThsEHUZ4NSVE8kMyHCKOGWNn vt TZ3hq6 JHYv12BhP1leR jegA6nSa3DAoTTMammhamadvizDUYZAZtKY9S"

POST /addresses/verify /—address”

The method checks the signature of the message made by the {address}.
Examples of a query and a response:

POST /addresses/verify /{address}:

Query:

{

"message": "wWshKhJj",

"publickey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",

"signature":
—"bkwwE9sDZzssoNaoBSJnb8RLqfYGt INDGbTWWXUeX8b9amRR IN3hr5fhs9vHBq6VES5ng4hqbCUoDEsoQNauRRts"

Response:

{
"valid": true

}

9.2. What the platform REST API is for 73

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /addresses/signText/—address”
The method signs the string passed in the message field with the private key of an {address}. Unlike the
POST / addresses/sign/{address} method, the string is passed in the original format.

Examples of a query and a response:

POST /addresses/signText/{address}:

Query:
{
"message": "mytext"
}
Response:
{
"message": "mytext",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

—"BkVZfWfFmoYn38cJfNhkdct5WCyksMgQ7k jwHK7Z jnrzs 9QYRWo6HuUJoGc8WRMozdYcAVJvo jInPpArgPvu2uc3u”

POST /addresses/verifyText/—address”
Checks the signature of the message made by the {address} via the POST method /addresses/signText/
{address}.

Examples of a query and a response:

POST /addresses/verifyText/{address}:

Query:

{
"message": "mytext",
"publicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"signature":

—"BbkVZfWfFmoYn38cJfNhkdct5WCyksMgQ7k jwHK7Z jnrzs9QYRWo6HuJoGc8WRMozdYcAVJvo jJnPpArgPvu2uc3u”

Response:
{
"valid": true
}
See also
REST API methods

9.2. What the platform REST API is for 74

Technical description of the Waves Enterprise platform, Release 1.7.0

9.2.7 REST API: information about configuration and state of the node, stopping the node

There are two groups of methods to get information about the node configuration:

* node - obtaining basic configuration parameters of a node, information about node state, stopping a
node, changing a logging level;

* anchoring - the GET /anchoring/config query, which returns the anchoring section of the node
configuration file.

To get the basic configuration parameters of a node, there are both methods that require authorization and
open methods.

node group:

GET /node/config

The method returns the basic configuration parameters of a node.
Response example:

GET /node/config:

{

"version": "1.3.0-RC7",
"gostCrypto": false,
"chainId": "V",
"consensus": "POA",
"minimumFee": {
|l3ll: 0’
|l4ll: O’
|l5|l: 0’
|l6ll: 0’
|l7ll: O
|l8|l: 0
|l9ll: 0
|l10|l:
|l11|l:
|l12|l:
|l13|l:
|l14|l:
|l15|l:
"102":
"103":
"104":
"106":
"107":
"111":
"112":
"113":
"114":

-

>

O O O O O O
O O O O O O O O O~ -

M

M M

M

}’
"additionalFee": {
11 0,
"ign: 0

(continues on next page)

9.2. What the platform REST API is for 75

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

},
"maxTransactionsInMicroBlock": 500,
"minMicroBlockAge": O,
"microBlockInterval": 1000,
"blockTiming": {
"roundDuration": 7000,
"syncDuration": 700

GET /node/owner

The method returns the address and the public key of the node owner.
Response example:

GET /node/config:

{
"address": "3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF",
"publicKey": "EPxkVA9iQejsjQikovyxkkY8iHnbXsR3wjgkgE7ZW1Tt"
}

GET /node/status

The method returns information about the current state of the node.
Response example:

GET /node/status:

{
"blockchainHeight": 47041,
"stateHeight": 47041,
"updatedTimestamp": 1544709501138,
"updatedDate": "2018-12-13T13:58:21.138Z"
}

Also, if there are errors using GOST cryptography on a node, the method will return an error description:

GET /node/status:

{
"error": 199,
"message': "Environment check failed: Supported JCSP version is 5.0.40424, actual is 2.0.40424"

9.2. What the platform REST API is for 76

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /node/version

The method returns a node version.

Response example:

GET /node/version:

{
"version": "Waves Enterprise v0.9.0"

}

GET /node/logging

The method displays a list of loggers specified when configuring the node, and the logging level for each of
them.

Node logging levels:
* ERROR - error logging;
* WARN - warning logging;
¢ INFO - node events logging;

e DEBUG - extended information about events for each running node module: a record of events that
occurred and actions performed;

¢ TRACE - detailed information about the events of the DEBUG level;
e ALL - displaying of data from all logging levels.
Response example:

GET /node/logging:

ROOT-DEBUG

akka-DEBUG

akka.actor-DEBUG
akka.actor.ActorSystemImpl-DEBUG
akka.event-DEBUG

akka.event.s1lf4j-DEBUG
akka.event.slf4j.51f4jLogger-DEBUG
com-DEBUG

com.github-DEBUG
com.github.dockerjava-DEBUG
com.github.dockerjava.core-DEBUG
com.github.dockerjava.core.command-DEBUG
com.github.dockerjava.core.command.AbstrDockerCmd-DEBUG
com.github.dockerjava.core.exec-DEBUG

9.2. What the platform REST API is for 77

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /node/logging

The method is designed to change the logging level for selected loggers.
Query example:

POST /node/logging:

{

"logger": "com.wavesplatform.Application",
"level": "ALL"

POST /node/stop

The method stops the node, it has no response.

The GET /anchoring/config method:

The method outputs the anchoring section of the node configuration file.
Response example:

GET /anchoring/config:

{
"enabled": true,
"currentChainOwnerAddress": "3FWwx401177A40eHAEWSEQ6Bkn4Lv48quYz",
"mainnetNodeAddress": "https://clinton-pool.wavesenterpriseservices.com:443",
"mainnetSchemeByte": "L",
"mainnetRecipientAddress": "3JzVWCSV6v4ucSxtGSjZsvdiCT1FAzwpqrP",
"mainnetFee'": 8000000,
"currentChainFee": 666666,
"heightRange": 5,
"heightAbove": 3,
"threshold": 10

See also
REST API methods

Ezamples of node configuration files

9.2. What the platform REST API is for 78

Technical description of the Waves Enterprise platform, Release 1.7.0

9.2.8 REST API: information about network participants

There are three groups of methods for obtaining information about network participants:
¢ addresses — the methods designed to get information about the network members’ addresses;

e alias — getting the participant’s address by the alias set for him or the alias by the participant’s
address;

e leasing — the GET /leasing/active/{address} query that outputs a list of leasing transactions in
which the address was involved as a sender or receiver.

addresses group:
GET /addresses
Obtaining all participant addresses, whose key pairs are stored in the keystore of the node.

Response example:

GET /addresses:

[
"3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8" ,
"3Mx2afTZ2KbRrLNbytyzTtXukZvqEBSSkWT7"
]

GET /addresses/seq/—from” /—to”

Obtaining addresses of the participants, which are stored in the keystore of a node in a given range: from
the address {from} to the address {to}.

The format of the method response is identical to that of GET /addresses.

GET /addresses/balance/—address”

Getting the balance for the address {address}.
Response example:

GET /addresses/balance/{address}:

{
"address": "3N3keodUiS8WLEwOW4BKDNxgNdUpwSnpb3K",
"confirmations": O,
"balance": 100945889661986

}

9.2. What the platform REST API is for 79

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /addresses/balance/details

Get detailed balance information for the list of addresses, which is specified as an array in the addresses
field when prompted.

Parameters returned in the method response:
* regular — number of tokens owned directly by the participant (R);
* available — participant’s total balance, excluding funds leased by the participant (A = R - L);

e effective — participant’s total balance, including funds leased to the participant and minus funds
that the participant himself has leased (E = R + F - L);

* generating — participant’s generating balance, including leased funds, for the last 1,000 blocks.

Variables in parentheses: L — funds leased by the participant to other participants, F — funds leased by the
participant from other participants.

Response example for one address:

POST /addresses/balance/details:

[
{
"address": "3M4Bxh2VfzKFXqi(B8bDgRfVnPWrZUQ2MEF",
"regular": 59899999999400000,
"generating": 59899999999400000,
"available": 59899999999400000,
"effective": 59899999999400000
}
]

GET /addresses/balance/details/—address”

Get detailed balance information for an individual address. The information in the response is identical to
the POST /addresses/balance/details method.

Response example:

GET /addresses/balance/details/{address}:

[
{
"address": "3N65yEf310jBZUvpu4LCo7n8D73juFtheUJ",
"regular": 0O,
"generating": O,
"available": 0,
"effective": 0
}
]

9.2. What the platform REST API is for 80

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /addresses/effectiveBalance/—address”

Obtaining the total balance of the address, including leased funds.
Response example:

GET /addresses/effectiveBalance/{address}:

{
"address": "3GLWx8yUFcNSL3DERBkZyE4TpyAyNiEYsKG",
"confirmations": O,
"balance": 1240001592820000

}

GET /addresses/effectiveBalance/—address”/—confirmations”

Retrieves the balance for {address} after the number of confirmations >= {confirmations}. The partici-
pant’s total balance is returned, including funds leased to the participant.

Response example for confirmations >— 1:

GET /addresses/effectiveBalance/{address} /{confirmations}:

{
"address": "3N65yEf310jBZUvpu4lCo7n8D73juFthelUJ",
"confirmations": 1,
"balance": 0

}

GET /addresses/generatingBalance/—address” /at/~height”

Obtaining the generating address balance at the specified block height {height}.
Response example:

GET /addresses/generatingBalance/{address}/at/{height}:

{
"address": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"generatingBalance": 1011543800600

}

GET /addresses/scriptInfo/—address”

Obtaining data about the script installed on the address.
Parameters returned in the method response:

¢ address — address in base58 format;

e script — script body in base64 format;

* scriptText — the source code of the script;

e complexity — complexity of the script;

¢ extraFee — fee for outgoing transactions set by the script.

9.2. What the platform REST API is for 81

Technical description of the Waves Enterprise platform, Release 1.7.0

Script complexity — a number from 1 to 100 representing the amount of computing resources required to
execute the script.

Response example:

GET /addresses/scriptInfo/{address}:

{
"address": "3N3keodUiS8WLEwOW4BKDNxgNdUpwSnpb3K",
"script":

—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£3450cMRkRKFgzTtXXnnv7upRHXJzZrLS
"

"scriptText": "ScriptV1(BLOCK(LET (x,CONST_LONG(1)),FUNCTION_CALL (FunctionHeader (==,List (LONG,
—LONG)) ,List (FUNCTION_CALL (FunctionHeader (+,List (LONG, LONG)),List(REF(x,LONG), CONST_LONG(1)),
—LONG) , CONST_LONG(2)),BOOLEAN) ,BOOLEAN))",

"complexity": 11,

"extraFee": 10001

Ro8tUW6YMtEiZ

GET /addresses/publicKey /—publicKey”

The method returns the participant’s address based on its public key.
Response example:

GET /addresses/publicKey/{publicKey }:

{
"address": "3N4WaaaNAVLMQgVKTRSePgwBuAKvZTjAQbq"
}

GET /addresses/data/—address”

The method returns data written to the specified address using transaction 12.
Response example:

GET /addresses/data/{address}:

L
{
"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4GgilN36aWnY",
"type": "integer",
"value": 1500000
}
]

9.2. What the platform REST API is for 82

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /addresses/data/—address” /~key”

The method returns data recorded at the specified address with key {key}. This key is specified in the
transaction 12 in the data.key field.

Response example:

GET /addresses/data/{address}/{key}:

{
"key": "4yR7b6Gv2rzLrhYBHpgVCmLH42raPGTF4Ggi1N36aWwnY",
"type": "integer",
"value": 1500000

}

alias group:
GET /alias/by-alias/—alias”
Obtaining a participant’s address by his {alias}.

Response example:

GET /alias/by-alias/{alias}:

{
"address": "address:3Mx2afTZ2KbRrLNbytyzTtXukZvqEB8SkW7"
}

GET /alias/by-address/—address”

Obtaining a participant’s alias from his {address}.
Response example:

GET /alias/by-alias/{alias}:

[
"alias:participantl",

]

The GET /leasing/active/—address” method:
The method returns a list of lease creation transactions in which the address participated as sender or
recipient.

Response example with one transaction:

GET /alias/by-alias/{alias}:

L
{
"type" . 8,
"id": "2jWhz6uGYsgvfoMzNRBEEGdi9eafyCA2zLFfkM4NP6TT",
"sender": "3PP6vdkEWoif7AZDtSeSDtZcwiqSfhmwttE",

(continues on next page)

9.2. What the platform REST API is for 83

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"senderPublicKey": "DWONKLYeyoEWDqJKhWv87EdFfTqpFtJBWoCqfCVwRhsY",
"fee": 100000,
"timestamp": 1544390280347,
"signature":

—"25kpwh7nY jRUt£bAbWYRYMDPCUCoyMoUuWTJ6vZQArXsZYXbdiWHa9iGscTTGnPFyegP82sNSfM2bXNX3K7p6D3HD" ,
"version": 1,
"amount": 31377465877,
"recipient": "3P3RD3yJW2gQ9dSVwVVDVCQiFWqalLtZcyzH",
"height": 1298747

}

See also

REST API methods

9.2.9 REST API: information about a consensus algorithm in use

The methods of the consensus group are provided to obtain information about the consensus algorithm
used.

GET /consensus/algo

The method returns the name of the consensus algorithm used.
Response example:

GET /consensus/algo:

{
"consensusAlgo": "Leased Proof-of-Stake (LPoS)"

GET /consensus/settings

The method returns the parameters of the consensus algorithm used, specified in the node configuration file.
Response example:

GET /consensus/settings:

{
"consensusAlgo": "Proof-of-Authority (PoA)",
"roundDuration": "25 seconds",
"syncDuration": "5 seconds",
"banDurationBlocks": 50,
"warningsForBan": 3

}

9.2. What the platform REST API is for 84

Technical description

of the Waves Enterprise platform, Release 1.7.0

GET /consensus/minersAtHeight /~height”

The method returns the queue of miners at {height}. This method is available when using the PoA

consensus algorithm.
Response example:

GET /consensus/minersAtHeight/{height}:

{

"miners": [
"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",
"3N2EsS6hJPYgRn7WF JHLJNnrsm92sUKcXkd",
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w" ,
"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF" ,
"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEdZNS"

1,

"height": 1

}

GET /consensus/miners/—timestamp”

The method returns the queue of miners for {timestamp} (specified in Unix Timestamp format, in millisec-
onds). The method is available when using the PoA consensus algorithm.

Response example:

GET /consensus/miners/{timestamp}:

{

"miners": [
"3Mx5sDq4NXef1BRzJRAofa3orYFxLanxmd7",
"3N2EsS6hJPYgRn7WF JHL JNnrsm92sUKcXkd",
"3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"3N6pfQJyqjLCmMbU7G5sNABLmSF5aFT4KTF" ,
"3NBbipRYQmZFudFCoVJXg9JMkkyZ4DEJZNS"

1,

"timestamp": 1547804621000

GET /consensus/bannedMiners/—height”
The method returns the list of banned miners at {height}
consensus algorithm.

Response example:

GET /consensus/bannedMiners/{height}:

. This method is available when using the PoA

{

"miners": [
"3N6p£QJyqjLCmMbU7G5sNABLmSF5aFT4KTF" ,
"3NBbipRY(mZFudFCoVJXg9JMkkyZ4DEdZNS"

1,

"height": 440

}

9.2. What the platform REST API is for

85

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /consensus/basetarget /—signature”

The method returns the basetarget value of block creation by its {signature}. The method is available
when using the PoS consensus algorithm.

GET /consensus/basetarget

The method returns the basetarget value of current block creation. The method is available when using the
PoS consensus algorithm.

GET /consensus/generatingbalance/—address”

The method returns the generating balance available for the {address} node, including funds leased to the
participant. The method is available when using the ref: PoS consensus algorithm <pos-consensus>.

GET /consensus/generationsignature/-signature”

The method returns the generating signature value of block creation by its {signature}. The method is
available when using the PoS consensus algorithm.

GET /consensus/generationsignature

The method returns the generating signature value of current block creation. The method is available when
using the PoS consensus algorithm.

See also

REST API methods

Consensus algorithms

9.2.10 REST API: information about smart contracts

A set of methods from the contracts group is provided to obtain information about smart contracts loaded
on the network.

GET /contracts
The method returns information on all smart contracts uploaded to the network. For each smart contract,
the following parameters are returned in the response:

e contract_id - smart contract identifier;

* image - name of the Docker image of the smart contract, or its absolute path in the repository;

* imageHash - hash sum of the smart contract;

e version - version of the smart contract;

¢ active - status of the smart contract at the time of sending the query: true - running, false - not
running.

9.2. What the platform REST API is for 86

https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf
https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf
https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf
https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf

Technical description of the Waves Enterprise platform, Release 1.7.0

Response example for one smart contract:

GET /contracts:

[
{
"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCql1CCh8i",
"image": "registry.wvservices.com/wv-sc/mayl4_1:latest",
"imageHash": "ff9b8af966b4c84e66d3847ab14e65f55b2c1£63afcd8b708b9948a814cb8957",
"version": 1,
"active": false

POST /contracts

The method returns a set of “key:value” fields written to the stack of one or more smart contracts. The IDs
of the requested smart contracts are specified in the contracts field of the request.

Response example for one smart contract:

POST /contracts:

{
"8vBJhy4eS80EwWCHC3yS3M6nZd5CLBa6XNt4Nk3yEEEXG" : [
{
"type": "string",
"value": "Only description",
"key": "Description"
},
{
"type": "integer",
"value": -9223372036854776000,
"key": "key_may"
}
]
}

GET /contracts/status/-id”

The method returns the status of executed transaction 103 to create a smart contract by transaction identifier
{id}. However, if the node is restarted after sending the transaction to the blockchain, the method will not
return the correct status of that transaction.

Parameters returned in the method response:

¢ sender - an address of transaction sender;

senderPublicKey — a public key of transaction sender;

txId - transaction identifier;

status - transaction status: successfully hit the block, confirmed, rejected;

* code - error code (if any);

message - message about the status of the transaction;

timestamp - the Uniz Timestamp (in milliseconds);

9.2. What the platform REST API is for 87

Technical description of the Waves Enterprise platform, Release 1.7.0

* signature - transaction signature.
Response example:

GET /contracts/status/{id}:

{

"sender": "3GLWx8yUFcNSL3DERSkZyE4TpyAyNiEYsKG",

"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",

"txId": "4q5Q8vLeGBpcdQofZikyrr jHUS4pB1AB4gqNEn2yHRKWU",

"status": "Success",

""code": null,

"message': "Smart contract transaction successfully mined",

"timestamp": 1558961372834,

"signature":
—"4gXy7qtzkaHHH6NkksnZ5pnv8 juF65Mv jQ9JgVztpgNwLNwuyyr27Db3gCh5YyADqZeBH72EyAkBouUoKvwJ3RQJ"

GET /contracts/—contractId”

The method returns the result of smart contract execution by its {contractId} identifier.
Response example:

GET /contracts/{contractId}:

L
{
"key": "avg",
"type": "string",
"value": "3897.80146957"
},
{
"key": "buy_price",
"type": "string",
"value": "3842"
}
]

POST /contracts/—contractId”
The method returns key values from the {contractId} smart contract state. The query specifies the
following data:
e contract_id - smart contract identifier;
e limit - a limit of number of data blocks to be obtained;
e offset - number of data blocks to be missed in the method response;
e matches - an optional parameter for a regular expression for sorting of keys.
Response example:

POST /contracts/{contractld}:

9.2. What the platform REST API is for 88

Technical description of the Waves Enterprise platform, Release 1.7.0

[
{
"type": "string",
llkeyll : Ilavgll R
"value": "3897.80146957"
1,
{
"type": "string",
"key": "buy_price",
"value": "3842"
}
]

GET /contracts/executed-tx-for/—id”

The method returns the result of smart contract execution by identifier of a transaction 105.

The method’s response returns transaction data 105, as well as the results of the execution in the results
field.

Response example if a smart contract has not been executed:

GET /contracts/executed-tx-for/{id }:

{
"type": 105,
"id": "2UAHvs4KsfBbRVPm2dCigWtqUHuaNQou83CXy6DGDiRa",
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee'": 500000,
"timestamp": 1549365523980,
"proofs": [

"4BoG6wQnYyZWyUKzAwh5n1184tsEWUqUTWmXMExvvCU95xgk4UFB8iCnHJ4GhvIm86REB69hKM7s2WLAwWTSXquAs"
1,
"version": 1,
Iltxll: {
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky",
"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67nbN56rhhAv38Dws5skqDs jMVT2M",
"fee": 500000,
"timestamp": 1550591678479,
"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYv" 1],
"version": 1,

"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName": "stateful-increment-contract",
"params": [],
"height": 1619
},
"results": []

9.2. What the platform REST API is for 89

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /contracts/—contractld”/~key”

Returns the {key} value of the executed smart contract by its identifier.

Response example:

GET /contracts/{contractId}/{key}:

{
"key": "updated",
"type": "integer",
"value": 1545835909
}

See also
REST API methods
Smart contracts

Development and usage of smart contracts

9.2.11 REST API: information about network blocks

A group of blocks methods is provided to get information about the different blocks on the network.

GET /blocks/height

The method returns the number of the current block in the blockchain (block height).
Response example:

GET /blocks/height:

{
"height": 7788
}

GET /blocks/height /—signature”

The method returns the block height by its {signature}.
The method response contains the height field, like the GET /blocks/height method.

GET /blocks/first

The method returns information about the genesis block of the network.
The response contains the following parameters:

* reference — hash sum of the genesis block;

* blocksize — size of the genesis block;

e signature — signature of the genesis block;

e fee — fees for the transactions included in the genesis block;

9.2. What the platform REST API is for

90

Technical description of the Waves Enterprise platform, Release 1.7.0

* generator — address of creator of the genesis block;
* transactionCount — number of 7/ and 70! transactions included in genesis block;
e transactions — array with the bodies of 1 and 101 transactions included in the genesis block;
e version — version of the genesis block;
* timestamp — Unix Timestamp of the genesis block (in milliseconds);
* height — height of the genesis block (1).
Response example:

GET /blocks/first:

{
"reference":
—"67rpwLCuS5DGASKGZXKsVQ7dnPb9goRLoKfgGbLfQgOWoLUgNY77E2jT11fem3coVOnAkguBACzrU1iyZM4B8roQ",
"blocksize'": 1435,
"signature":
—"4HENriUyMthzMSqWab5s YPFMATbzpQugTBMk6mXUh5HmnvHf UhmQk6EqmdhGvNFcUvTDrsyiVqkxtm8iiV2xNTSNK",
"fee": O,
"generator": "3MvQKx98a713B28rdUAtbWJS8DFJEXhnTjKs",
"transactionCount": 26,
"transactions": [
{
"type": 1,
Ilidll:
—"2AdCY254MFSrgxpr6otBisV5Zz7neH8YoM6VGW5egoVInwD8cJpYZVR42aVKTZnwGT9ee7LCpAGMNSUV86FEAGXu" ,
"fee": O,
"timestamp": 1606211535610,
"signature":
—"2AdCY254MFSrgxpr6otBisV5Zz7neH8YoM6VGW5egoVInwD8cJpYZVR42aVKTZnwGT 9ee7LCpAGMNSUVS6FEAGXu" ,
"recipient": "3MufokZsFzaf7heTVliyreUtmluoJXPoFzdP",
"amount": 1250000000000000
1,
{
"type": 1’
"id":
—"BVC2LoFTbrfLkd48bjQkp8CmTyqXJSkJh723qx09v5pz38tBUjRWOtHLuvwajSvkzQNFxrCc6Y jkgx5R2YR3x5VC",
"fee": O,
"timestamp": 1606211535610,
"signature":
—"BVC2LoFTbrfLkd48bjQkp8CmTyqXJSkJh7239x09v5pz38tBUjRWOtHLuvwajSvkzQNFxrCc6Y jkgx5R2YR3x5VC",
"recipient": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"amount": 300000000000000
1,
{
"type": 1,
"id":
—"4cmwEkSnBLc3TBTPUiT7HwmdER25X7GzCj2mgiEJ8K149vnNalorBZUNs twNXtXFyKcQbkRPym39d9wJXTE4wgbU",
"fee": O,
"timestamp": 1606211535610,
"signature":
—"4cmwEkSnBLc3TBTPUiT7HwmdER25X7GzCj2mgiEJ8K149vnNalorBZUNs twNXt XFyKcQbkRPym39d9wJXTE4wgbU" ,
"recipient": "3N9nNFySk1zVSVf9DUWRODiBA1jEmmDDpalJ",
"amount": 100000000000000
1,
{

(continues on next page)

9.2. What the platform REST API is for 91

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type": 1,
Ilidll :
—"BEtq301eWoN3bqR9cYV6149qxAE3rudCoSCE1Mm5sSIJEedcbmLhsbfg8rh4S6ESrAPq7ZEbghEgHjyb3xzUbDDRh" ,
"fee": O,
"timestamp": 1606211535610,
"signature":
—"5Etq301eWoN3bqR9cYV6149qxAE3rudCoSCE1Mm5sSJEedcbmLhsbfg8rh4S6ESrAPq7ZEbghEgHjyb3xzUbDDRh" ,
"recipient": "3N3jgxvmSsBBV40z9BcKhT8Warlem2sKoJn",
"amount": 1000000000000000
1,
{
"type": 110,
Ilidll .
—"3HewQJtzuaumzX4TvmN7£xVCgnsWITaLeQjYBVDDuYoEW2ijWd7JME8h1gtsqepv5SDhHPvoMesVNmO6br8WRgF8" ,
"fee": O,
"timestamp": 1606211535610,
"signature":
—"3HewQJtzuaumzX4TvmN7£xVCgnsWITaLeQjYBVDDuYoEW2ijWd7JME8hlgtsqepv5SDhHPvoMesVNmO6br8WRgF8" ,
"targetPublicKey":
—"56rV5kcRISBsxQ9LtNrmp6V7254BDkZUJaA6ujZswDneDmCTmeSGEUE2FQP1rPXdfpWQNunRw4ai jGXxoK3o04puj",
"target": "3MufokZsFzaf7heTVlyreUtmluoJXPoFzdP"
1,
{
"type": 101,
Ilidll .
—"5r4uLWn3rwmgbBygNj29iR4YsiV82dYWFeCbepAHhKGXqnn27vE6i811U9H2UZgX8zNQYZciyw3PR6nAdwjSPSp5",
"fee": O,
"timestamp": 1606211535609,
"signature":
—"5r4ulL.Wn3rumgbBygNj29iR4YsiV82dYWFeCbepAHhKGXqnn27vE6i811U9H2UZgX8zNQYZciyw3PR6nAdwjSPSp5",
"target": "3MufokZsFzaf7heTViyreUtmluoJXPoFzdP",
"role": "permissioner"
1,
{
"type": 101,
"id":
—"4pBwjviNLtSPEBY5YB7ZdUXVSFnEk4rgscW8r9QQKxdxQZz jwjdqlZnruMxQo7tomQVJIf1Ni6SyVxSHrQZhBJaFN",
"fee": O,
"timestamp": 1606211535608,
"signature":
—"4pBwjviNLtSPEBY5YB7ZdUXVSFnEk4rgscW8ro9QQKxdxQZz jwjdqlZnruMxQo7tomQVJIf1Ni6SyVxSHrQZhBJaFN",
"target": "3MufokZsFzaf7heTViyreUtmluoJXPoFzdP",
"role": "miner"
1,
{
"type": 101,
"id":
—"BkwQwLH80Ty1ztF6xxsBxE3MDGio1NJm8F7Mtpynf3QTwICWCsp5SFio5SxLmPxnB1bUVQHMCHbQCD4wXJLIgjSrp",
"fee": O,
"timestamp": 1606211535607,
"signature":
—"BbkwQwLH80Ty1ztF6xxsBxE3MDGiolNIm8F7Mtpynf3QTwICWCsp5Fio5SxLmPxnB1bUVQHMCHbQCD4wXJLJgjSrp",
"target": "3MufokZsFzaf7heTViyreUtmluoJXPoFzdP",
"role": "connection_manager"
1,
{

(continues on next page)

9.2. What the platform REST API is for 92

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type": 101,
Ilidll:
—"62xS2qkR7chFMSdryT jwB15BKd4CH5Hun9PbzasZo1Qx6Bwg82nixMPKRQobDy3JW7 cLmzMHi97hJk1JSDghwUgM" ,
"fee": O,
"timestamp": 1606211535606,
"signature":
—"62x52qkR7chFMSdryT jwB15BKd4CH5Hun9PbzasZo1(x6Bwg82nixMPKRQobDy3JW7 cLmzMHi97hJk1JSDghwUgM",
"target": "3MufokZsFzaf7heTViyreUtmluoJXPoFzdP",
"role": "contract_developer"
1,
{
"type": 101,
Ilidll:
—"2sNwzGbwDL2Es53P8XY5wA9TOwwu3eXJbJUrtXJ9wg49urP juBe jWbidat2z3yZ8JrTpkWWFEsrerCtnC38XuRTJ",
"fee": O,
"timestamp": 1606211535605,
"signature":
—"2sNwzGbwDL2Es53P8XY5wA9TOwwu3eXJbJUrtXJ9wg49urP juBe jWbidat2z3yZ8JrTpkWWFEsrerCtnC38XuRTJ",
"target": "3MufokZsFzaf7heTViyreUtmluoJXPoFzdP",
"role": "issuer"
1,
{
"type": 110,
"id":
—"4hLep3GngPEBH2XxEmuUZ323muT8BstFdT552e42z6ZXCKGnF 1PABGG jEiCkHf r6hMuyvRJI7axD9qoGeWQCUSyaCk",
"fee": O,
"timestamp": 1606211535610,
"signature":
—"4hLep3GngPEBH2XxEmuUZ323muT8BstFdT552e42z6ZXCKGnF 1PABGG jEiCkHf r6hMuyvRJ7axD9q0GeWQCUSyaCk",
"targetPublicKey":
—"6nGi8X0iGjjyjbPmjLNy1k2bus4yXLaeuA3Hb7BikwD9tboFwFXJYUmto5Joox76c3pp2MriL jgodUJuxryCJofQ",
"target": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c"
1,
{
"type": 101,
"id":
—"njOXfqm3pPLmulsWfDZx4htKaNKAyvhen7tFO5T9YwdmK1pqkiCjtaV9AxCwzEceViyobrHPapigxPyCZdBWvRn",
"fee": O,
"timestamp": 1606211535604,
"signature":
—"njO9Xfqm3pPLmuLsWfDZx4htKaNKAyvhen7tFO5T9YwdmK1pqkiCjtaVOAxCwzEceViyobrHPapigxPyCZdBWvRn",
"target": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"role": "permissioner"
1,
{
"type": 101,
"id":
—"24AmxdGyH3af YRxPXnbzqvU1Frol1MwVQPDqwkd jCKLddSEiKVhyeMHTAVrRpHuU83ZDPMyQkf3ty161PrujmGYtef",
"fee": O,
"timestamp": 1606211535603,
"signature":
—"24AmxdGyH3af YRxPXnbzqvU1FrolMwVQPDqwkd jCKLdAdSEiKVhyeMHTAVrRpHu83ZDPMyQkf3ty161PrujmGYtef",
"target": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"role": "miner"
1,
{

(continues on next page)

9.2. What the platform REST API is for 93

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type": 101,
Ilidll :
—"4xsEQoh6Z4wDW6 jTOUP3SqA1YvbtrbaGfF4uHa jWxayBUBhrw2ZAYmt AWwDFytTdc6yqDep j6GwzxZuFYTq6638v",
"fee": O,
"timestamp": 1606211535602,
"signature":
—"4xsEQoh6Z4wDW6jTOUP35qA1YvbtrbaGfF4uHa jWxayBUBhrw2ZAYmt AWwDFytTdc6yqDep j6GwzxZuFYTq6638v",
"target": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"role": "connection_manager"
1,
{
"type": 101,
Ilidll .
—"FSNaHMC11W3VskpGYfgxt3fqAMvt6gUmgy61CX8mmI3QykuRp2E9Z8Btc8w22Awc6W8CpXGIn6VcpkcBdAx4Tj",
"fee": O,
"timestamp": 1606211535601,
"signature":
—"FSNaHMC11W3VskpGYfgxt3fqAMvt6gUmgy61CX8mmI3QykuRp2E9Z8Btc8w22Awc6W8CpXGIn6VcpkcBdAx4Tj",
"target": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"role": "contract_developer"
1,
{
"type": 101,
"id":
—"4rfDMTGjbHENy3uiACLmf AHF JWyouhridZHGpynfV8S6aX3XmZHjUSfCvadn3KSzb8eHRqlkmzEaLMxvbqWkUKBY",
"fee": O,
"timestamp": 1606211535600,
"signature":
—"4rfDMTGjbHENy3uiACLmf AHF JWyouhridZHGpynfV8S6aX3XmZHjUSfCvadn3KSzb8eHRqlkmzEaLMxvbqWkUKBY",
"target": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"role": "issuer"
3,
{
"type": 110,
llidll :
—"4q51XHv8jZ1qubFptfBCz1cic14ulM4zCzE1i5qqEA4z6TOmeVFaghZRpepFpdyGiSyKH4s6XqKPTgxuEJ8Sp4QQ",
"fee": O,
"timestamp": 1606211535610,
"signature":
—"4qb5iXHv8jZ1qubFptfBCz1cic14ulM4zCzE1i5qqEA4z6TOmeVFaghZRpepFpdyGiSyKH4s6XqKPTgxuEJ8Sp4QQ",
"targetPublicKey":
—"25GXtqKBAHTCrHuDoXvwQGXnHKBdeVc jdLvSmQ7SVFq4FDoMWzV780RkgoS32AFDQ23DvEGFX6QpRkQRShQ4zMIy" ,
"target": "3N9nNFySk1zVSVfODUWRODiBA1jEmmDDpalJ"
3,
{
"type": 101,
"id":
—"2gjzK3qSp89ywXCjEpvCHKSeyqoBYR2XCKegZ1ngGrQF8cDGX jA19HN8eYTgw8DRoXy62MM138EXXiZyV7oCaZrt",
"fee": O,
"timestamp": 1606211535599,
"signature":
—"2gjzK3qSp89ywXCjEpvCHKSeyqoBYR2XCKegZ1ngGrQF8cDGX jA19HN8eYTgw8DRoXy62MM138EXXiZyV7oCaZrt",
"target": "3N9nNFySk1zVSVfODUWRODiBA1ljEmmDDpalJ",
"role": "permissioner"
1,
{

(continues on next page)

9.2. What the platform REST API is for 94

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type": 101,
Ilidll :
—"32q1bCbeiNt4Z35rVtKwPo2MnW8peEcx2f(tgMsei JSb3TN7TKfU9auLEWKAgRXoN jpbpi9XA4aJw8Ly4dgcpEaTv",
"fee": O,
"timestamp": 1606211535598,
"signature":
—"32q1bCbeiNt4Z35rVtKwPo2MnW8peEcx2f(tgMsei JSb3TN7TKfU9auLEWKAgRXoN jpbpi9XA4aJw8LydgcpEaTv",
"target": "3N9nNFySk1zVSVEfODUWRODiBA1jEmmDDpal",
"role": "miner"
1,
{
"type": 101,
Ilidll .
—"Aikgzt9ChSDfK4foF90QJ8qRjVEcRyqFOokU9gr9JdpXh2LpyVB7GW4XS jmyc4MK9btPh3xd2whFDoCr8J5F4Hs" ,
"fee": O,
"timestamp": 1606211535597,
"signature":
—"Aikgzt9ChSDfK4foF90QJ8qRjV5cRyqF90kU9gr9JdpXh2LpyVB7GW4XS jmyc4MK9btPh3xd2whFDoCr8J5F4Hs ",
"target": "3N9nNFySk1zVSVEfODUWRODiBA1jEmmDDpal",
"role": "connection_manager"
1,
{
"type": 101,
"id":
—"48EGAWC133vQeydqMSX jmXJKB6L2brnu8Shb5W8r4anKCaUQZp5iKGrpVUAws iUHfHrMXGAS2roeoqo7abUHQbbVw",
"fee": O,
"timestamp": 1606211535596,
"signature":
—"48EGAWC133vQeydgqMSX jmXJKB6L2brnu8ShbW8r4anKCaUQZp5iKGrpVUAws iUHfHrMXGAS2roeoqo7abUHQbbVw",
"target": "3N9nNFySk1zVSVfODUWRODiBA1ljEmmDDpalJ",
"role": "contract_developer"
3,
{
"type": 101,
llidll :
—"FwuNbJyr2Est9DFibuch1ZfkQjDgl3asqSsAdm37381aMWMrdaxc jqXMpKus1rxDcxZd5YnD4MNkz1ZpPgZ8nupn",
"fee": O,
"timestamp": 1606211535595,
"signature":
—"FwuNbJyr2Est9DFibuch1ZfkQjDgl13asqSsAdm37381aMWMrdaxcjqXMpKus1rxDcxZd5YnD4MNkz1ZpPgZ8nupn",
"target": "3N9nNFySk1zVSVEODUWRODiBA1ljEmmDDpal",
"role": "issuer"
1,
{
"type": 110,
Ilidll .
—"psbvGHxv4Df TFnTXsqeS22hXQQm8uBf 1mwnc7gtDvGxGGEfEhDg8DvnC jtKukYmuEW6adz5NQGLbagbMJK7ChYdA" ,
"fee": O,
"timestamp": 1606211535610,
"signature":
—"psbvGHxv4DETFnTXsqeS22hXQQm8uBf 1mwnc7gtDvGxGGEEhDg8DvnC jtKuk YmuEW6adz5NQGLbagbMJK7ChYdA" ,
"targetPublicKey":
—"5fbBNmkWOLJBUFNJW6vs jnmBzGf2AMwdqgHNvne2i YPMNW2wtD JGmF4PGnqyzTY JyYN3kWNWd4cFf9xBZ8Qi9Hki" ,
"target": "3N3jgxvmSsBBV40z9BcKhT8Warlem2sKoJn"
1,
{

(continues on next page)

9.2. What the platform REST API is for 95

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type": 101,
llidll:
«"B5BG3AhFnGbDcSDJ88KmXViU2tCxs4VNhXGjgocn2ZCcvC jTbxGjso4DKPkca jUNIJBhPZHqgMmEKugVxqBM jN£2YY" ,
"fee": O,
"timestamp": 1606211535594,
"signature":
«"5BG3AhFnGbDcSDJ88KmXViU2tCxs4VNhXGjgocn2ZCcvC jTbxGjso4DKPkca jUNIJBhPZHqgMmEKugVxqBM jNE2YY",
"target": "3N3jgxvmSsBBV40z9BcKhT8Warlem2sKoJn",
"role": "permissioner"
1,
{
"type": 101,
Ilidll:
—"HYoFXRgsyHGTa9JTnCDpJtBubhr61LTYTA2zGPkUAVaTn6mhHfSKoVJIbn91DN2gtqZxNreQnrV4GGnMR4cFikAE" ,
"fee": O,
"timestamp": 1606211535593,
"signature":
—"HYoFXRgsyHGTa9JTnCDpJtBu6hr61LTYTA2zGPkUAVaTn6mhHf SKoVJbn91DN2gtqZxNreQnrV4GGnMR4cFikAE" ,
"target": "3N3jgxvmSsBBV40z9BcKhT8Warlem2sKoJn",
"role": "contract_developer"
1,
{
"type": 101,
"id":
—"4snBMYD3dDw9pivJM2YFSJBPPtK4K43YGL8Q jwdAPadgZCtqsR4yo0o3CZC4bgfbZf fwVWQQzVmES jxpzsiwCjNju",
"fee": O,
"timestamp": 1606211535592,
"signature":
—"4snBMYD3dDw9pivJM2YFSJBPPtK4K43YGL8Q jw4dAPadgZCtqsR4yoo3CZC4bgf5Zf fwVWQQzVmESjxpzsiwCjNju",
"target": "3N3jgxvmSsBBV40z9BcKhT8Warlem2sKoJn",
"role": "issuer"
X
1,
"version": 1,
"poa-consensus": {
"overall-skipped-rounds": 0
1,
"timestamp": 1606211535610,
"height": 1

GET /blocks/last

The method returns the contents of the current block of the blockchain.

The current block is in the process of creation, until it is accepted by the miner nodes, the number of
transactions in it may vary.

Parameters returned in the method response:
e reference — hash sum of the block;
* blocksize — size of the block;
¢ features — features running at the time of block creation;

* signature - block signature;

9.2. What the platform REST API is for 96

Technical description of the Waves Enterprise platform, Release 1.7.0

¢ fee — fees for transactions included in the block;

e "“generator” — address of creator of the block;

* transactionCount — number of / u 7101 transactions included in genesis block;

* transactions — array with bodies of transactions included in the block;

¢ version — version of the block;

* poa-consensus.overall-skipped-rounds — number of missed mining rounds, when using the PoA

consensus algorithm;
* timestamp — Unix Timestamp of the block (in milliseconds);

* height — height of the block.

Response example for an empty current block:

GET /blocks/last:

{

—"hT5RcPT4 jDVoNspfZkNhKqfGuMbriz jpG4vmPecVEiWgWaGMoAnShgPBJpC9696TL8wGDKJzkwewiqe8m26C4aPd" ,

—"BGAM7 j£QScwdg3g7PCNNtz5xG3JzjInW4Ap2soThirSx1AmUQHQM jz8VMtkFEzK7L447ouKHf j2gMvZyP5u94Rps",

"reference":

"blocksize": 226,
"features": []1,
"signature":

"fee": O,
"generator": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"transactionCount": O,
"transactions": [],
"version": 3,
"poa-consensus": {
"overall-skipped-rounds": 1065423
1,
"timestamp": 1615816767694,
"height": 1826

GET /blocks/at/-height”

The method returns the contents of the block at height.

Parameters returned in the method response:

e reference — hash sum of the block;

* blocksize — size of the block;

e features — features running at the time of block creation;

* signature - block signature;

e fee — fees for transactions included in the block;

e "“generator” — address of creator of the block;

¢ transactionCount — the number of transactions included in the block;
* transactions — array with bodies of transactions included in the block;

e version — version of the block;

9.2. What the platform REST API is for

97

Technical description of the Waves Enterprise platform, Release 1.7.0

* poa-consensus.overall-skipped-rounds — number of missed mining rounds, when using the PoA
consensus algorithm;

* timestamp — Unix Timestamp of the block (in milliseconds);
* height — height of the block.
Response example:

GET /blocks/at/{height}:

{
"reference":
—"hT5RcPT4 jDVoNspfZkNhKqfGuMbriz jpG4vmPecVEWgWaGMoAn5hgPBJpC9696 TL8wWGDKJzkwewiqe8m26C4aPd" ,
"blocksize": 226,
"features": [],
"signature":
—"B5GAM7 j£QScwdg3g7PCNNtz5xG3JzjInW4Ap2soThirSx1AmUQHQM jz8VMtkFEzK7L447ouKHf j2gMvZyP5u94Rps",
"fee": 0,
"generator": "3Mv79dyPX2cvLtRXni1MDDWiCZMBrkw9d97c",
"transactionCount": O,
"transactions": [],
"version": 3,
"poa-consensus": {
"overall-skipped-rounds": 1065423
1,
"timestamp": 1615816767694,
"height": 1826

GET /blocks/seq/—from” /~to”

The method returns the contents of blocks from height {from} to height {to}.

Parameters identical to the GET /blocks/at/{height} method are returned for each block.
GET /blocks/seqext /~from” /~to”

The method returns the contents of blocks with extended transaction information from height {from} to
height {to}.

Other parameters returned for each block are identical to the GET /blocks/at/{height} method.
GET /blocks/signature/-signature”

The method returns the block content by its {signature}.
Parameters returned for each block are identical to the GET /blocks/at/{height} method.

9.2. What the platform REST API is for 98

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /blocks/address/—address” /—from” /—to”

The method returns the contents of all blocks generated by the {address} from height {from} to height
{to}.

The method response returns parameters identical to the GET /blocks/at/{height} method for each block.

GET /blocks/child/-signature”

The method returns an inherited block from the block with {signature}.

Parameters returned for each block are identical to the GET /blocks/at/{height} method.

GET /blocks/headers/at/~height”

The method returns the header of the block at height.
Parameters returned in the method response:

¢ reference — hash sum of the block;

* blocksize — size of the block;

e features — features running at the time of block creation;

* signature — block signature;

e fee — fees for transactions included in the block;

e ““generator” — address of creator of the block;

* pos-consensus.base-target — the coefficient adjusting the block release time when using the PoS
consensus algorithm;

* pos-consensus.generation-signature — the signature needed to validate the block miner;

* poa-consensus.overall-skipped-rounds — number of missed mining rounds, when using the PoA
consensus algorithm;

¢ version — version of the block;
e timestamp — Unix Timestamp of the block (in milliseconds);
* height — height of the block.

Response example:

GET /blocks/at/{height}:

{

"reference":
—"5qWJIh9aQ2hkwnBWygGYmrBhzMe5inRZ2r6WhEXz3VJsiMtASWkvbsVeZGychZKzcPDbWmpzdhQwNQJ19P£fK2dst9",

"blocksize": 589,

"features": [

0

1,

"signature":
—"4U4Hmg4mDYrvxaz3JVzL1Z1piPDZ1PJ61vd1PeS7TESZFkHsUCUqeeAZoszTVr43Z4NV44dqbLvOWdrLytDL6gHuv",

"fee": 5000000,

"generator": "3NkZd8Xd4KsuPiNVsuphRNCZE3S5qJycqv8d",

"pos-consensus": {

(continues on next page)

9.2. What the platform REST API is for 99

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"base-target": 249912231,
"generation-signature": "LM83w6eWQHnLJF2DORONANcHAdnZLCLWrn5bfcoqcZy"
1,
"poa-consensus": {
"overall-skipped-rounds": 2
1,
"transactionCount": 2,
"version": 12,
"timestamp": 1568287320962,
"height": 48260

GET /blocks/headers/seq/—from” /~to”

The method returns the headers of blocks from height {from} to height {to}.

The method response returns parameters identical to the GET /headers/at/{height} method for each
block.

GET /blocks/headers/last

The method returns the header of the current block.

The method response returns parameters identical to the GET /headers/at/{height} method for each
block.

See also

REST API methods

9.2.12 REST API: information about permissions of participants

The methods of the permissions group are used to obtain information about the roles of participants on
the network.

For more information on participant permissions, see the article Permissions.

GET /permissions/—address”

The method returns information about the active permissions of the {address}, as well as the request
generation time in Unix Timestamp format (in milliseconds).

Response example:

GET /permissions/{address}:

{
"roles": [
{
"role": "miner"
},
{

(continues on next page)

9.2. What the platform REST API is for 100

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"role": "permissioner"
X
1,
"timestamp": 1544703449430
}

GET /permissions/—address”/at/—timestamp”

The method returns information about participant roles of an {address}, active for a {timestamp}. The
time is specified in Unix Timestamp format (in milliseconds).

Response example:

GET /permissions/{address}/at/{timestamp}:

{
"roles": [
{
"role": "miner"
1,
{
"role": "permissioner"
}
1,
"timestamp": 1544703449430
}

POST /permissions/addresses

The method returns roles for multiple addresses that are active at the specified point in time.
The method query contains the following data:

e addresses - list of addresses as an array of strings;

 timestamp - Unix Timestamp (in milliseconds).
Example of a query with two addresses:

POST /permissions/addresses:

{
"addresses": [
"3N2cQF{fUDzG2iujBrFTnD2TAsCNohDxYu8w", "3Mxb5sDg4NXefl1BRzJRAofa3orYFxLanxmd7"
]’
"timestamp": 1544703449430
}

The method response returns an array of data addressToRoles, which contains the roles for each address
as well as the timestamp.

Response example for two addresses:

POST /permissions/addresses:

9.2. What the platform REST API is for 101

Technical description of the Waves Enterprise platform, Release 1.7.0

"addressToRoles": [

{
"address": "3N2cQFfUDzG2iujBrFTnD2TAsCNohDxYu8w",
"roles": [
{
"role": "miner"
},
{
"role": "permissioner"
}
1
},
{
"address": "3MxbsDq4NXef1BRzJRAofa3orYFxLanxmd7",
"roles": [
{
"role": "miner"
}
1
}

]’
"timestamp": 1544703449430

See also

REST API methods

Permissions

Permission management

9.2.13 REST API: information about address assets and balances

The methods of the assets group are provided for obtaining information about assets and address balances.

GET /assets/balance/-address”

The method returns the balance of all assets of the address.

Parameters returned in the method response:

¢ address — participant address;

¢ balances — object with balances of the participant:

assetId — asset identifier;

— balance — asset balance;

— quantity — the total number of issued tokens of the asset;

— reissuable — the reissuability of an asset;

— issueTransaction — the body of transaction 3 for asset creation;

— minSponsoredAssetFee — minimum fee for sponsored transactions;

9.2. What the platform REST API is for 102

Technical description of the Waves Enterprise platform, Release 1.7.0

— sponsorBalance — funds allocated to pay for transactions on sponsored assets.
Response example:

GET /assets/balance/{address}:

{
"address": "3Mv61lqe6egMSjRDZiiuvJDnf3Q1qWOtTZDB",
"balances": [
{
"assetId": "Ax9T4grFxx5m3KPUEK jMdnQkCKtBktf694wU2wJYvQUD",
"balance": 4879179221,
"quantity": 48791792210,
"reissuable'": true,
"minSponsoredAssetFee" : 100,
"sponsorBalance" : 1233221,
"issueTransaction" : {
"type" : 3,

"assetId": "49KfHPJcKvSAvNKwM7CTof jKHzL87SaSx8eyADBjvbWi",
"balance": 10,
"quantity": 10000000000,
"reissuable'": false,
"issueTransaction" : {
"type" : 3,

POST /assets/balance
The method returns the balance of all assets for several addresses passed to the addresses field. Parameters
passed in response for each address are identical to the GET /assets/balance/{address} method.

Response example for one address:

GET /assets/balance/{address}:

{
"address": "3Mv61lqge6egMSjRDZiiuvJDnf3Q1qWOtTZDB",
"balances": [
{

"assetId": "Ax9T4grFxx5m3KPUEK jMdnQkCKtBktf694wU2wJIYvQUD",
"balance": 4879179221,

"quantity": 48791792210,

"reissuable'": true,

"minSponsoredAssetFee" : 100,
"sponsorBalance" : 1233221,
"issueTransaction" : {

"type" .3 s
¥

(continues on next page)

9.2. What the platform REST API is for 103

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

{
"assetId": "49KfHPJcKvSAvNKwM7CTof jKHzL87SaSx8eyADBjvbWi",
"balance": 10,
"quantity": 10000000000,
"reissuable'": false,
"issueTransaction" : {

"type" : 3,

}

}

]
}

GET /assets/balance/—address” /—assetId”

The method returns the balance of the address in the specified {assetId}.
Response example:

GET /assets/balance/{address}/{assetId}:

{
"address": "3Mv61lqe6egMSjRDZiiuvJDnf3Q1qWOtTZDB",
"assetId": "Ax9T4grFxx5m3KPUEKjMdnQkCKtBktf694wU2wJYvQUD",
"balance": 4879179221

}

GET /assets/details/—assetId”

The method returns description of the specified {assetId}.
Response example:

GET /assets/details/{assetId}:

{
"assetId" : "8tdULCMr598Kn2dUaKwHkvsNyFbDB1UjbNxvVRTQRnMQ",
"issueHeight" : 140194,
"issueTimestamp" : 1504015013373,
"issuer" : "3NCBMxgdghg4tUhEEffSXy11L6hUi6fcBpd",
"name" : '"name",
"description" : "Sponsored asset",
"decimals" : 1,
"reissuable" : true,
"quantity" : 1221905614,
"script" : null,
"scriptText" : null,
"complexity" : O,
"extraFee": O,
"minSponsoredAssetFee" : 100000
}

9.2. What the platform REST API is for 104

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /assets/—assetId” /distribution

The method returns the number of asset tokens on all addresses using the specified asset.

Response example:

GET /assets/details/{assetId}:

{
"3P8GxcTEyZtG6LEfnn9knp9wu8ulLKrAFHCb": 1,
"3P2voHxcJg79csj4YspNqlakepX8TSmGhTE": 1200
}

See also

REST API methods

9.2.14 REST API: blockchain peers

A group of peers methods is provided to work with blockchain peer nodes:

POST /peers/connect

The method is designed to connect a new participant node to your node.

Query example:

POST /peers/connect:

{
"host":"127.0.0.1",
"port":"9084"

Response example:

POST /peers/connect:

{
"hostname": "localhost",
"status": "Trying to connect"

}

GET /peers/connected

The method returns a list of connected nodes.
Response example:

GET /peers/connected:

{
"peers": [
{
"address": "52.51.92.182/52.51.92.182:6863",

(continues on next page)

9.2. What the platform REST API is for

105

Technical description of the Waves Enterprise platform, Release 1.7.0

(continued from previous page)

"declaredAddress": "N/A",
"peerName": "zx 182",
"peerNonce": 183759

1,
{
"address": "ec2-52-28-66-217.eu-central-1.compute.amazonaws.com/52.28.66.217:6863",
"declaredAddress": "N/A",
"peerName": "zx 217",
"peerNonce": 1021800
1

GET /peers/all

The method returns a list of all known nodes.

Response example:

GET /peers/all:

{
"peers": [
{
"address": "/13.80.103.153:6864",
"lastSeen": 1544704874714
}
]
}

GET /peers/suspended

The method returns a list of suspended nodes.
Response example:

GET /peers/suspended:

L
{
"hostname": "/13.80.103.153",
"timestamp'": 1544704754619
}
]

9.2. What the platform REST API is for 106

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /peers/identity

The method returns the public key of the node to which your node is connected for confidential data transfer.
The following parameters are passed in the request:

* address - blockchain address that corresponds to the privacy.owner-address parameter in the node
configuration file;

* signature - digital signature from the value of the address field.
Query example:

POST /peers/identity:

{

"address": "3NBVqYXrapgJP9atQccdBPAgJPwHDKkh6A8",

"signature":
—"6RwMUQcwrxtKDgM4ANesOAmuSEJgyfFOBo6nTpXyD89ZKMAcpCMO7igbWf2MmLXLdgNxdsUc68£fd5TyRBEB6nqgt "
}

The method response contains the publicKey parameter - the public key of the node associated with the
privacy.owner-address parameter in its configuration file. If the handshakes check mode is disabled, the
publicKey parameter is not shown.

Response example:

POST /peers/identity:

{
"publicKey": "3NBVqYXrapgJP9at(QccdBPAgJPwHDKkhGAS"
}

GET /peers/hostname/—address”
The method returns the host name and IP address of the node by its address in the Waves Enterprise
network.

Response example:

GET /peers/hostname/{address}:

{

"hostname": "nodel.we.io",
"ip": "10.0.0.1"

GET /peers/allowedNodes

Obtaining the current list of allowed network members at the time of the request.

GET /peers/allowedNodes:

{
"allowedNodes": [
{
"address": "3JNLQYuHYSHZiHr5KjJ89wwFJpDMdrAEJpj",
"publicKey": "Gt301ghh2M2TS65UrHZCTI82LLcMcBrxualyrgsLk5VY"

(continues on next page)

9.2. What the platform REST API is for 107

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

1,
{
"address": "3JLp8wt7rEUdn4CcabHp9jZ7w8T5XDAKicd",
"publicKey": "J3ffCciVu3sustgb5vxmEHczACMR89Vty5ZBLbPnoxyg"
1,
{
"address": "3JRY1lcp7atRMBd8QQoswRpH7DLawM5Pnk3L",
"publicKey": "5vn4UcBO9En1XgY6w2N6e9W7bqFshG4SL2RLFQEWEbWxG"
}
1,
"timestamp": 1558697649489
}

See also

REST API methods

9.2.15 REST API: hash calculation, working with scripts and sending auxiliary queries

For hashing, scripting and sending auxiliary requests to the node, there is a group of * " utils” methods:

Hashing: utils/hash
POST /utils/hash/fast
The method returns the hash sum of the string passed in the query.

Response example:

POST /utils/hash /fast:

{

"message": "ridethewaves!",

"hash": "DJ35ymschUFDmgCnDJewjcnVExVkWgX7mJDXhFy9X80Q"
}

POST /utils/hash/secure

The method returns the double hash sum of the string passed in the query.
Response example:

POST /utils/hash/secure:

{

"message": "ridethewaves!",

"hash": "H6nsiifwYKYEx6YzYD7woP1XCn72RVvx6tClzjjLXqsu"
}

9.2. What the platform REST API is for 108

Technical description of the Waves Enterprise platform, Release 1.7.0

Working with scripts: utils/script

This group of methods is designed to convert script code into base64 format and decode them. Scripts are
bound to accounts using the 13 transactions (binding a script to an address) and 75 (binding a script to an
asset for an address).

POST /utils/script/compile

The method converts the script code to base64 format.
Query example:

POST /utils/script /compile:

let x = 1
(x + 1) ==

Parameters returned in the method response:
e script - script body in base64 format;

e complexity - a number from 1 to 100 representing the amount of computing resources required to
execute the script;

* extraFee - fee for outgoing transactions set by the script.
Response example:

POST /utils/script/compile:

{
"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxYf34SocMRkRKFgzTtXXnnv7upRHXJzZrLS

n
'y

"complexity": 11,
"extraFee": 10001
}

Ro8tUW6yMtEiZ

POST /utils/script /estimate

The method is designed to decode and evaluate the complexity of a script passed in a request in base64
format.

Parameters returned in the method response:
e script - script body in base64 format;
¢ scriptText - the source code of the script;

e complexity - a number from 1 to 100 representing the amount of computing resources required to
execute the script;

* extraFee - fee for outgoing transactions set by the script.
Response example:

POST /utils/script/compile:

9.2. What the platform REST API is for 109

Technical description of the Waves Enterprise platform, Release 1.7.0

{
"script":
—"3rbFDtbPwAvSp2vBvqGfGRONRS 1nBVnfuSCN3HxSZ7fVRpt3tuFG5JSmy TmvHPxY£3450cMRkRKFgzTtXXnnv7upRHXJzZrLS

n
'y

"scriptText": "FUNCTION_CALL (FunctionHeader (==,List (LONG, LONG)),List(CONST_LONG(1), CONST_
—LONG(2)) ,BOOLEAN) ",

"complexity": 11,

"extraFee": 10001

Ro8tUW6YMtEiZ

Auxiliary queries

GET /utils/time

The method returns the current node time in two formats:
* system - system time of the node PC;
* ntp - network time.

Response example:

POST /utils/script/compile:

{
"system": 1544715343390,
"NTP": 1544715343390

POST /utils/reload-wallet

The method reloads a node’s keystore. It applies if a new key pair was added to the keystore without
restarting the node.

Response example:

POST /utils/reload-wallet:

{
"message": "Wallet reloaded successfully"
}
See also
REST API methods

9.2. What the platform REST API is for 110

Technical description of the Waves Enterprise platform, Release 1.7.0

9.2.16 REST API: blockchain debug

Methods of the debug group are provided for debugging the blockchain network:

GET /debug/blocks/~howMany "

The method displays the size and full hash of the last blocks.

prompted.

Response example:

GET /debug/blocks/{howMany}:

The number of blocks is specified when

[
{
"226" :
1,
{
"226":
1,
{
"226" :
1,
{
"226" :
1,
{
"226" :
}
]

"7CkZxrAjU8bnat8CjVAPagobNYazyv1HASubmp7YYqGe"

"GS3y9fUHAKCamq52TPs jizDVir8J7iGoe8P2XZLasxsC"

"BOLmhGGDdvcfUAQJEWvyVrT9sazZE6gibpAN13xUN7KV"

"Byb9MHtwYf3MFyi2tbh(3GTdCct5phKq9REkbjQTzdne"

"HSxSHbiV4tZc8RaN6jxdhgtkAhjxuln76ulxerMRUefA"

GET /debug/info

The method displays general information about the blockchain needed for debugging and testing.

Response example:

GET /debug/info:

{
"stateHeight": 74015,
"extensionLoaderState": "State(Idle)",
"historyReplierCacheSizes": {
"blocks": 13,

"microBlocks": 2

}’

"microBlockSynchronizerCacheSizes": {
"microBlockOwners": O,
"nextInventories": 0,

"awaiting": O,
"successfullyReceived": 0O

}’

"scoreObserverStats'": {
"localScore": 42142328633037120000,
"scoresCacheSize": 4

(continues on next page)

9.2. What the platform REST API is for

111

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

}’

"minerState": "mining microblocks"

POST /debug/rollback
The method rolls the blockchain back to the specified height, removing all blocks after it. The following
parameters are passed in the request:

* rollbackTo — the height to which the blockchain must be rolled back;

e returnTransactionsToUtx — return transactions that are contained in the rolled back blocks to the
UTX pool: true — return, false — delete.

Examples of a query and a response:
POST /debug/rollback:

Query:

{

"rollbackTo": 100,
"returnTransactionsToUtx": true

Response:

{
"BlockId":
—"4U4Hmg4mDYrvxazZ3JVzL1Z1piPDZ1PJ61vd1PeSTESZFkHsUCUqeeAZoszTVr43Z4NV44dqbLvOWdrLytDL6gHuv

"
—

}

POST /debug/validate
The method validates transactions by their identifier and measures the time spent in milliseconds. The id
of the transaction is passed in the query.

Response example:

POST /debug/validate:

{

"valid": false,
"validationTime": 14444

9.2. What the platform REST API is for 112

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /debug/minerInfo

The method returns information about the miner.
Response example:

GET /debug/minerInfo:

[
{
"address": "3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF",
"miningBalance": 1248959867200000,
"timestamp'": 1585923248329
1

GET /debug/historyInfo

The method displays the history of the last block.
Response example:

GET /debug/historyInfo:

{

"lastBlockIds": [

"37P4fvexYHPUzNPRRqYbRYxGz7x3r5 jFznck7amaS6aWnHL50QqrqCzsSh1HvYKnd2ZhU6n6sWYPb3hxsY8FBfmZ",
"5RRulqtesz4KvrVp4fxzQHebq2fRanNsg3HJKwD4uChqySm7vFHCAHKU61iZYXIDVmf SxiE9Maeb6sM2JireaWLbx",
"3L027Jf jekcZnJsYEe7st7evDZ6TgmCUBtiZrSxUCobKL48DZQ4dXMfp8IWY jEykH15HEHSXzgMSTQigESvECN2r",
"r4RuxEXAqgfDMKVXRWmZcGMaWKDsAvVxfXDtw8d6bamLR61J1gacesargYSoZQqRbDrBcefLprk7D78fA728719",

"3F4Up46crZbpKVWUeieL6GeSrVMYm7JJ7aX6aHD6B8wedFggSKv8d3H39(y9MLEauFBU9mM3qZV1U8emhmnqwmLbg" ,
"QSuBkEtVe9nik5T55330geCbgKy7ihBkS2pwYayK23m4ANier83Thpa jEzvpbyPy9pPWZc55t8mYUKxXDscKuRC",

"4udpNnz3e1M1GbVZxtwfg8gpF6EbiKxRCRBwi6iRMyLsvhb5J2EcOWqyu2sq2KYL75012yiP8TszworeUfuxNmJbg",
"5BZYZ4RZAJ jM5KKCaHpyUsXnb4uunnMbkcfTo jc5Qz0o3vyP2w3YD4qrALizkkQQR4ziS77BoAGb56QCecUtHFFN",
"5JwfLaF10GxRXVCADbFuKpxrvxgLCGU3kCFwxUhLL8G3xV211MrKBuAuQ4MaC5uN574uVOUSM6HfHTMERnfr5jGJ",
"4bysMhz14E1rC7dLYScfVVqPmHqzi8 jdhcnkruJmCNL86TwV2cbF7G9YVchvTrvOqbQZ7 JQownV59gRRcD26zm16"

1,

"microBlockIds": []

}

GET /debug/configInfo

The method completely outputs the used node configuration file.
Response example:

GET /debug/configInfo:

{
"node": {
"anchoring": {
"enable": "no"
}’
"blockchain": {
"consensus": {
lltypell . Ilposll
}’

(continues on next page)

9.2. What the platform REST API is for 113

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"custom": {
"address-scheme-character": "K",
"functionality": {
"blocks-for-feature-activation": 10,
"feature-check-blocks-period": 30,
"pre-activated-features": {

"wallet": {

"file": "wallet.dat",
"password": ""

},

"waves-crypto": "yes"

}

}

DELETE /debug/rollback-to/-signature”

The method rolls the blockchain up to the block with the specified {signature}.
Response example:

DELETE /debug/rollback-to/{signature}:

{

"BlockId":
—"4U4Hmg4mDYrvxaz3JVzL1Z1piPDZ1PJ61vd1PeS7TESZFkHsUCUqeeAZoszTVr43Z4NV44dqbLvOWdrLytDL6gHuv"
}

GET /debug/portfolios/—address”

The method displays the current balance of the transactions in the UTX pool of the {address} node.
Response example:

GET /debug/portfolios/{address}:

{
"balance": 104665861710336,
"lease": {
"in": O,
"out": 0O
1,
"assets": {}
}

9.2. What the platform REST API is for 114

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /debug/print

The method outputs the current messages of the logger that has a DEBUG logging level.

The answer is output in the "message": "string" format

GET /debug/state

The method displays the current state of the node.

Response example:

GET /debug/state:

{
"3JD3gDmgL1icDaxa3n24YSjxr9Jze5MBVVs": 4899000000,
"3JPWx147Xf3f9fE89YtfvRhtKWBHy9rWnMK" : 17528100000,
"3JU5tCoswHH7FKPBUowySWBnQwpbZiYyNhB": 300021381800000,
"3JCJChsQ2CGyHcO9Ymu8cnsES6YzjjJELu3a": 75000362600000,
"3JEW9XnPC8w3qQ4AJyVTDBmsVUp32QKoCGD" : 5000000000,
"3JSaKNX94deXJkywQuwTFgbigTxJa36TDVg3": 6847000000,
"3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF": 1248938560600000,
"3JV6V4JEVc3a9uSqRmdUMvMKMfZa16HbGmg" : 4770000000,
"3JZtYeGEZHjb2z(Q6EcSE0524PdafPn6viikc": 900000000,
"3JMMFLX9d1rmXaBK9AF7Wuwzu4vRkkoVQBC": 4670000000,
"3JJDpPDqSPokKpb jEmzwMzmaPUyopLZjWiC": 800000000,
"3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t": 994280900000

}

GET /debug/stateWE/~height”

The method displays the node’s state at the specified {height}.

Response example:

GET /debug/stateWE/{height}:

{
"3JPWx147X£3£f9fES9YtfvRhtKWBHy9rWnMK" : 17528100000,
"3JU5tCoswHH7FKPBUowySWBnQwpbZiYyNhB": 300020907600000,
"3JCJChsQ2CGyHcOYmu8cnsES6YzjjJELu3da": 75000350600000,
"3J5aKNX94deXJkywQuTFgbigTxJa36TDVg3": 6847000000,
"3JFR1pmL6biTzr90a63gJcjZ8ih429KD3aF": 1248960085800000,
"3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t": 994280900000

}

See also

REST API methods

Each article contains a table with the addresses of the methods as well as the query and response fields of

each method.

If the described REST API methods require authorization, there is an icon at the beginning of the article.

If authorization is not required, you will see an icon.

See also

Precise platform configuration: node gRPC and REST API configuration

9.2. What the platform REST API is for

CHAPTER

TEN

DEVELOPMENT AND USAGE OF SMART CONTRACTS

The definition and general description of how smart contracts work on the Waves Enterprise blockchain
platform are provided in the article Smart contracts.

10.1 Preparing to work

Before you start developing a smart contract, make sure that you have the Docker containerization software
package installed on your machine. The principles of working with Docker are described in the official
documentation.

Also make sure that the node you are using is configured for smart contract execution . If your node is
running in the Waves Enterprise Mainnet, it is configured by default to install smart contacts from the open
repository and has the recommended settings to ensure optimal smart contact execution.

If you are developing a smart contract to run on a private network, deploy your own registry for Docker
images and specify its address and credentials on your server in the remote-registries block of the node
configuration file. You can specify multiple repositories in this block if you need to define multiple storage
locations for different smart contracts. You can also load a Docker contract image from a repository not
specified in the node configuration file using transaction 103, which initiates the creation of a smart contract.
For more information, see Development and installation of a smart contract and description of the transaction
103.

When working in the Waves Enterprise Mainnet, the Waves Enterprise open registry is pre-installed in the
configuration file.

10.2 Smart contract development

Waves Enterprise blockchain platform smart contracts can be developed in any programming language you
prefer and implement any algorithms. The finished smart contract code is packaged in a Docker image with
smart contract authorization parameters (when using REST API) or used protobuf files (when using gRPC).

Examples of Python smart contract code using gRPC and REST API methods to exchange data with a
node, as well as a step-by-step guide on how to create the corresponding Docker images are given in the
following articles:

116

https://www.docker.com/get-started
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/registry/
https://docs.docker.com/registry/

Technical description of the Waves Enterprise platform, Release 1.7.0

10.2.1 Example of a smart contract with gRPC
This section describes an example of creating a simple smart contract in Python. The smart contract uses
a gRPC interface to exchange data with a node.

Before you start, make sure that the utilities from the grpcio package for Python are installed on your
machine:

pip3 install grpcio

To install and use the gRPC utilities for other available programming languages, see the official gRPC
website.

Program description and listing
When a smart contract is initialized using the 103 transaction, the sum integer parameter with a value of 0
is set for it.

Whenever a smart contract is called using transaction 104, it returns an increment of the sum parameter
(sum + 1).

Program listing;:

import grpc
import os
import sys

from protobuf import common_pb2, contract_pb2, contract_pb2_grpc

CreateContractTransactionType = 103
CallContractTransactionType = 104

AUTH_METADATA_KEY = "authorization"

class ContractHandler:
def __init__(self, stub, connection_id):
self.client = stub
self.connection_id = connection_id
return

def start(self, connection_token):
self.__connect (connection_token)

def __connect(self, connection_token):

request = contract_pb2.ConnectionRequest (
connection_id=self.connection_id

)

metadata = [(AUTH_METADATA_KEY, connection_token)]

for contract_transaction_response in self.client.Connect(request=request,,

—metadata=metadata) :

self.__process_connect_response(contract_transaction_response)

def __process_connect_response(self, contract_transaction_response):
print("receive: ".format (contract_transaction_response))
contract_transaction = contract_transaction_response.transaction
if contract_transaction.type == CreateContractTransactionType:
self.__handle_create_transaction(contract_transaction_response)

(continues on next page)

10.2. Smart contract development 117

https://grpc.io/docs/languages/
https://grpc.io/docs/languages/

Technical description of the Waves Enterprise platform, Release 1.7.0

(continued from previous page)
elif contract_transaction.type == CallContractTransactionType:

self.__handle_call_transaction(contract_transaction_response)
else:

print ("Error: unknown transaction type '{}'".format(contract_transaction.
—type), file=sys.stderr)

def __handle_create_transaction(self, contract_transaction_response):
create_transaction = contract_transaction_response.transaction
request = contract_pb2.ExecutionSuccessRequest(
tx_id=create_transaction.id,

r esults=[common_pb2.DataEntry(

key="sum",

int_value=0)]
)
metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_token)]
response = self.client.CommitExecutionSuccess(request=request,,

—metadata=metadata)

print("in create tx response '{}'".format(response))

def __handle_call_transaction(self, contract_transaction_response):
call_transaction = contract_transaction_response.transaction
metadata = [(AUTH_METADATA_KEY, contract_transaction_response.auth_token)]

contract_key_request = contract_pb2.ContractKeyRequest(
contract_id=call_transaction.contract_id,
key="sum"
)
contract_key = self.client.GetContractKey(request=contract_key_request,,
—metadata=metadata)

old_value = contract_key.entry.int_value

request = contract_pb2.ExecutionSuccessRequest(
tx_id=call_transaction.id,
results=[common_pb2.DataEntry (
key="sum",
int_value=old_value + 1)]
)
response = self.client.CommitExecutionSuccess(request=request,
—metadata=metadata)

print("in call tx response 'f{}''".format(response))

def run(connection_id, node_host, node_port, connection_token) :

NOTE (gRPC Python Team): .close() is possible on a channel and should be

used in circumstances in which the with statement does not fit the needs

of the code.

with grpc.insecure_channel('{}:{}'.format(node_host, node_port)) as channel:
stub = contract_pb2_grpc.ContractServiceStub(channel)
handler = ContractHandler(stub, connection_id)
handler.start (connection_token)

CONNECTION_ID_KEY = 'CONNECTION_ID'
CONNECTION_TOKEN_KEY = 'CONNECTION_TOKEN'
NODE_KEY = 'NODE'

NODE_PORT_KEY = 'NODE_PORT'

if __name__ == '__main__"':

(continues on next page)

10.2. Smart contract development 118

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

if CONNECTION_ID_KEY not in os.environ:
sys.exit("Connection id is not set")

if CONNECTION_TOKEN_KEY not in os.environ:
sys.exit("Connection token is not set")

if NODE_KEY not in os.environ:
sys.exit("Node host is not set")

if NODE_PORT_KEY not in os.environ:
sys.exit("Node port is not set")

connection_id = os.environ['CONNECTION_ID']
connection_token = os.environ['CONNECTION_TOKEN']
node_host = os.environ['NODE']

node_port = os.environ['NODE_PORT']

run (connection_id, node_host, node_port, connection_token)

If you want transactions calling your contract to be able to be processed simultaneously, you must pass the
async-factor parameter in the contract code itself. The contract passes the value of the async-factor
parameter as part of the ConnectionRequest gRPC message defined in the contract_contract_service.
proto file:

message ConnectionRequest {
string connection_id = 1;
int32 async_factor = 2;

}

Detailed information about parallel exzecution of smart contracts.

Authorization of a smart contract with gRPC

To work with gRPC, a smart contract needs authorization. For the smart contract to work correctly with
APT methods, the following steps are performed:

1. The following parameters must be defined in the environment variables of the smart contract:

CONNECTION_ID - connection identifier passed by the contract when connecting to a node;

CONNECTION_TOKEN - authorization token passed by the contract when connecting to a node;

NODE - IP address or domain name of the node;

NODE_PORT - port of the gRPC service deployed on the node.

The values of the NODE and NODE_PORT variables are taken from the node configuration file of the docker-
engine.grpc-server section. The other variables are generated by the node and passed to the container when
the smart contract is created.

10.2. Smart contract development 119

Technical description of the Waves Enterprise platform, Release 1.7.0

Development of a smart contract
1. In the directory that will contain your smart contract files, create an” “src” " subdirectory and place the
file contract.py with the smart contract code in it.
2. In the src directory, create a protobuf directory and put the following protobuf files in it:
* contract_contract_service.proto
¢ data_entry.proto

These files are placed in the we-proto-x.x.x.zip archive, which can be downloaded in the official GitHub
repository of Waves Enterprise.

3. Generate the code of the gRPC methods in Python based on the contract_contract_service.proto
file:

python3 -m grpc.tools.protoc -I. --python_out=. --grpc_python_out=. contract_contract_service.proto

As a result, two files will be created:
* contract_contract_service_pb2.py
* contract_contract_service_pb2_grpc.py

In the contract_contract_service_pb2.py file, change the line import data_entry_pb2 as
data__entry__pb2 as follows:

import protobuf.data’entry pb2 as data entry pb2

In the same way, change the line import contract_contract_service_pb2 as
contract__contract__service__pb2 in the file contract_contract_service_pb2_grpc.py:

import protobuf.contract contract’service'pb2 as contract ‘contract ‘service ‘pb2

Then generate an auxiliary file data_entry_pb2.py based on the data_entry.proto:

’pythonS -m grpc.tools.protoc -I. --python_out=. data_entry.proto

All three resulting files must be in the protobuf directory along with the source files.

4. Create a run.sh shell script, which will run the smart contract code in the container:

#!/bin/sh

eval $SET_ENV_CMD
python contract.py

Place the run.sh file in the root directory of your smart contract.

5. Create a Dockerfile script file to build and control the startup of your smart contract. When developing
in Python, the basis for your smart contract image can be the official Python python:3.8-slim-buster'"
image. Note that the packages ~“dnsutils and grpcio-tools must be installed in the Docker con-
tainer to make the smart contract work.

Dockerfile example:

FROM python:3.8-slim-buster

RUN apt update && apt install -yq dnsutils
RUN pip3 install grpcio-tools

ADD src/contract.py /

(continues on next page)

10.2. Smart contract development 120

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

ADD src/protobuf/common_pb2.py /protobuf/

ADD src/protobuf/contract_pb2.py /protobuf/

ADD src/protobuf/contract_pb2_grpc.py /protobuf/
ADD run.sh /

RUN chmod +x run.sh

ENTRYPOINT ["/run.sh"]

Place the Dockerfile in the root directory of your smart contract.

6. Contact the Waves Enterprise Technical Support team to place your smart contract in the public repository
if you are working in the Waves Enterprise Mainnet.

If you work on a private network, build your smart contract yourself and place it in your own registry.

How a smart contract with gRPC works

Once called, the smart contract with gRPC works as follows:
1. After the program starts, the presence of environment variables is checked.

2. Using the values of the NODE and NODE_PORT environment variables, the contract creates a gRPC
connection with a node.

3. Next, the Connect stream method of the gRPC ContractService is called. The method receives
a ConnectionRequest gRPC message, which specifies the connection identifier (obtained from the
CONNECTION_ID environment variable). The method metadata contains the authorization header
with the value of the authorization token (obtained from the CONNECTION_TOKEN environment variable).

4. If the method is called successfully, a gRPC stream is returned with objects of type
ContractTransactionResponse for execution. The object ContractTransactionResponse contains
two fields:

e transaction - a transaction to create or call a contract;

¢ auth_token - authorization token specified in the authorization metadata header of the called
method of gRPC services.

If transaction contains a 103 transaction, the initial state is initialized for the contract. If transaction
contains a call transaction (the 10/ transaction), the following actions are performed:

* the value of sum key (GetContractKey method of the ContractService) is requested from the node;
* the key value is incremented by one, i.e. sum = sum + 1);

* The new key value is saved on the node (CommitExecutionSuccess method of the ContractService),
i.e. the contract state is updated.

See also
Development and usage of smart contracts

gRPC tools

10.2. Smart contract development 121

https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.7.0

10.2.2 Example of a smart contract with the use of REST API

Program description and listing

This section describes an example of creating and running a simple smart contract. The contract increments
the number passed to it each time it is called.

Program listing;:

import json
import os
import requests
import sys

def find_param_value(params, name):

for param in params:

def print_success(results):

print (json.dumps(results, separators=(',', ':')))

def print_error (message):
print (message)
sys.exit(3)

def get_value(contract_id):

if

return None

if not node:

token = os.environ["API_TOKEN"]
if not token:

headers = {'X-Contract-Api-Token': token}

data
return datal'value']

__name__ == '__main__

command = os.environ['COMMAND ']
if command == 'CALL':

elif command == 'CREATE':
print_success ([{
"key": "sum",
"type": "integer",
"value": 0}])

if param['key'] == name: return param['value']

= os.environ['NODE_API ']

print_error("Node REST API address is not defined")

print_error("Node API token is not defined")

= '{0}/internal/contracts/{1}/sum'.format(node, contract_id)
requests.get(url, verify=False, timeout=2, headers=headers)
= r.json()

contract_id = json.loads(os.environ['TX'])['contractId']
value = get_value(contract_id)
print_success ([{

||key||: “Sllm”,

"type": "integer",

"value": value + 13}])

(continues on next page)

10.2.

Smart contract development 122

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

else:
print_error("Unknown command " format (command))

Step-by-step description of the smart contract operation:
e The program expects to get a data structure in json format with a **params” field;
* reads the value of the a field;
* returns the result as the value of the field “{a}+1” in json format.

Example of input parameters:

"params": [

{
nkeyn Jngn s
"type":"integer",
"value":1

}

Authorization of a smart contract with REST API
To work with the node REST API, the smart contract needs authorization. For the smart contract to work
correctly with the API methods, follow these steps:

1. The following parameters must be defined in the environment variables of the smart contract:

e NODE_API - URL to the node REST API of;

e API_TOKEN - authorization token for the smart contract;

¢ COMMAND - commands to create and call a smart contract;

 TX - transaction required for operation of a smart contract (103 - 107).

2. The smart contract developer assigns the value of the API_TOKEN variable to the
X-Contract-Api-Token query header. In the API_TOKEN variable the node writes the JWT
authorization token when the contract is created and executed.

3. The contract code must pass the received token in the request header (X-Contract-Api-Token) every
time the API of the node is accessed.

Development of a smart contract

1. Place the contract.py file with the code in the directory that will contain your smart contract files.

2. Create a run.sh shell script, which will run the smart contract code in the container:

#!/bin/sh

python contract.py

Place the run.sh file in the root directory of your smart contract.

3. Create a Dockerfile script file to build and control the startup of your smart contract. When develop-
ing in Python, your smart contract image can be based on the official Alpine Linux-based Python image
python:alpine3.8.

10.2. Smart contract development 123

Technical description of the Waves Enterprise platform, Release 1.7.0

Dockerfile example:

FROM python:alpine3.8

ADD contract.py /

ADD run.sh /

RUN chmod +x run.sh

CMD exec /bin/sh -c "trap : TERM INT; (while true; do sleep 1000; done) & wait"

Place the Dockerfile in the root directory of your smart contract.

4. Contact the Waves Enterprise Technical Support team to place your smart contract in the public repository
if you are working in the Waves Enterprise Mainnet.

If you work on a private network, build your smart contract yourself and place it in your own registry.
See also
Development and usage of smart contracts

REST API methods

10.3 Uploading of a smart contract into a registry

Contact the Waves Enterprise Technical Support team to place your smart contract in the public repository
if you are working in the Waves Enterprise Mainnet.

When working on a private network, upload a Docker image of the smart contract to your own registry:

1. Start your registry in a container:

docker run -d -p 5000:5000 --name my-registry-container my-registry:2

2. Navigate to the directory containing the smart contract files and the Dockerfile script file with commands
for building the image.

3. Build an image of your smart contract:

docker build -t my-contract .

4. Specify the image name and its location address in the repository:

docker image tag my-contract my-registry:5000/my-contract

5. Run the repository container you created:

’docker start my-registry-container

6. Upload your smart contract to the repository:

’docker push my-registry:5000/my-contract

7. Get information about the smart contract. To do this, display the information about the container:

’docker image 1lslgrep 'my-node:5000/my-contract’

This will give you the ID of the container. Output the information about it with the docker inspect
command:

10.3. Uploading of a smart contract into a registry 124

https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.7.0

docker inspect my-contract-id

Response example:

{
"Id": "sha2b56:57c2c2d2643da042ef8dd80010632ffdd11e3d2e3£85c20c31dce838073614dd",
"RepoTags": [
"wenode:latest"
]’

"RepoDigests": [],
"Parent": "sha256:d91d2307057bf3bb5bd9d364f16cd3d7eda3b58edf2686e1944bcc7133f07913",

”Coment" . nn .
"Created": "2019-10-25T14:15:03.856072509Z",
"Container": "",
"ContainerConfig": {
IIHOStnameH : nn .
"Domainname": "",
nusern . "nn R

"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,

The Id field is the identifier of the Docker image of the smart contract, which is entered in the ImageHash
field of 103 transaction when creating the smart contract.

10.4 Installing of a smart contract into the blockchain

After uploading the smart contract to the repository, install it on the network using the 703 transaction.
To do this, sign the transaction via the blockchain platform client, the sign REST API method or the
JavaSeript SDK method.

The data returned in the method’s response is fed into transaction 103 when it is published.

Below, you will see the examples of signing and sending a transaction using the sign and broadcast methods.
In the examples, the transactions are signed with the key stored in the keystore of the node.

Curl-query to sign transaction 103:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
«»json' --header 'X-Contract-Api-Token' -d ' { =
"fee": 100000000, “
"image": "my-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", “
"contractName": "my-contract",
"sender": "3PudkbvjVinPjl1TkuuRahh4sGdgfr4YAUV2", “
"password": "",
"params": [], “
"type": 103, “
"version": 1 ¢
}' 'http://my-node:6862/transactions/sign’

The response of the sign method, which is passed to the broadcast method:

{
"type": 103,
"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

(continues on next page)

10.4. Installing of a smart contract into the blockchain 125

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",
"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38DwsbskqDsjMVT2M",
"fee": 100000000,

"timestamp": 1550591678479,

"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQQ8Fx j4BYA4TaqYVwbqxtWzGMPQyVeKYy
—r,

"version": 1,

"image'": "my-contract:latest",

"imageHash": "7d3b915c82930dd79591aab040657338£64e5d8b842abe2d73d5c8£828584b65",

"contractName": "my-contract",

"params": [],

"height": 1619

}

Curl-response to sign transaction 103:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
—json' --header 'X-Contract-Api-Token' -d '{ “
{

"type": 103, \

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZV j4Ky", \

"sender": "3N3YT;j1tNwn8XUJ8ptGKbPuEFNa9GFnhgew", \

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDsjMVT2M", \

"fee": 500000, \

"timestamp": 1550591678479, \

"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGQAQ8Fxj4BYA4TaqYVwbqxtWzGMPQyVeKYy
;}H]’ \

"yersion": 1, \

"image": "my-contract:latest", \

"imageHash": "7d3b915c¢82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65", \

"contractName": "my-contract", \

"params": [], \

"height": 1619 \

}
}' 'http://my-node:6862/transactions/broadcast’

10.5 Smart contract execution

Once a smart contract is installed in the blockchain, it can be invoked with a 10/ CallContract Transaction.

This transaction can also be signed and sent to the blockchain via the blockchain platform client, the sign
REST API method or the JavaScript SDK method. When signing a transaction 104, specify the ID of
the 103 transaction for the called smart contract in the contractId field (the id field of the sign method
response).

Examples of signing and sending a transaction using the sign and broadcast methods using a key stored
in the keystore of a node:

Curl-query to sign transaction 104:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
—json' --header 'X-Contract-Api-Token' -d '{ “
"contractId": "ULcq9R7PvUB2yPMrmBdxoTi3bcRmQPT3JDLLLZVj4Ky",

(continues on next page)

10.5. Smart contract execution 126

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"fee": 10,

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhgew", “

"password": "", “

"type": 104, “

"yersion": 1,

"params": [

{ 3

"type": "integer",
Ilke-yll . llall R 113
"value": 1 ¢

}4:

«

] “
}' 'http://my-node:6862/transactions/sign’

The response of the sign method, which is passed to the broadcast method:

{

"type": 104,

"id": "9fBrL2nbTN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",
"fee": 10,

"timestamp": 1549365736923,

"proofs": [

—"2q4cTBhDKEDkFxr7iYaHPAvlidzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v

"
—

]’
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nghbwTXvJeYGo2",

"params": [

{

llkeyll: Ilall,
"type": "integer",
"value": 1

}

]

}

Curl-query to broadcast the transaction 104:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
—json' --header 'X-Contract-Api-Token' -d '{ *

"type": 104, “

"id": "9fBrL2n5TN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP", *

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58", “

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdaupgdWXLsq", “

"fee": 10,

"timestamp": 1549365736923, “

"proofs": [

«—"2q4cTBhDkEDkFxr7iYaHPAv1dzaKo5rDaTxPF5VHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v
oy n o«

] 13
"version": 1,
"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7nqhbwTXvJeYGo2", “

«

(continues on next page)

10.5. Smart contract execution 127

Technical description of the Waves Enterprise platform, Release 1.7.0

(continued from previous page)

"params": [

{ “

llke-y-ll B ||all s “

"type": "integer", “

"value": 1 ©

} “
] “
}' 'http://my-node:6862/transactions/broadcast’

See also

Smart contracts

General platform configuration: execution of smart contracts

10.5. Smart contract execution 128

CHAPTER

ELEVEN

JAVASCRIPT SDK

JavaScript SDK is an application integration library for the Waves Enterprise platform. It solves a wide
range of tasks related to signing and sending transactions to the blockchain.

JavaScript SDK supports:
* operation in a browser, as well as in the Node.js environment;
¢ GOST encryption standards;
* signing all types of Waves Enterprise platform transactions;
¢ operations with seed phrases: creating a new phrase, creating from an existing phrase, encryption;

e client implementation of the node crypto/encryptCommon, crypto/encryptSeparate, crypto/
decrypt methods.

The JavaScript SDK uses the node REST API methods to work with the blockchain. However, applications
written with this library do not interact with the blockchain directly, but sign transactions locally — in a
browser or in the Node.js environment. After local signing, the transactions are sent to the network. This

way of interaction allows the development of multilayer applications and services that interact with the
blockchain.

Data from the application is transmitted and received in json format over the HT'TPS protocol.

The general chart of JavaScript SDK operation:

HTTPS ~
THIHT
aN HTTPS) .
answers Isen >

Blockchain JavaScript SDK Developer/Apps

The JavaScript SDK package, as well as instructions for installing it, are available at the Waves Enterprise
GitHub repository.

129

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.7.0

11.1 Contents

11.1.1 How the JavaScript SDK works

Authorization in the blockchain

In order for an application user to interact with the blockchain, the user must be authorized on the network.
To do this, the JavaScript SDK provides authorization service REST API methods that allow you to make
a multi-level algorithm with all possible types of queries related to user authorization in the blockchain.

Authorization can be done both in the browser and in the Node.js environment.
When authorizing in a browser, the Fetch API interface is used.
For authorization via Node.js, the Axios HTTP client is used.

If the blockchain node used by the application uses the oAuth authorization method, it is recommended to use
the api-token-refresher library for its authorization. This library automatically updates access tokens when
their usage time expires. For more information about the oAuth authorization and the api-token-refresher
library, see “Using the JS SDK in a node with oAuth”.

Seed phrase generation

The JS SDK-based application can work with seed phrases in the following variants:
¢ create a new randomized seed phrase;
* create a seed phrase from an existing phrase;
¢ encrypt the seed phrase with a password or decrypt it.

Examples of how the JS SDK works with seed phrases are given in the section “Options for creating a seed
phrase”.

Signing and sending transactions
For JS SDK-based applications, any platform transactions can be signed and sent to the blockchain. A list
of all transactions is given in the :ref:* Transaction description <tx-list>".
The process of signing and sending transactions to the network is as follows:
1. The application initiates generation of a transaction.

2. All transaction fields are serialized into bytecode using the transactions-factory auxiliary component
of the JS SDK.

3. The transaction is then signed using the signature-generator component with the user’s private key
in the browser or in the Node.js environment. The transaction is signed using a POST request /
transactions/sign.

4. The JavaScript SDK sends a transaction to the blockchain using the POST request /transactions/
broadcast.

5. The application gets a response in the form of a transaction hash to a POST request.

Examples of signing and sending different types of transactions are given in the section “Examples of creating
and sending transactions”.

11.1. Contents 130

Technical description of the Waves Enterprise platform, Release 1.7.0

Cryptographic node methods used by the JavaScript SDK

Three cryptographic methods are available for the JavaScript SDK:

* crypto/encryptCommon — data encryption with a single CEK key for all recipients, which in turn is
wrapped by unique KEK keys for each recipient;

* crypto/encryptSeparate — separate text encryption with a unique key for each recipient;

e crypto/decrypt — data decryption, provided that the key of the message recipient is in the keystore
of the node.

The signature-generator component also supports both GOST and Waves cryptography algorithms.
See also

JavaScript SDK

Description of transactions

REST API: encryption and decryption methods

11.1.2 JS SDK installation and initialization

If you are going to use the JS SDK in a Node.js environment, install the Node.js package from the official
website.

Install the js-sdk package using npm:

’npm install @wavesenterprise/js-sdk --save

In the selected development environment, import the package containing the JS SDK library:

import WeSdk from 'Qwavesenterprise/js-sdk'

In addition to importing a package, you can use the require function:

const WeSdk = require('@wavesenterprise/js-sdk');

Then initialize the library:

const config = {
.. .WeSdk.MAINNET_CONFIG,
nodeAddress: 'https://hoover.welocal.dev/node-0",
crypto: 'waves',
networkByte: 'V'.charCodeAt(0)
}

const Waves = WeSdk.create({
initialConfiguration: config,
fetchInstance: window.fetch // Browser feature. For Node.js use node-fetch

b;

When working in a browser, use the window.fetch function as fetchInstance. If you work in Node.js, use
the module node-fetch.

Once the JavaScript SDK is initialized, you can start creating and sending transactions.

Below is a complete listing with the creation of a typical transaction:

11.1. Contents 131

https://www.npmjs.com/package/node-fetch

Technical description of the Waves Enterprise platform, Release 1.7.0

import WeSdk from '@wavesenterprise/js-sdk'

const config = {
.. .WeSdk.MAINNET_CONFIG,
nodeAddress: 'https://hoover.welocal.dev/node-0",
crypto: 'waves',
networkByte: 'V'.charCodeAt (0)

const Waves = WeSdk.create({
initialConfiguration: config,
fetchInstance: window.fetch

b;

// Create a seed phrase from an existing one
const seed = Waves.Seed.fromExistingPhrase('examples seed phrase');

const txBody = {
recipient: seed.address, // Send tokens to the same address
assetId: '',
amount: '10000°',
fee: '1000000",
attachment: 'Examples transfer attachment',
timestamp: Date.now()

};

const tx = Waves.API.Transactions.Transfer.V3(txBody);

await tx.broadcast (seed.keyPair)

A description of the transaction parameters, as well as examples, is available in the “Creating and sending
transactions” section.

See also

JavaScript SDK

11.1.3 Creating and sending transactions with the use of the JS SDK

Principles of transaction creation

Any transaction is called wusing the function Waves.API.Transactions.<TRANSACTION_Name>.
<TRANSACTION_VERSION>.

For example, a transaction call for a version 3 token transfer transaction can be done as follows:

const tx = Waves.API.Transactions.Transfer.V3(txBody);

txBody — transaction body, which contains the necessary parameters. For example, for the above Transfer
transaction it may look like this:

const tx = Waves.API.Transactions.Transfer.V3(txBody);

{
"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimzZX",
"password": "",

(continues on next page)

11.1. Contents 132

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimZX",
"amount": 40000000000,
"fee": 100000

You can leave the transaction body blank and fill in the necessary parameters later by accessing the variable
where the result of the transaction call function is returned (in the example, the tx variable):

const tx = Waves.API.Transactions.Transfer.V3({});
tx.recipient = '12afdsdga243134';

tx.amount = 10000;

//...
tx.sender
//. ..
tx.amount = 40000000000;
tx.fee = 10000;

"3M6dRZXaJY90oMA3f JKhMALyYKt13D1aimZX" ;

This way of calling a transaction allows more flexibility in making numerical operations in the code and
using separate functions to define certain parameters.

3,13, 14 and 112 transactions use the description text field, and / and 6 transactions use the attachment
text field. Messages sent in these transaction fields need to be converted into base58 format before being
sent. There are two functions in the JS SDK for that:

* ““baseb8.encode” — translates the text string into base58 format;
* baseb8.decode — reverse decode the base58 format string into text.

An example of a transaction body using base58.encode:

const txBody = {
recipient: seed.address,
assetId: '',
amount: 10000,
fee: minimumFee[4],
attachment: Waves.tools.baseb8.encode('Examples transfer attachment'),
timestamp: Date.now()

const tx = Waves.API.Transactions.Transfer.V3(txBody);

Attention: When calling transactions with the use of JS SDK, you need to fill all necessary parameters
of transaction body except type, version, id, proofs and senderPublicKey. These parameters are
filled in automatically when the key pair is generated.

For a description of the parameters included in the body of each transaction, see Transaction Description.

11.1. Contents 133

Technical description of the Waves Enterprise platform, Release 1.7.0

Broadcasting a transaction

The broadcast method is used to broadcast a transaction to the network via the JS SDK:

await tx.broadcast(seed.keyPair);

This method is called after creating a transaction and filling its parameters. The result of its execution can
be assigned to a variable to display the result of sending the transaction to the network (in the example, the
result variable):

try {
const result = await tx.broadcast(seed.keyPair);
console.log('Broadcast PolicyCreate result: ', result)
} catch (err) {
console.log('Broadcast error:', err)

Below is the full listing of the token transfer transaction call and its broadcasting:

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0";
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} 1});

}

(async () => {
const { chainId, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config’)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,

nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApilnstance ({
initialConfiguration: wavesApiConfig,
fetchInstance: fetch

b;

const seed = Waves.Seed.fromExistingPhrase(seedPhrase) ;

const txBody = {
recipient: seed.address,
assetId: '',
amount: 10000,
fee: minimumFee[4],
attachment: Waves.tools.baseb58.encode('Examples transfer attachment'),
timestamp: Date.now()

const tx = Waves.API.Transactions.Transfer.V3(txBody) ;

(continues on next page)

11.1. Contents 134

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

try {
const result = await tx.broadcast(seed.keyPair);
console.log('Broadcast transfer result: ', result)
} catch (err) {
console.log('Broadcast error:', err)
}
HO;

For examples of calling and sending other transactions, see “Examples of JavaScript SDK usage” Additional
methods available when creating and sending a transaction

In addition to the broadcast method, the following methods are available for debugging and defining trans-
action parameters:

e isValid — transaction body check, returns 0 or 1;
* getErrors — returns a string array containing the description of errors made when filling the fields;
* getSignature — returns a string with the key with which the transaction was signed;
* getId — returns a string with the ID of the transaction to be sent;
* getBytes — an internal method that returns an array of bytes to sign.
See also
JavaScript SDK
Description of transactions

Waves Enterprise Mainnet fees

11.1.4 Examples of JavaScript SDK usage

Token transfer (4)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0";
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} 1});

}

(async () => {
const { chainId, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,
nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

(continues on next page)

11.1. Contents 135

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

};

const Waves = createApilnstance({
initialConfiguration: wavesApiConfig,
fetchlnstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase(seedPhrase) ;

// see docs: https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/
—transactions-structure.html#transfertransaction
const txBody = {
recipient: seed.address,
assetId: '',
amount: 10000,
fee: minimumFee[4],
attachment: Waves.tools.baseb8.encode('Examples transfer attachment'),
timestamp: Date.now()

const tx = Waves.API.Transactions.Transfer.V3(txBody) ;

try {
const result = await tx.broadcast(seed.keyPair);
console.log('Broadcast transfer result: ', result)
} catch (err) {
console.log('Broadcast error:', err)
}
HO;

Creation of a confidential data group (112)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0";
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} 1});

(async () => {
const { chainId, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,
nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainld.charCodeAt(0),

(continues on next page)

11.1. Contents 136

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

};

const Waves = createApilnstance({
initialConfiguration: wavesApiConfig,
fetchlnstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase (seedPhrase) ;

// Transaction data
// https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/
—transactions-structure.html#createpolicytransaction
const txBody = {
sender: seed.address,
policyName: 'Example policy',
description: 'Description for example policy',
owners: [seed.address],
recipients: [],
fee: minimumFee[112],
timestamp: Date.now(),

const tx = Waves.API.Transactions.CreatePolicy.V3(txBody);

try {
const result = await tx.broadcast(seed.keyPair);
console.log('Broadcast PolicyCreate result: ', result)

} catch (err) {
console.log('Broadcast error:', err)

HO;

Permission adding and removing (102)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0"';
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} });

(async () => {
const { chainlId, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—Json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,
nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',

(continues on next page)

11.1. Contents 137

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

networkByte: chainId.charCodeAt(0),
};

const Waves = createApilnstance({
initialConfiguration: wavesApiConfig,
fetchInstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase (seedPhrase) ;
const targetSeed = Waves.Seed.create(15);

// https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/
—transactions-structure.html#permittransaction
const txBody = {
target: targetSeed.address,
opType: 'add',
role: 'issuer',
fee: minimumFee[102],
timestamp: Date.now(),

const permTx = Waves.API.Transactions.Permit.V2(txBody) ;

try {
const result = await permTx.broadcast(seed.keyPair);
console.log('Broadcast ADD PERMIT: ', result)

const waitTimeout = 30
console.log("Wait ${waitTimeout} seconds while tx is mining...~)

await new Promise(resolve => {
setTimeout (resolve, waitTimeout * 1000)

)
const removePermitBody = {

...txBody,

opType: 'remove',

timestamp: Date.now()
const removePermitTx = Waves.API.Transactions.Permit.V2(removePermitBody) ;
const removePermitResult = await removePermitTx.broadcast(seed.keyPair);
console.log('Broadcast REMOVE PERMIT: ', removePermitResult)

} catch (err) {
console.log('Broadcast error:', err)

HO;

11.1. Contents 138

Technical description of the Waves Enterprise platform, Release 1.7.0

Smart contract creation (103)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0"';
const seedPhrase = 'examples seed phrase';

const fetch = (url, optiomns = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} });

(async () => {
const { chainld, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,
nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),
1

const Waves = createApilnstance({
initialConfiguration: wavesApiConfig,
fetchlnstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase (seedPhrase) ;

const timestamp = Date.now();

//body description: https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-
—structures/transactions-structure.html#createcontracttransaction
const txBody = {
senderPublicKey: seed.keyPair.publicKey,
image: 'vostok-sc/grpc-contract-example:2.1"',
imageHash: '9fddd69022f6a47£39d692dfb19cf2bdb793d8af7b28b3d03e4d5d81£0aa9058" ,
contractName: 'Sample GRPC contract',
timestamp,
params: [],
fee: minimumFee[103]
3

const tx = Waves.API.Transactions.CreateContract.V3(txBody)

try {
const result = await tx.broadcast(seed.keyPair);
console.log('Broadcast docker create result: ', result)

} catch (err) {
console.log('Broadcast error:', err)

HO;

11.1. Contents 139

Technical description of the Waves Enterprise platform, Release 1.7.0

Smart contract call (104)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0"';
const seedPhrase = 'examples seed phrase';

const fetch = (url, optiomns = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} });

(async () => {
const { chainld, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,
nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),
1

const Waves = createApilnstance({
initialConfiguration: wavesApiConfig,
fetchlnstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase (seedPhrase) ;

const timestamp = Date.now()

//body description: https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-
—structures/transactions-structure.html#callcontracttransaction
const txBody = {
authorPublicKey: seed.keyPair.publicKey,
contractId: '4pSJoWsaYvI8iCSAxUYdc7LwznFexnBGPRoUJX7Lw3sh', // Predefined contract
contractVersion: 1,
timestamp,
params: [,
fee: minimumFee [104]
1

const tx = Waves.API.Transactions.CallContract.V4(txBody)

try {
const result = await tx.broadcast(seed.keyPair);
console.log('Broadcast docker call result: ', result)

} catch (err) {
console.log('Broadcast error:', err)

HO;

11.1. Contents 140

Technical description of the Waves Enterprise platform, Release 1.7.0

Atomic transaction (120)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0"';
const seedPhrase = 'examples seed phrase';

const fetch = (url, optiomns = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} });

}

(async () => {
const { chainld, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,

nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainId.charCodeAt(0),

};

const Waves = createApilnstance({
initialConfiguration: wavesApiConfig,
fetchlnstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase(seedPhrase) ;

const transferlBody = {
recipient: seed.address,
amount: 10000,
fee: minimumFee[4],
attachment: Waves.tools.base58.encode('Its beautiful!'),
timestamp: Date.now(),
atomicBadge: {
trustedSender: seed.address
}
}

const transferl = Waves.API.Transactions.Transfer.V3(transferiBody);

const transfer2Body = {
recipient: seed.address,
amount: 100000,
fee: minimumFee[4],
attachment: Waves.tools.base58.encode('Its beautiful!'),
timestamp: Date.now(),
atomicBadge: {
trustedSender: seed.address
}
}

const transfer2 = Waves.API.Transactions.Transfer.V3(transfer2Body) ;

(continues on next page)

11.1. Contents 141

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

const dockerCalliBody = {
authorPublicKey: seed.keyPair.publicKey,
contractId: '4pSJoWsaYvI8iCSAxUYdc7LwznFexnBGPRoUJX7Lw3sh', // Predefined contract
contractVersion: 1,
timestamp: Date.now(),
params: [],
fee: minimumFee[104],
atomicBadge: {
trustedSender: seed.address
}
}

const dockerCalll = Waves.API.Transactions.CallContract.V4(dockerCalllBody) ;

const dockerCall2Body = {
authorPublicKey: seed.keyPair.publicKey,
contractId: '4pSJoWsaYvT8iCSAxUYdc7LwznFexnBGPRoUJX7Lw3sh',
contractVersion: 1,
timestamp: Date.now() + 1,
params: [],
fee: minimumFee[104],
atomicBadge: {
trustedSender: seed.address
}
}

const dockerCall2 = Waves.API.Transactions.CallContract.V4(dockerCalliBody) ;

const policyDataText = ~Some random text ${Date.now()}"
const uint8array = Waves.tools.convert.stringToByteArray(policyDataText) ;
const { base64Text, hash } = Waves.tools.encodePolicyData(uint8array)

const policyDataHashBody = {
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"policyId": "9QUUuQ5XetCe2wEyrSX95NEVzPw2bscfcFfAzVZL5ZIN",
lltypell . llfilell’
"data": base64Text,
"hash": hash,
"info": {
"filename":"test-sendl.txt",
"size":1,
"timestamp": Date.now(),
"author":"temakolodko@gmail.com",
"comment":""
1,
"fee": 5000000,
"password": "sfgKYBFCFQ#$fsdf ()*%",
"timestamp": Date.now(),
"version": 3,

"apiKey": 'vostok',

}

const policyDataHashTxBody = {
...policyDataHashBody,

atomicBadge: {
trustedSender: seed.address

(continues on next page)

11.1. Contents 142

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

const policyDataHashTx = Waves.API.Transactions.PolicyDataHash.V3(policyDataHashTxBody) ;

try {
const transactions = [transferl, transfer2, policyDataHashTx]
const broadcast = await Waves.API.Transactions.broadcastAtomic(
Waves.API.Transactions.Atomic.V1({transactions}),
seed.keyPair
)
console.log('Atomic broadcast successful, tx id:', broadcast.id)
} catch (err) {
console.log('Create atomic error:', err)

}

HO;

Token issue/burning (3 / 6)

const { create: createApilnstance, MAINNET_CONFIG } = require('..');
const nodeFetch = require('node-fetch');

const nodeAddress = 'https://hoover.welocal.dev/node-0";
const seedPhrase = 'examples seed phrase';

const fetch = (url, options = {}) => {
const headers = options.headers || {}
return nodeFetch(url, { ...options, headers: {...headers, 'x-api-key': 'vostok'} 1});

(async () => {
const { chainId, minimumFee, gostCrypto } = await (await fetch(${nodeAddress}/node/config)).
—json();

const wavesApiConfig = {
.. .MAINNET_CONFIG,
nodeAddress,
crypto: gostCrypto 7 'gost' : 'waves',
networkByte: chainld.charCodeAt(0),
};

const Waves = createApilnstance ({
initialConfiguration: wavesApiConfig,
fetchInstance: fetch

b

// Create Seed object from phrase
const seed = Waves.Seed.fromExistingPhrase (seedPhrase) ;

const quantity = 1000000
//https://docs.wavesenterprise.com/en/latest/how-the-platform-works/data-structures/

—transactions-structure.html#issuetransaction
const issueBody = {

(continues on next page)

11.1. Contents 143

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

name: 'Sample token',

description: 'The best token ever made',
quantity,

decimals: 8,

reissuable: false,

chainId: Waves.config.getNetworkByte(),
fee: minimumFee[3],

timestamp: Date.now(),

script: null

const issueTx = Waves.API.Transactions.Issue.V2(issueBody)
try {
const result = await issueTx.broadcast(seed.keyPair);

console.log('Broadcast ISSUE result: ', result)
const waitTimeout = 30
console.log("Wait ${waitTimeout} seconds while tx is mining...~)

await new Promise(resolve => {
setTimeout (resolve, waitTimeout * 1000)

1))

const burnBody = {
assetId: result.assetld,
amount: quantity,
fee: minimumFee[6],
chainId: Waves.config.getNetworkByte(),
timestamp: Date.now()

const burnTx = Waves.API.Transactions.Burn.V2(burnBody)
const burnResult = await burnTx.broadcast(seed.keyPair);
console.log('Broadcast BURN result: ', burnResult)

} catch (err) {
console.log('Broadcast error:', err)

HO;

See also

JavaScript SDK

11.1.5 Using the JS SDK in a node with oAuth authorization
If the node uses the oAuth authorization, it is necessary to initialize the Waves API with the authorization
headers for the call.

To automatically update tokens when developing applications with the JS SDK, we recommend using the
external module api-token-refresher. However, you can use your solution instead.

To work with api-token-refresher, install dependencies using npm:

npm i @wavesenterprise/api-token-refresher@3.1.0 --save, axios --save-dev, cross-fetch --save-dev,

Q nterprise/is—sdk@3 1 1 save
e sdk-

LIS VeSs
LW VeSS

ik T (continues on next page)

11.1. Contents 144

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

Initialize api-token-refresher as follows:

import { init: initRefresher } from '@wavesenterprise/api-token-refresher/dist/fetch’

const { fetch } = initRefresher({
authorization: {
access_token,
refresh_token
}
1

const Waves = WeSdk.create({
initialConfiguration: config,
fetchInstance: fetch

1

The access_token and refresh_token parameters are given in the authorization response to the
loginSecure request, which is available in the browser.

The following listing contains the initialization of the library followed by the first block check:

const WeSdk = require('@wavesenterprise/js-sdk');
const { ApiTokenRefresher } = require('Quavesenterprise/api-token-refresher');

const apiTokenRefresher = new ApiTokenRefresher ({
authorization: {
access_token: 'access_token',
refresh_token: 'refresh_token'

1))
const { fetch } = apiTokenRefresher.init()

const Waves = WeSdk.create({
initialConfiguration: {
...WeSdk.MAINNET_CONFIG,
nodeAddress: 'https://hoover.welocal.dev/node-1",
crypto: 'waves',
networkByte: 'V'.charCodeAt(0)
},
fetchInstance: fetch
b
const testFirstBlock = async () => {

const data = await Waves.API.Node.blocks.first()
console.log('First block:', data)

testFirstBlock()

See also
JavaScript SDK

Authorization and data services

11.1. Contents 145

Technical description of the Waves Enterprise platform, Release 1.7.0

11.1.6 Variants of generation of a seed phrase and work with it in the JS SDK

1. Creating a new randomized seed phrase

const seed = Waves.Seed.create();

console.log(seed.phrase); // 'hole law front bottom then mobile fabric under horse drink other
—member work twenty boss'

console.log(seed.address); // '3Mr5af3Y7r7glej3tRtugYbKaPrbq¥ps2ei’

console.log(seed.keyPair); // { privateKey: 'HkFCbtBHX1ZUF42aNE4av52JvdDPWth2jbP88HPTDyp4 "',
—publicKey: 'AF9HLq2Rsv2fVfLPtsWxT7Y3S9ZTv6Mw4ZTp8KSLNdEp' }

2. Creating a seed phrase from an existing one

const anotherSeed = Waves.Seed.fromExistingPhrase('a seed which was backed up some time ago');

console.log(seed.phrase); // 'newly created seed'

console.log(seed.address); // '3N3dyl1P8Dccup5WnYsrC6VmaGHF6wMxdLn4 '
console.log(seed.keyPair); // { privateKey: '2gSboTPsiQfili3zNtFppVJVgjoCA9P4AHEOK95y8yCMm', |
—publicKey: 'CFr94paUnDSTRk8jz6Ep3bzhXb9LKarNmLYXW6gquw6Y3' ¥

3. Encrypting the seed phrase with a password and decrypting it

Example of password encryption of a seed phrase:

const password = '0123456789';
const encrypted = seed.encrypt(password) ;

console.log(encrypted); // 'U2FsdGVkX1+5TpaxcK/eJyjht7bSpjLY1SU8gVXNapU3MG8xgWm3uaviW37aPz/
—KTcROK70j0A3dpCLXfZ4YjCV30W2r1CCaUhOMPBCX64QA/iA1gP INtfMvjLKTHZko/JDgrxBHgQkz76ap0RWAKEQ=="

Example of seed phrase decryption with the use of a password:

const restoredPhrase = Waves.Seed.decryptSeedPhrase (encrypted, password);

console.log(restoredPhrase); // 'hole law front bottom then mobile fabric under horse drink other
—member work twenty boss'

See also
JavaScript SDK
See also
Cryptography
REST API: encryption and decryption methods

Transactions of the blockchain platform

11.1. Contents 146

CHAPTER

TWELVE

CONFIDENTIAL DATA EXCHANGE

The Waves Enterprise blockchain platform allows you to restrict access to certain data placed on the
blockchain. To do this, users are divided into groups with access to confidential data.

12.1 Creation of a confidential data group

Anyone on the network can create a confidential data access group. Before you create an access group, decide
on the list of members that will be part of it. Then sign and submit the transaction 112 CreatePolicy:

1. In the recipients field, enter the comma-separated addresses of participants who will have access to
confidential data.

2. In the owners field, add the comma-separated addresses of the group members who will be given
administrator rights. The administrators of the access group, in addition to accessing confidential
data, will be able to change the composition of the access group.

When you send a transaction, you will receive the ID of the created access group (policyId). You will need
it when you change the composition of its members.

Once a transaction is sent to the blockchain, all participants registered in the created access group will have
access to the confidential data sent to the network. As the creator of the transaction, you will be able to
change its composition, as will the participants added to the owners field.

12.2 Updating a confidential data group

Only the members of a confidential data group added to the owners field when creating the group, as well
as its creator himself (group owners) can change the composition of the access group.

To do this, sign and submit the transaction 113 UpdatePolicy:
1. In the policyId field, enter the identifier of the access group to be changed.

2. In the opType field, enter the action to be performed on the group: add — add members; remove —
delete members.

3. If you want to add or remove members of an access group, type their public keys in the recipients
field.

4. To add or remove access group owners, type their public keys in the owners field.

Access group information is updated after a transaction is sent to the blockchain.

147

Technical description of the Waves Enterprise platform, Release 1.7.0

12.3 Sending confidential data into the network

REST API methods POST /privacy/sendData and POST /privacy/sendDataV2 are used to send confidential
data to the network. These methods require authorization.

With the POST /privacy/sendData and POST /privacy/sendDataV2 methods, you can send data up to 20
megabytes.

When sending data, include the following information in your request:

* sender — blockchain address from which the data should be sent (corresponds to the value of the
“privacy.owner-address” parameter in the configuration file of the node);

¢ password — password to access the private key in the node keystore;
* policyId — identifier of a group that will have access to the data to be forwarded;
e info — information about the data being sent;
* data — string containing data in base64 format;
* hash — data sha256-hash in base58 format.
Examples of query and response of the POST /privacy/sendData method:
POST /privacy/sendData:
Query:

{

"sender": "3HYW75PpAeVukmbYo9P(3mzSHAKUgEytUUz",
"password": "apgJP9atQccdBPA",

"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"info": {
"filename":"Service contract #100/5.doc",
"size'": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "some comments"
} 3
"data":
—"TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGI5IGhpcyByZWFzb24sIGJ1dCBieSBOaGlzIHNpbmd 1bGFyIHBhc3Npb24gZnJvbS]
"hash": "FRog42mnzTA292ukng6PHoEK9Mpx9GZNrEHecfvpwmta"
}
Response:
{

"senderPublicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxualyrgsLksVyY",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"sender": "3HYW75PpAeVukmbYo9P(3mzSHAKUgEytUUz",

"dataHash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta",
"proofs": [

—"2jM4twduDmspuXUBt6492T7opuZskYhFGWIgkbq532BvLYRF6RIn3hVGNLUMLK8JSM61GkVgYvYJg9UscAayEYE

"
—

]’

"fee": 110000000,

"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQb5aa",
"type": 114,

(g}

(continues on next page)

12.3. Sending confidential data into the network 148

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"timestamp": 1571043910570
}

The POST /privacy/sendDataV2 method allows you to attach a file in the Swagger window without having
to convert it to the base64 format. The Data field is missing in this version of the method.

Examples of query and response of the POST /privacy/sendDataV2 method:
POST /privacy/sendDataV2:
Query:

{

"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHAKUgEytUUz",
"password": "apgJP9atQccdBPA",

"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"info": {
"filename":"Service contract #100/5.doc",
"size'": 2048,
"timestamp": 1000000000,
"author": "AIvanov@org.com",
"comment": "some comments"
} 3
"hash": "FRog42mnzTA292ukng6PHoEK9Mpx9GZNrEHecfvpwmta"
}
Response:
{

"senderPublicKey": "Gt301ghh2M2TS65UrHZCTJ82LLcMcBrxualJyrgsLk5VY",
"policyId": "4gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaC",

"sender": "3HYW75PpAeVukmbYo9P(Q3mzSHAKUgEytUUz",

"dataHash": "FRog42mnzTA292ukng6PHoEKOMpx9GZNrEHecfvpwmta",
"proofs": [

—"2jM4tw4uDmspuXUBt6492T7opuzZskYhFGWOgkbq532BvLYRF6RIn3hVGNLUMLK8JSM61GkVgYvYJg9UscAayEY1

"
—

1,

"fee": 110000000,

"id": "H3bdFTatppjnMmUe38YWh35Lmf4XDYrgsDK1P3KgQ5aa",
"type": 114,

"timestamp": 1571043910570

}

(¢}

Sending request of these types will result in a 174 PolicyDataHash transaction, which will send a hash of
confidential data to the blockchain.

See also
Description of transactions

REST API: confidential data exchange and obtaining of information about confidential data
groups

12.3. Sending confidential data into the network 149

CHAPTER

THIRTEEN

PERMISSION MANAGEMENT

All permissions of the blockchain platform are described in the article Permissions. Permissions can be
arbitrarily combined for any address; individual permissions can be revoked at any time.

The 102 Permission Transaction is used for managing the permissions of participants. This transaction can
be signed using the sign method of the node REST API and sent using the corresponding gRPC or REST
API method. Only a member with the permissioner permission can send a transaction to the blockchain.

Regardless of the sending method used, the transaction includes the following fields:

type — type of transaction for managing the authority of the participants (type = 102);

sender — address of the participant with authority to send transaction 102 (permissioner permission);
password — key pair password in the node keystore, optional field;

proofs — transaction signature;

target — the address of the participant for whom you want to set or remove permissions;

role — member’s permission which you want to set or remove;

opType — type of operation: add (add a permission) or remove (remove a permission);

dueTimestamp — date of validity of the permission in the Unix Timestamp format (in milliseconds),
optional field.

The received response of the sign method is sent to the broadcast method of node gRPC or REST APIL

See also

Description of transactions

REST API: information about permissions of participants

150

CHAPTER

FOURTEEN

CONNECTION AND REMOVING OF NODES

When working in Waves Enterprise Mainnet, member nodes are connected to the network and removed from
it :ref:” with the help of Waves Enterprise specialists <mainnet-general>".

In a private network, the connection and removal of new members is performed after manual configuration
and the start of the first node.

14.1 Connecting a new node to a private network

To connect a new node, do the following;:

1.

Configure the node according to the instructions given in the article Deploying the platform in a private
network.

Send the public key of the new node and its description to administrator of your network.

The network administrator (node with the connection-manager permission) uses the received public
key and node description when creating a transaction 111 RegisterNode. To register a node, the opType
parameter, which defines the type of action to be performed, should be specified as add (add a new
node).

The 111 transaction enters the block and then enters the network participants’ node state. Thereafter,
each member of the network must store the public key and the address of the new node.

If necessary, the network administrator can add additional roles to the new node with the 702 transac-
tion. For more information about assigning member roles, see the Participant role assignment article.

Start the new node.

14.2 Removing node from a private network

To remove a node from the network, the network administrator sends a 111 RegisterNode transaction to the
blockchain. In this transaction, he specifies the public key of the node to be removed and the parameter
opType: " ‘remove” (remove the node from the network).

After a transaction is published to the blockchain, the node data is removed from the states of all participants.

See also

Description of transactions
Permission management

Architecture

151

CHAPTER

FIFTEEN

NODE START WITH A SNAPSHOT

In order to change the parameters of a private blockchain without losing the data stored in it, the Waves
Enterprise blockchain platform has a snapshot mechanism.

The snapshot mechanism is configured in the configuration file of the node (see the Precise platform config-
uration: snapshot).

After creating a snapshot in the private blockchain, you, as the network administrator, can change its
parameters and restart it using the data stored in the snapshot.

To do this, carry out the following:

1. Use the GET /snapshot/status method to make sure that the data snapshot was received by your node
and successfully verified;

2. Use the GET /snapshot/genesis-config method to request the configuration of the new genesis block
and save it;

3. Use the POST /snapshot/swap-state method to replace the current network state with the data snap-
shot and wait for a successful response;

4. Prepare the node configuration files to restart:

* change the genesis block parameters to those obtained in step 2;

* disable the snapshot mechanism (node.consensual-snapshot.enable = no);

« if necessary, change the parameters of the blockchain section of the node configuration file;
5. Restart the node.

After the node is restarted, a new genesis block of the network will be generated. The network is started
with updated parameters and data recorded in the data snapshot.

See also

REST API: information about configuration and state of the node, stopping the node

152

CHAPTER

SIXTEEN

ARCHITECTURE

16.1 Platform arrangement

The Waves Enterprise platform is based in the distributed ledger technology and built as a fractal network
that consists of two elements:

* Master blockchain (Waves Enterprise Mainnet), which provides functioning of the overall network and
acts as a global moderator for the basic network, as well as for many user networks;

¢ individual sidechains created for definite business tasks.

Interaction between the master blockchain and sidechains is provided by the anchoring mechanism which
broadcasts cryptographic proofs of transaction into the basic blockchain network. The anchoring mechanism
allows to freely configure sidechains and use any consensus algorithm without loss of connection with the
master blockchain. For instance, the Waves Enterprise master blockchain is based on the Proof-of-Stake
consensus algorithm, because it is supported by independent participants. At the same time, corporate
sidechains that do not have to stimulate miners with transaction fees can use the Proof-of-Authority or
Crash-Fault-Tolerance algorithms.

This two-part arrangement allows to optimize the network for high processing loads, increase information
transmission rate, as well as to enhance concurrence and availability of data. Usage of the anchoring mech-
anism increases trust to data in sidechains, because they are validated in the master blockchain.

Platform architecture scheme:

16.2 Arrangement of nodes and auxiliary services

Each blockchain node is an independent network participant which has the software required for work with
the network. Every node consists of the following components:

¢ Consensus services and cryptolibraries — components that are responsible for achievement of consensus
between nodes and cryptographic algorithms.

* Node API - gRPC and REST API interfaces of the node that allow to receive data from the blockchain,
sign and broadcast transactions, send confidential data, create and call smart contracts, etc.

* Unconfirmed transaction pool (UTX pool) — the component providing storage of unconfirmed trans-
actions before their validation and broadcasting into the blockchain.

e Miner — the component responsible for creation of transaction blocks for adding into the blockchain,
as well as for interaction with smart contracts.

* Key store — storage for key pairs of a node and users. All the keys are protected with the password.

153

Technical description of the Waves Enterprise platform, Release 1.7.0

WAVES ENTERPRISE MAIN-NET : i PRIVATE ENTERPRISE SIDECHAIN r
: H | ORGANIZATION 1
- LPOS H i ' CORPORATE
« Permissioned H | | NODE APPLICATION
« Waves cryptography H '
NODE « 1000 tps

« Turing-complete smart-contracts | H |

NODE ., i : i e I R
H o | | | ORGANIZATION 2 RN ORGANIZATION N

| —Data anchoring—>| | ; . \ Deployment options:

miner

Y NODE |} I I & (R S + matcher :
; i e Q e \®/ [@f « decentralised storage | |
I i ! « data service I

corporate client

. [various integrations

[CORPORATE NODE : NODE

i CLIENT :

. Accessible L o T
i blockchain data Raw :

. plogkenain datz | CONFIGURATION OPTIONS

i ' . Consensus algorithm (LPoS, PoA)

i « Cryptography (GOST, Waves)

i : Optional node modes

NODE

.ﬁ. DATA PRIVATE | « Authorization modes (basic, oAuth)
SERVICE

STORAGE | « Permission / Role system

| Peer-to-peer private data transfers
Smart-contracts (Turing complete or not)
- 8001200 tps

‘ Tez, data, state

Accessible
blockchain data Private data
WE CLIENT GATEWAYS LOGISTIC NOTARY DOCUMENT FLOW e CORPORATE CORPORATE |
SYSTEMS SYSTEMS SYSTEMS i Bl APP CRM/ERP |

* Network layer — the logic layer that provides interaction of nodes at the applied level via the network
protocol over the TCP.

¢ Node storage — the system component based on RocksDB that provides storage of ‘key-value’ pairs for
the entire set of confirmed transactions and blocks, as well as for the current blockchain state.

 Validation logic — the logic layer containing the rules of transaction validation, for instance, basic
signature check and advanced check according to the script.

* Configuration — node configuration parameters that are set in the node-name.conf file.
Every node also contains a set of additional services:
¢ Authorization service — the service providing authorization of all components.

¢ Data crawler — the service for data extraction from a node and uploading of extracted data into the
data service.

¢ Generator — the service for generation of key pairs for new accounts and creating of the api-key-hash.

* Monitoring service — the external service using the InfluxDB database for storage of time sequences
with application data and metrics.

Installation of auxiliary services is not required, but they alleviate interaction of users with the blockchain
network. Apart of ready-made services and depending on tasks, integration adapters can be developed for
transit of transactions from client applications into the blockchain network, as well as for data exchange
between a node and applied services of a customer.

Scheme of node and auxiliary services arrangement:
See also

Waves-NG blockchain protocol

Consensus algorithms

Cryptography

16.2. Arrangement of nodes and auxiliary services 154

Technical description of the Waves Enterprise platform, Release 1.7.0

Waves Enterprise
corporate client

Refresh/
Access
tokens

Wallet and asset portfolo

Authorization Service

QY

===

Mo ng dashboards

QJ‘M

New txs
Blockchain data

Prepared Data service
blockchain
data Transforms raw

blockchain data
into prepared
marts in
PostgreSQL
RDBMS

Data
crawler

Prepared
blockchain data

Custom
microservice
plugins

Data

Qo]

Waves Enterprise Node

Waves Enterprise smart contracts

Cryptographic methods

Node and network

Consensus CryptoProvider
Call&Execute
Consensus contract
Validated
unconfirmed Key store
Validated b i
iner
unconfirmed
- txs
2 Unconfirmed
o i]
] pool Validated E‘
2 unconfirmed ¥
E txs Node storage | RocksDB g
3
w + Blocks 2
3B « Transactions
z « State (indexes,
balances)
Confirmed txs
blocks, balances
scripts, data T
Validated txs Blocks Seripts yalidated blocks
data
New blocks
Validation logic: new txs
_ New txs - consensus rules
N Private data - sn}art-accounts scripts —
3 - privacy rules
T t
Private data Private data hash
txs
] pP2pP ted dat: h
. Privacy engine encryp! lata exchange
Settings
API-key
Private storage | PostgreSQL Consensus, Network
cryptography settings
« Private data settings
{ Config]

—Monitorina events and settings

Q{wr

Integrartion with external systems

16.2. Arrangement of nodes and auxiliary services

155

Technical description of the Waves Enterprise platform, Release 1.7.0

Ezamples of node configuration files
Authorization and data services

Generators

16.2. Arrangement of nodes and auxiliary services 156

CHAPTER

SEVENTEEN

WAVES-NG BLOCKCHAIN PROTOCOL

Waves-NG is a blockchain protocol developed by Waves Enterprise on the basis of the Bitcoin-NG. The main
concept of the protocol is a continuous generation of microblocks instead of one big block in each mining
round. This approach allows to increase the blockchain operating speed, because microblocks are validated
and transferred into the network much faster.

17.1 Description of a mining round

Each mining round consists of the following stages:

1. A used consensus algorithm defines a round miner and the time for generation of a key block which
does not contain transactions.

2. The round miner generates a key block which contains only service information:
* public key of the miner for validation of microblock signatures;
¢ a miner fee for a previous block;
 the miner signature;
¢ a reference to a previous block.

3. After generating of a key block, the round miner generates a liquid block: each 5 seconds the miner gen-
erates microblocks with transactions and broadcasts them in the network . At this stage, microblocks
are not validated by a consensus algorithm, which increases their generation speed. A first microblock
refers to the key block, each subsequent microblock refers to a previous one.

4. The process of generation of microblocks within the liquid block continues up to generation of a next
valid key block, which finishes the mining round. At the moment of generation of the next key block,
the liquid block with all microblocks generated by the round miner is finalized as a next block of the
blockchain.

17.2 Miner fee mechanism

The Waves-NG protocol supports financial motivation for miners. Each transaction in the Waves Enterprise
blockchain requires a fee in WAVES tokens. All fees for transactions in microblocks are summed up during
a mining round. A total fee is distributed in the following way:

 a miner of the current round receives 40% of the total fee for generation of the current block;

* a miner of the next round receives 60% if the total fee.

157

Technical description of the Waves Enterprise platform, Release 1.7.0

The fee charging transaction is carried out for each 100 blocks in order to provide an additional checking
interval:

40 %) 60 %
microblock fees
_ e
© Ty
' o/l ' o
= = = PubKey A SIG, SlIG, “, @7 Pubkey B @ - =
5 seconds
b 1 minute "

17.3 Smart contract validators fee mechanism

The Waves-NG protocol supports financial motivation for smart contract validators. Each validated smart
contract execution transaction in the Waves Enterprise blockchain requires a fee in WAVES tokens that
is then transferred to miners and validators. A smart contract is validated if it uses the Majority or
MajorityWithOneOf validation policy. The fee is distributed in the following way:

* 25% of the smart contract execution transaction fee goes to validators. Remuneration is distributed
among the validators in equal shares.

* 75% of the smart contract execution transaction fee goes to the miners. This amount is distributed
among the miners in the following way:

— a miner of the current round receives 40% of 75%, i.e. 30% of the total fee for the current
block generation;

— a miner of the next round receives 60% of 75%, i.e. 45% of the total fee.

17.4 Conflict resolution while generating blocks

If a miner continues a previously created blockchain by generating two microblocks with the same parent
block, an inconsistency of transaction occurs. It is detected by a blockchain node at the moment of generating
of a next microblock, when a node accepts the received changes for its network state copy and synchronizes
them with other nodes.

The Waves-NG protocol defines such situation as a fraud. A miner who has continued a foreign chain, is
deprived of round transaction fees. A node that has detected an inconsistency receives a miner fee.

Generation and broadcasting of invalid blockchain blocks are also detected by the consensus algorithms.
See also
Architecture

Consensus algorithms

17.3. Smart contract validators fee mechanism 158

CHAPTER

EIGHTEEN

CONNECTION OF A NEW NODE TO BLOCKCHAIN NETWORK

The Waves Enterprise blockchain platform gives an opportunity to connect new nodes to a blockchain network
at any moment.

Practical steps of node connection are stated in the article Connection and removing of nodes.
The general chart for connection of a new node is provided below:

CONNECTION
MANAGER

O 2. peer-node-declared-address. ... |

3. broadeast RegisterNodeTx :
new-node-owner public-key

——4. add RegisterNodeTx

resolve ip_--"
,_,_q_i_i{:,
_,-/)
i e
5. initial syne:
node state (RocksDB)) T [
RegisterhodeTx 7—6. peer node public key—— -
“opType™: "add"
"sender’: "peer-node-address” [le—— 7. handshake —_ 1
“nodeName”: "new node name" e { signature) n
"targetPubKey": "new-node-owner public-key" TR
77 validate™.__
handshake ~—
add new]
declared-address ’-\}\
i N 8. handshake response r
(e et TTTTTTTTTTTTTTTTTITTITTTTTT T (P - (signature) | Val\de}le
| peers.dat T n-h‘___xswgna ure
: new-node ip-address)
e | .

| 3. data sync request

1. A user of a new node passes the public key of the new node to the network administrator (node with
the connection-manager permission).

2. The node with the connection-manager permission uses the received public key for creation of the 111
RegisterNode transaction with the “opType”: “add” parameter.

3. The 111 transaction gets to the block.

159

Technical description of the Waves Enterprise platform, Release 1.7.0

4. Further, information from the 111 transaction (sender address, new node name and public key) is
transferred to states of participant nodes.

5. In case a new node key is absent in the list of nodes that have been registered in the network genesis
block (Network Participants), a new node is initially synchronized. A new node sends the PeerIden-
tityRequest with its signature to all addresses from the peer list in its configuration file. Peers make
sure that a node that has sent the PeerIdentityRequest has been registered in the network.

6. If the check is successful, peers send their public keys to the new node in response to the Peerl-
dentityRequest. The new node saves these public keys in its temporary address storage for primary
connection with peers. After saving the addresses, the new node has an opportunity to validate network
handshakes from its peers.

7. The new node sends handshake messages with its public key to network participants from the peer
lists in its configuration file.

8. Peers compare the public key in the handshake message and the new node public key from the 111
transaction which has been sent by the node with the connection-manager permission. If the check is
successful, peers send handshake responses with their signatures to the new node and send the Peers
Messages to the network.

9. After successful connection, the new node performs synchronization with the network and receives the
table with network participant addresses.

See also
Architecture
Connection and removing of nodes

Permissions

160

CHAPTER

NINETEEN

ACTIVATION OF BLOCKCHAIN FEATURES

The Waves Enterprise blockchain platform supports activation of additional blockchain features by voting of
nodes — in other words, the soft fork mechanism. Soft fork is an irreversible action, because the blockchain
does not support a soft fork rollback.

Only nodes with the miner role can take part in the voting, because votes of each node are attached to a
block created by this node.

19.1 Voting parameters

Identifiers of features supported by a node are stated in the supported string of the features block in the
node section of the node configuration file:

features {
supported = [100]
}

Voting parameters are defined in the functionality block of the node configuration file:
+ feature-check-blocks-period — voting period (in blocks);

¢ blocks-for-feature-activation — number of blocks with a feature identifier required for activation
of this feature.

By default, each node is set in a way that it votes for all supported features.

Attention: Voting parameters of a node cannot be changed during blockchain operation: these parame-
ters should be unified for the entire network in order to provide full synchronization of nodes.

19.2 Voting procedure

1. During a mining round, a miner node votes for features included in the features.supported block,
if they have not been activated in the blockchain before: feature identifiers are put into the features
field of each block during its creation. After that, created blocks are published in the blockchain. So,
all the nodes with the miner role vote for their features during the feature-check-blocks-period.

2. After the feature-check-blocks-period elapses, the system counts the votes-identifiers of each fea-
ture in the created blocks.

3. If a voted feature collects a number of votes that is greater or equal to the
blocks-for-feature-activation it gets an APPROVED status.

161

Technical description of the Waves Enterprise platform, Release 1.7.0

4. The approved feature is activated after the feature-check-blocks-period interval starting from a
current blockchain height.

19.3 Usage of activated features

When activated, a new feature can be used by all blockchain nodes that support it. If any node does not
support an activated feature, it will be disconnected from the blockchain in a moment of a first transaction
using this unsupported feature.

When a new node is connected to the blockchain, it will automatically activate all previously voted and
activated features. Activation is performed during synchronization of the node, if the node itself supports
activated features.

19.4 Preliminary activation of features

All the features available for voting can also be forcibly activated while starting a new blockchain. Use the
pre-activated-features block of the blockchain section in the node configuration file for this purpose:

pre-activated-features = {
101 = 0
}

Blockchain height for activation of a certain feature is stated after an equal mark in front of every feature.

19.5 List of available feature identifiers

Identifier | Description
100 Activation of the LPoS consensus algorithm
101 Support of gRPC by Docker smart contracts
119 Optimization of performance for the PoA consensus algorithm
120 Support of sponsored fees
130 Optimization of performance for miner ban history
140 Support of atomic transactions
160 Support of parallel creation of liquid blocks and microblocks
162 Validation of smart contracts in the blockchain
173 Support of micro-block inventory v2
See also
rest-sf

19.3. Usage of activated features 162

CHAPTER

TWENTY

ANCHORING

In a private blockchain, transactions are processed by a definite list of participants, each of participants is
familiar for the network in advance. In comparison with the public network, private blockchains contain less
participants, blocks and transactions, that can cause a threat of information replacement. This situation, in
turn, creates a risk of blockchain override, especially in case the PoS consensus algorithm is used — because
this algorithm is not protected from such occurrences.

In order to increase trust of private blockchain participants to the data broadcasted in it, the anchoring
mechanism has been developed. Anchoring allows to check consistency of data. Consistency of data is guar-
anteed through broadcasting of data from a private blockchain into a larger network where data replacement
is less possible because of larger number of participants and blocks. Block signatures and blockchain height
are published from the private network. The mutual connectivity of two or more networks increases their
resilience, since all connected networks must be attacked to forge or change data as a result of a long-range
attack.

20.1 How the Waves Enterprise anchoring works

{cumentheight=N | icurrent-height >= N+ 10 |
! height-above = 10 ! | !

BLOCK #N BLOCK #(N + 10) >

TARGETNET

Data tx : TARGETNET height check
height (every 30 sec)
signature Data tx :
- height
(| signature
targetnet-tx-id

targetnet-tx-timestamp

Avd K '- |
— T 4| BLOCK #(K - 100) }—{ BLOCK #K | BLOCK #(K+)
A

current-height = K
 threshaold = 100

SIDECHAIN

1. Anchoring configuration is performed in the private blockchain configuration file (set the corresponding
parameters in accordance with the recommendations listed in the article in order to exclude complexities
while working with anchoring);

163

https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/
https://medium.com/@abhisharm/understanding-proof-of-stake-through-its-flaws-part-3-long-range-attacks-672a3d413501/

Technical description of the Waves Enterprise platform, Release 1.7.0

2. After each configured number of blocks height-range the node saves information about the block at
the current-height - threshold in the form of a transaction into the Targetnet. To do this, the Data
Transaction 12 containing the ‘key-value’ pairs is used. This pairs are described below;

3. After transaction broadcast, the node receives its height in the Targetnet;

4. The node checks the Targetnet blockchain each 30 seconds, until the height achieves the value height
of a created transaction + height-above.

5. Upon achieving this Targetnet blockchain height and acknowledgement of presence of the first transac-
tion in the blockchain, the node in the Targetnet creates a second transaction with data for anchoring
in the private blockchain.

20.2 Anchoring data transaction structure

Transaction for broadcasting in a Targetnet contains following fields:
* height - height of a private blockchain block to be saved;
* signature - signature of a private blockchain block to be saved.
Transaction for a private blockchain contains following fields:
* height - height of a private blockchain block to be saved;
* signature - signature of a private blockchain block to be saved;
* targetnet-tx-id - identifier of a transaction for anchoring into a Targetnet;

* targetnet-tx-timestamp — date and time of creation of a Targetnet anchoring transaction.

20.3 Errors that can occur during anchoring

Anchoring errors can occur at any stage. In case of errors in a private blockchain, a Data Transaction 12
with an error code and description is published. This transaction contains following fields:

* height - height of a private blockchain block to be saved;
* signature - signature of a private blockchain block to be saved;
e error-code - code of an error;

* error-message - description of an error.

20.2. Anchoring data transaction structure 164

Technical description of the Waves Enterprise platform, Release 1.7.0

Table 1: Anchoring error types

Code Error message Possible reason
0 Unknown error Unknown error has occurred while broadcasting a
transaction into a Targetnet
1 Fail to create data transaction for Creating of a transaction for broadcasting into a
Targetnet Targetnet has not been completed and returned an
error
2 Fail send transaction to Targetnet Broadcasting of a transaction into a Targetnet has
not been completed and returned an error (that
can occur due to a JSON query error)
3 Invalid http status of response from Broadcasting of a transaction into the Targetnet
Targetnet transaction broadcast returned a code other than 200
4 Fail to parse http body of response Broadcasting of a transaction into a Targetnet re-
from Targetnet transaction broadcast turned an unrecognizable JSON query
) Targetnet return transaction with Broadcasting of a transaction into a Targetnet re-
id='$TargetnetTxId' but it differ turned an identifier that differs from the first trans-
from transaction that we sent action
id="'$sentTxId
6 Targetnet didn't respond on A Targetnet has not responded to a query on trans-
transaction info request action information
7 Fail to get current height in The current height of a Targetnet has not been
Targetnet obtained
8 Anchoring transaction in Targetnet Anchoring transaction has not been found in
disappeared after height rise enough a Targetnet after increase of height to the
height-above value
9 Fail to create sidechain anchoring Failed to broadcast an anchoring transaction in a
transaction private blockchain
10 | Anchored transaction in sidechain While waiting for acknowledgement of a transac-
was changed during Targetnet height tion in a Targetnet, a rollback occurred in a pri-
arise await, looks like a rollback vate blockchain, a transaction identifier has been
has happened changed
See also

Precise platform configuration: anchoring

20.3. Errors that can occur during anchoring

165

CHAPTER

TWENTYONE

SNAPSHOOTING

Snapshooting is an auxiliary mechanism of the blockchain platform which allows to save the data of the
working blockchain for a subsequent change of network configuration and starting of the network with the
saved data.

The snapshooting mechanism allows to change the blockchain configuration parameters without loss of its
data. The process of changing of the network configuration parameters with the use of a snapshot is called
migration.

A snapshot includes the following data:
* states of network addresses: balances, permissions, keys;

e states of smart contracts created in the network: data received as a result of smart contract calls and
attached to them with the use of 105 transactions;

¢ data of miners of the previous rounds;
¢ information of confidential data access groups.
A snapshot does not include history of transactions, bans and network blocks.

In the process of migration, a snapshot becomes an initial state of the blockchain network with new param-
eters, and the network itself is restarted with generation of the new genesis block.

Snapshooting is enabled and configured in the section node. consensual-snapshot of the node configuration

file.

21.1 Components of the snapshooting mechanism

SnapshotBroadcaster — the component for broadcasting of the SnapshotNotification messages, processing
of requests for snapshot generation (SnapshotRequest) and subsequent transfer of a ready snapshot. As
snapshots can have a large size, the SnapshotBroadcaster process not more than 2 requests simultaneously.

SnapshotLoader — the component that registrates incoming SnapshotNotification messages at a node,
sends SnapshotRequest messages and loads snapshots. If a node receives the SnapshotNotification mes-
sage, the sender address is added to the array of addresses that have the snapshot. After that, the notification
is sent to other node peers.

The SnapshotLoader repeatedly checks the address array for presence of an address with a ready snapshot.
If such address exists, as well as an open network channel with it, the node sends the SnapshotRequest
message to this address for download of the snapshot. The response timeout for this message is 10 seconds.
If a node with the snapshot does not respond within this timeout, it is excluded from the address array. In
this case, the node picks a next address with a ready snapshot and sends a SnapshotRequest message to
this address.

166

Technical description of the Waves Enterprise platform, Release 1.7.0

If the snapshot has been downloaded successfully, it is unpacked and verified with the node state. In case of a
successful verification, the node which has received the snapshot sends the SnapshotNotification messages
to its peers.

Snapshot ApiRoute — the REST API interface for snapshot operations.

21.2 Generation and broadcasting of a snapshot in an operating blockchain

1. The node appointed for mining at the snapshot-height is also appointed for snapshot genera-
tion. Snapshot generation starts at the snapshot-height + 1, the generated snapshot is saved in the
snapshot-directory. During the snapshot generation, entering of new transactions into the blockchain
UTX pool is blocked. After successful generation of snapshot, the node creates an empty genesis block with
the consensus algorithm of a new network (consensus-type) and saves it in the snapshot.

2. Upon achievement of the snapshot-height + wait-blocks-count, the node which has created the
snapshot, archives it and sends the SnapshotNotification messages about readiness of the snapshot to its
peers.

3. Upon receipt of the SnapshotNotification, the nodes initiate the SnapshotRequest messages to down-
load a ready snapshot. In case of expiration of snapshot receiving timeout or an error while downloading it,
the node picks another peer and requests a snapshot from it.

4. Each node that has received an archive with a snapshot, saves it in the snapshot-directory, unpacks it
and checks its correctness: compares address balances and keys, checks smart contracts integrity, members
and parameters of confidential data access groups, participants’ permissions. If the snapshot verification is
successful, the node sends the messages about availability of the snapshot (SnapshotNotification) to its
peers. After this, peers of the node can send it a request for snapshot download.

As a result, the snapshot is downloaded by each node of the network, and verification on the level of each
node excludes a possibility of snapshot data spoofing.

After generating of the snapshot, you can start your node with changed configuration parameters and the
generated snapshot. Learn more about this in the article Node start with a snapshot.

If you connect to the node with an empty state (new node) to the network started from the snapshot, the
process of snapshot download will be performed automatically: node automatically connects with peers for
snapshot downloading and validation of its own configuration file. See the Connection of a new node to
blockchain network section for description of the connection process.

21.3 Snapshot REST API methods

GET /snapshot/status — returns an actual snapshot status at the current node:
* Exists — the snapshot exists/has been downloaded;
* NotExists — the snapshot does not exists/has not been downloaded yet;
¢ Failed — failed to unpack or verify a snapshot;
* Verified — the snapshot has been verified successfully.
GET /snapshot/genesis-config — returns a configuration of a new network genesis block;

POST /snapshot/swap-state — freezes operation of the mode and switches its state with the snapshot. The
query contains a backup0ldState parameter, that defines if the current state should be saved or removed:

21.2. Generation and broadcasting of a snapshot in an operating blockchain 167

Technical description of the Waves Enterprise platform, Release 1.7.0

* true — save the current state in the “PreSnapshotBackup™* directory of the node;

e false — remove the current state.

21.4 Network messages

* SnapshotNotification(sender) — the message of a node about availability of a snapshot, is sent with
a node public key;

* SnapshotRequest (sender) — request of a node for downloading of a snapshot, is also sent with a node
public key.

See also
Node start with a snapshot Precise platform configuration: snapshot
— .. only:: html

Technical description of the platform

21.4. Network messages 168

CHAPTER

TWENTYTWO

SMART CONTRACTS

Smart contract is a separate application which saves its entry data in the blockchain, as well as the output
results of its algorithm. The Waves Enterprise blockchain platform supports development and usage of
Turing complete smart contracts for creation of high-level business applications.

Smart contracts can be developed in any programming language and do not have any restrictions for their
internal logic. In order to split startup and performance of a smart contract and the blockchain platform
itself, smart contracts start and work in Docker containers.

When a smart contract starts in a blockchain network, nobody can change, spoof it or restrict its operation
without interference with the entire network. This aspect allows to provide security of business applications.

A smart contract has an access to the node state for data exchange via gRPC and REST API interfaces.

Each network participant can create and call smart contracts. A developed smart contract is packed in
a Docker image which is stored in the open Waves Enterprise registry. This repository is based on the
Docker Registry technology, every smart contract developer has an access to it. In order to upload your
smart contract into the registry, contact with the Waves Enterprise technical support service. After approval
of your request, your smart contract will be uploaded into the registry, you will be able to call the smart
contract with the use of the platform client or a REST API query to your node.

If you are going to use smart contracts in your own private blockchain network, you have to create your own
registry for smart contract uploading and calling.

The general chart of smart contract operation is provided below:

22.1 Development and installation of smart contracts

Practical instructions on development of smart contracts, as well as an example of a smart contract in Python
are listed in the article Development and usage of smart contracts.

A participant developing smart contracts should have the contract developer permission in the network.
This permission allows a participant to upload and call smart contracts, as well as to restrict operation of
his own smart contracts and change their code.

Development of a smart contract starts with preparation of a Docker image which contains a ready smart
contract code, its Dockerfile and, in case of usage of a smart contract with the gRPC interface for data
exchange with the node, all required protobuf files.

The prepared image is built with the use of the build utility of the Docker package, and after this is upload
into the registry.

In order to install and work with smart contracts, you have to set up the docker-engine section of the node
configuration file. If your node work in the Waves Enterprise Mainnet, it already has the pre-set parameters

169

https://registry.wavesenterprise.com/
https://docs.docker.com/registry/
https://support.wavesenterprise.com/servicedesk/customer/portal/3

Technical description of the Waves Enterprise platform, Release 1.7.0

! WE BROADCASTING e WE MINING NODE e
! NODE : ! :

UTX POOL UTX FOOL CONTRACT EXECUTOR DOCKER REGISTRY

download image @
—_————>

CallContract tx

E E __ Callcontractix
tx broadcast _\/_)
>
H H ExecutedContract tx a
. | «—

| E 5 | A
change state change state
: : 5
| : E £
| I = 2
: | 2 ®
i i [=3
i i o
@ ' ' @ o
5 R L 2N] @
RocksDB i i RocksDB ;
! ! ! DOCKER RUNTIM .
CallContract tx | get state .
— ! 5] />
REST API/gRPC REST AP1/gRPC SMART CONTRACT

for installing of smart contracts from the open repository, as well as the recommended parameters for optimal
operation of smart contracts.

Installation of smart contracts in the blockchain is performed with the use of the 103 CreateContract Trans-
action. This transaction should contain a link to the image of the smart contract in the registry. It is
recommended to send the last versions of transactions while working with smart contracts.

In private networks, the 103 transaction allows to install Docker images of smart contracts not only from
repositories stated in the docker-engine section of the node configuration file. If you need to install a
smart contract from a registry not included in the list of the configuration file, type the full address of a
smart contract in the registry you have created in the name field of the 103 transaction. An example of 103
transaction fields is provided in its description.

Upon receiving of a 103 transaction, the node downloads the image of a smart contract stated in the image
field. After that, the downloaded image is checked and started in the Docker container.

22.2 Call of a smart contract and saving of results of its operation

A smart contract is called for operation by a network participant with the use of the 104 CallContract
Transaction. This transaction transfers the ID of the Docker container of the smart contract, as well as its
input and output parameters in ‘key-value’ pairs. The container starts if it has not been started before.

Results of a smart contract operation are stored in its state with the use of the 105 FExecutedContract
Transaction.

22.2. Call of a smart contract and saving of results of its operation 170

Technical description of the Waves Enterprise platform, Release 1.7.0

22.3 Restriction of smart contract calls

In order to disable calls of a definite smart contract in the blockchain, send the 106 Disable Contract Transac-
tion with the ID of the smart contract Docker container. This transaction can be sent only by the developer
of this smart contract with the non-expired contract developer permission.

When disabled, a smart contract becomes unavailable for further calls. The data of disabled smart contracts
is stored in the blockchain and can be obtained with the use of gRPC and REST API methods.

22.4 Updating of smart contracts

If you have changed the code of your smart contract, update it. To do this, upload your smart contract
into the Waves Enterprise registry by sending a request for updating of your smart contract to the Waves
Enterprise technical support service.

Then send the 107 UpdateContract Transaction to your node. The contract to be updated should not be
disabled with a 106 transaction.

After updating of the smart contract, mining nodes of the blockchain download it and check correctness of
its operation. After that, information about update of the smart contract is included into its state with the
use of the 105 transaction containing data of the corresponding 107 transaction.

Hint: A certain smart contract can be updated only by a participant who has sent a 103 transaction for
this smart contract and has the contract developer permission.

22.5 Validation of smart contracts

The WE blockchain platform supports three smart contract validation policies to provide its additional
integrity control. This opportunity is available under following conditions:

e The 162 soft fork is activated in the network;
* The network includes one or more participants with the contract validator permission;
e The version 4 103 and 107 transactions are used to create and update smart contracts.

The validation policy is configured with the use of the validationPolicy.type field of corresponding
transaction.

Available validation policies:

* any - the general validation policy is kept in the network: to mine the updated smart contract, the
miner signs the corresponding 705 transaction. Also, this parameter is set if there are no registered
validators in the network.

* majority - a transaction is considered valid if it is confirmed by the majority of validators: 2/3 of the
total number of registered addresses with the contract validator permission.

* majorityWithOneOf (List [Address]) - the transaction is considered valid if the majority of validators
is collected, among which there is at least one of the addresses included in the parameter list. The
addresses included in the list must have a valid contract validator permission.

22.3. Restriction of smart contract calls 171

Technical description of the Waves Enterprise platform, Release 1.7.0

Warning: If the validation policy majorityWithOneOf (List[Address]) is selected, the address list
must contain at least one address; passing an empty list is not allowed.

22.6 Parallel operation of smart contracts

The Waves Enterprise platform allows to run multiple smart contracts simultaneously. This option is sup-
ported only by smart contracts that use the gRPC interface for data exchange.

Concept of parallel operation of smart contracts:

1. A smart contract developer enables the async-factor parameter in the code of his smart contract.
This parameter defines the maximum allowed number of simultaneous transactions within one smart
contract.

2. Upon start, the smart contract transfers the async-factor value to the node.

3. When operation of smart contracts begins, transactions for call of smart contracts are transferred from
the UTX pool into the buffer for unprocessed smart contract transactions up to its filling.

4. Transaction in the buffer are divided into groups depending on smart contract IDs. Only one group
of transactions can operate simultaneously, maximum number of transaction corresponds with the
async-factor parameter.

5. When a next smart contract starts its operation, one cell in the transaction buffer becomes free. At
the same time, a cell is blocked in case a transaction is transferred from the UTX pool. That means,
operations of the buffer filling and processing of contract calls are performed simultaneously, thus
avoiding time gaps while transferring new transactions.

The value of the async-factor parameter can be set in advance in the interval from 1 to 999, as well as to
be calculated dynamically. You can set a fixed value of this parameter as a constant, but it is recommended
to set a calculable value. For instance, a contract can request a number of free processor cores and pass
this value as async-factor. This number will be used for parallel processing of transactions with a definite
smart contract.

If the async-factor parameter is not defined, all transactions with a smart contract will be processed in a
consecutive way.

Parallel operation of smart contracts is illustrated with the chart below:

The code logic of a smart contract, as well as its programming language, should take into account the
peculiarities of parallel operation of smart contracts. For instance, if a smart contract containing a function
of increment of a variable upon every smart contract call transaction operates simultaneously, its result will
be incorrect, because a common authorization key is used for each smart contract call.

22.7 API methods available for smart contracts

In order to exchange data with smart contracts and nodes, the platform provides the gRPC and REST API
methods. Usage of these methods allows to perform a wide range of operations with the blockchain.

Learn more:

22.6. Parallel operation of smart contracts 172

Technical description of the Waves Enterprise platform, Release 1.7.0

UTX Pool
Pulling Buffer

g — &

Grouping
preprocessing
Vi
Group 1 Group 2 Group 3

Contract Contract Contract

14 async boundary iComract Contract Contract

22.7. API methods available for smart contracts 173

Technical description of the Waves Enterprise platform, Release 1.7.0

22.7.1 gRPC services used by smart contracts

General instructions on usage of gRPC for development of smart contracts are provided in the article Ezample
of a smart contract with gRPC.

Versions of smart contract API

The gRPC methods used by smart contracts form the API defined by the protobuf files. To clearly define
new methods and make changes to existing ones, API versioning is provided. Thanks to the version number
assigned, a node determines the appropriate set of methods to use when executing a smart contract.

The actual version of the gRPC API for the blockchain platform version is contained in the api_version.proto
file. Smart contracts that require an API version higher than that of the mining node are ignored during
mining.

The apiVersion fields in the version 4 103 CreateContract Transaction and 107 UpdateContract Transaction
transactions are provided for creating and updating smart contracts. These fields point to the version of the
APT used by the smart, contract for the mining node.

The table below provides API versions corresponding with the versions of the blockchain platform:

API version | Platform version
1.0 1.6.0 and earlier
1.1 1.6.2
1.4 1.7.0

Protobuf files of the methods

Smart contracts that use the gRPC for data exchange with the node can use the services that are listed in
the protobuf files with names starting with contract:

contract address’service.proto

A set, of methods for obtaining of participant addresses from the node keystore and data stored in addresses.

"*GetAddresses” " - the method for obtaining of all addresses of participants, whose key pairs are stored in
the node keystore. The method returns the addresses string array.

**GetAddressData* - the method for obtaining of all data stored at a definite address with the use of the
transaction 72. The method query contains following parameters:

* address - the address containing data to be obtained;

e 1limit - a limit of number of data blocks to be obtained;

e offset - number of data blocks to be missed in the method response.
The method returns the DataEntry array containing data stored at the address.

" *GetAssetBalance™* - method for obtaining a current asset balance for a definite smart contract user. The
method request includes following parameters:

¢ address - the address with the balance to be displayed;
* assetId - asset identifier. This parameter is left blank for WEST.

22.7. API methods available for smart contracts 174

Technical description of the Waves Enterprise platform, Release 1.7.0

contract contract service.proto

A set of methods for work with smart contracts.

**Connect’* - the method for connection of the smart contract to the node. The method query should
contain following parameters:

* connection_id - the connection identifier of the smart contract (see Authorization of smart contracts
with gRPC);

¢ async_factor - the maximum number of simultaneously processed transactions of the smart contract
(see Parallel operation of smart contracts).

** CommitExecutionSuccess' * - the method for obtaining of a result of a successful of a smart contract with
a definite ID and transferring of this result to the node.

N

** CommitExecutionError® * - the method for obtaining of an error occurred as a result of operation of a
smart contract with a definite ID and transferring of this error to the node.

**GetContractKeys' " - the method for obtaining of results of operation of a smart contract with a definite
ID. The method query contains the following data:

e contract_id - smart contract identifier;
e limit - a limit of number of data blocks to be obtained;
e offset - number of data blocks to be missed in the method response;
* matches - an optional parameter for a regular expression for sorting of keys.
The method response returns the Entries array containing the results of a smart contract operation.

**GetContractKey' * - the method for obtaining of a definite result of a smart contract operation according
to the key of this result. The method query contains the following data:

e contract_id - smart contract identifier;
* key - the required key.

The method response returns the entry data array which contains the result of smart contract operation
according to the required key.

contract crypto’service.proto

A set of encryption and decryption methods. See details in the article gRPC: encryption and decryption
methods.

contract permission ‘service.proto

A set of methods for obtaining of information about permissions of participants.

**GetPermissions” * - the method for obtaining of a list of all address permissions valid at the
moment of the query transfer. The method query contains the following data:

¢ address - the required address;
* timestamp - the Uniz Timestamp (in milliseconds) for the required moment of time.

The response of the method returns the roles array containing permissions for the required
address and the entered timestamp.

22.7. API methods available for smart contracts 175

Technical description of the Waves Enterprise platform, Release 1.7.0

.

" *GetPermissionsForAddresses™ * - the method for obtaining of all permissions valid at the moment of the
query transfer for multiple addresses. The method query contains the following data:

* addresses - a string array containing required addresses;
* timestamp - the Uniz Timestamp (in milliseconds) for the required moment of time.

The method response returns an address_to_roles array containing permissions for each required address,
as well as the entered timestamp.

contract pki'service.proto

A set of methods for generation and checking of electronic signatures. See details in the article gRPC:
generation and checking of data electronic signatures (PKI).

contract privacy service.proto

A set of methods for obtaining of information about confidential data groups, as well as for work with
confidential data.

Learn more about confidential data exchange and access groups in the article Confidential data exchange.

.

** GetPolicyRecipients® * - the method for obtaining of addresses in a confidential data group with a definite
policy_id. The method response returns a recipients string array which contains addresses of confidential
data group participants.

.

**GetPolicyOwners®* - the method for obtaining of owners of a confidential data group with a definite
policy_id. The response of the method returns the owners string array, which contains addresses of
confidential data group owners.

" *GetPolicyItemData’ * - the method for obtaining of a confidential data package according to its identifi-
cation hash. This method is available if the address of the method caller belongs to the confidential data

group.

The method query contains a confidential group identifier policy_id and an identifying hash of required
confidential data item_hash. The response of the method returns the data string containing a hash of a
required confidential data package.

**GetPolicyItemInfo' * - the method for obtaining of information about a confidential data package according
to its identification hash. This method is available if the address of the method caller belongs to the
confidential data group.

The method query contains a confidential group identifier policy_id and an identifying hash of required
confidential data item_hash. The method response returns the following data:

e sender - an address of confidential data sender;
e policy_id - a confidential data group identifier;
* type - type of confidential data (file);

e info - an array containing a file data: filename - name of the file; size - size of the file; timestamp
- a Uniz Timestamp (in milliseconds) for uploading of the file to the network; author - author of the
file; comment - an optional comment to the file;

* type - type of confidential data (file).

22.7. API methods available for smart contracts 176

Technical description of the Waves Enterprise platform, Release 1.7.0

contract transaction 'service.proto

A set of methods for obtaining of information about transactions that have been sent to the blockchain. See
details in the article gRPC: information aboul transaction according to their IDs.

contract util service.proto

This protobuf file contains the **GetNodeTime'* method, which is used for obtaining of a node current
time. The method returns the current node time in two formats:

* system - system time of the node PC;
* ntp - network time.

See also

Smart contracts

sc-rest,

Development and usage of smart contracts

General platform configuration: execution of smart contracts

22.7.2 REST API methods available for smart contracts
General instructions on development of smart contracts with the use of REST API are provided in the article
Ezample of a smart contract with the use of REST API.
Smart contracts that use the REST API interface for data exchange can use following methods:
** Addresses' * method set:
* GET /addresses
GET /addresses/publicKey/{publicKey}
GET /addresses/balance/{address}
GET /addresses/data/{address}
GET /addresses/data/{address}/{key}
**Crypto" ' method set:

* POST /erypto/encryptSeparate
o POST /erypto/encryptCommon
o POST /erypto/decrypt
**Privacy’ * method set:
* GET /privacy/{policy-id} /getData/{policy-item-hash}
* GET /privacy/{policy-id} /getInfo/{policy-item-hash}
* GET /privacy/{policy-id}/hashes
* GET /privacy/{policy-id} /recipients
* *Transactions' * method set:

* GET /transactions/info/{id}

22.7. API methods available for smart contracts 177

Technical description of the Waves Enterprise platform, Release 1.7.0

* GET /transactions/address/{address} /limit/{limit}
**Contracts’ * method set:

* GET /internal/contracts/{contractld}/{key}

* GET /internal/contracts/executed-ta-for/{id}

* GET /internal/contracts/{contractld}

* GET /internal/contracts

To ensure a better performance, smart contracts can use the Contracts methods with a dedicated route
/internal/contracts/. Endpoints of this route are identical to the conventional methods of the Contracts
group.

**PKI'" method group:

* PKI /verify
See also
Smart contracts
gRPC services used by smart contracts
Development and usage of smart contracts
General platform configuration: execution of smart contracts
See also

Development and usage of smart contracts

General platform configuration: execution of smart contracts

22.7. API methods available for smart contracts 178

CHAPTER

TWENTYTHREE

TRANSACTIONS OF THE BLOCKCHAIN PLATFORM

Transaction is a separate operation in the blockchain changing the network state and performed on behalf
of a participant. By sending a transaction, the participant sends a request to the network with the set of
data needed for the corresponding change of the state.

23.1 Signing and sending of transactions

Prior to signing and sending of transactions, a participant generates a digital signature for it. To do this, he
uses a private key of his account. Transaction signing can be done in three ways:

¢ with the use of the blockchain platform client;
 with the use of the REST API method (see REST API: transactions);
e with the use of the JavaScript SDK.

The transaction signature is inserted into the proofs field while sending the transaction into the blockchain.
As arule, this field contains one signature of the participant who sent the transaction. But this field supports
up to 8 signatures: in case of transaction signing by a smart account, filling of an atomic transaction or
smart contract broadcasting.

After signing, the transaction is sent into the blockchain. This can be done in three aforementioned ways,
as well as with the use of the gRPC interface (see gRPC: sending of transactions into the blockchain)

23.2 Processing of transactions in the blockchain

After obtaining of a transaction, the node validates it in the following way:

1. Timestamp correspondence check: a transaction timestamp should derive from a current block times-
tamp for not more than 2 hours before or 1,5 hours after it.

2. Transaction type and version check: if support of such transactions type and versions has been activated
in the blockchain (see Activation of blockchain features).

3. Correspondence of transaction fields with a defined data type;
4. Sender balance check: if balance is sufficient for fee payment;
5. Transaction signature check.

If a transaction is not validated, the node declines it. In case of successful validation, a transaction is added
to the unconfirmed transaction (UTX) pool, where it is awaiting the next mining round for broadcasting in
the blockchain. Together with transfer of this transaction into the UTX pool, the node sends it to other
nodes of the network.

179

Technical description of the Waves Enterprise platform, Release 1.7.0

Each microblock has a limit of incoming transactions, each separate transaction can be transferred from the
UTX pool not at once. During existence of a transaction in the UTX pool, a transaction can become invalid.
For instance, its timestamp is not more corresponding with the current block timestamp, or a transaction
transferred into the blockchain has decreased a sender balance and made it insufficient for payment of a
transaction fee. In this case, a transactions will be declined and removed from the UTX pool.

After adding of a transaction into a block, the transaction changes the blockchain state. After this, transac-
tion is considered executed.

Detailed information about transactions of the Waves Enterprise blockchain platform:

23.2.1 Description of transactions

The Waves Enterprise blockchain platform supports 28 types of transactions. Each of them contains its own
set of data to be sent into the blockchain.

Requests and responses passed via the node REST API interface within the framework of each transaction,
have JSON format. Requests and responses passed via the node gRPC' interface, are defined by corresponding
proto schemes. JSON models of transaction requests and responses are stated below.

Hint: In case you have protected the keypair of your node with a password while generating the account,
set the password of your keypair in the password field of a transaction.

1. Genesis Transaction
First transaction of a new blockchain which performs first attachment of balance to addresses of created
nodes.

This transaction does not require signing, that is why it is only broadcasted. Transaction has the only
version.

Transaction data structure

Field Data type | Description

type Byte Transaction number (1)

id Byte Transaction identifier

fee Long WE Mainnet transaction fee Mainnet

timestamp | Long The Unix Timestamp of a transaction (in milliseconds)
signature ByteStr Genesis block signature

recipient ByteStr Address of recipient of distributed tokens

amount Long Amount of tokens

height Int Height of transaction execution. For the first transaction — 1

23.2. Processing of transactions in the blockchain 180

Technical description of the Waves Enterprise platform, Release 1.7.0

3. Issue Transaction

A transaction initiating issue of tokens.

Transaction data structures

Signing:
Field Data type Description
type Byte Transaction number (3)
version Byte Transaction version
name Array[byte] | An arbitrary name of transaction
quantity Long Number of tokens to be issued
description | Array[byte] | An arbitrary description of a transaction (in base58 format)
sender ByteStr Address of sender of distributed tokens
password String Keypair password in the node keystore — optional field
decimals Byte Digit capacity of a token in use (WEST — 8)
reissuable Boolean Re-issuability of a token
fee Long WE Mainnet transaction fee
Broadcasting:
Field Data type Description
type Byte Transaction number
id Byte Transaction identifier
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds) —
optional field
proofs List(ByteStr) Array of transaction proofs
version Byte Transaction version
assetld Byte Identifier of an asset to be issued
name Array[byte] An arbitrary name of transaction
quantity Long Number of tokens to be issued
reissuable Boolean Re-issuability of a token
decimals Byte Digit capacity of a token in use (WAVES — 8)
description Array[byte] An arbitrary description of a transaction
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
script Array[Byte] Script for validation of a transaction (an optional field)
height Int Height of transaction execution
JSON:

23.2. Processing of transactions in the blockchain 181

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 2

Signing:

{

"type": 3,

"version":2,

"name": "Test Asset 1",

"quantity": 100000000000,

"description": "Some description",

"sender": "3FSCKyfFo3566zwilJjSFLBwKvd826KXUaqgR",
"password": "",

"decimals": 8,

"reissuable'": true,

"fee": 100000000

Broadcasting:

{

—"NqZGcbcQ82FZrPh6aCE juo9InNnkPTvyhrNg329YWydaYcZTywXUwDxFAknTMEGuFrEndC jXBtrueLWaqbJhpeiG" 1,

"type": 3,

"id": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHIpWrcxcmrhB",

"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFtheUJ",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,

"timestamp'": 1549378509516,

"proofs": [

"version": 2,

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"name": "Token Name",

"quantity": 10000,

"reissuable'": true,

"decimals": 2,

"description": "SmarToken",

"chainId": 84,

"script": "base64:AQa3b8tH",

"height": 60719

4. Transfer Transaction

A transaction of transfer of tokens from one address to another.

Transaction data structures

Signing:
Field Data type | Description
type Byte Transaction number (4)
version Byte Transaction version
sender ByteStr Address of a transaction sender
password | String Keypair password in the node keystore — optional field
recipient | ByteStr Address of recipient of tokens
amount Long Amount of tokens
fee Long WE Mainnet transaction fee

23.2. Processing of transactions in the blockchain

182

Technical description of the Waves Enterprise platform, Release 1.7.0

Broadcasting:
Field Data type Description
senderPub- PublicKey- Transaction sender public key
licKey Account
amount Long Amount of tokens
fee Long WE Mainnet transaction fee
type Byte Transaction number (4)
version Byte Transaction version
attachment | Byte Comment to a transaction (in base58 format) — op-

tional field
sender ByteStr Address of a transaction sender
feeAssetld Byte Identifier of a token for fee payment (optional field)
proofs List(ByteStr) | Array of transaction proofs (in base58 format)
assetld Byte ID of a token to be transferred (optional field)
recipient ByteStr Tokens recipient address
id Byte Transaction identifier
timestamp Long The Unix Timestamp of a transaction in millisec-
onds (optional field)
JSON:

Version 2

Signing:

{

"type": 4,

"version": 2,

"sender": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimZX",
”PaSSWOI‘d" : nn R

"recipient": "3M6dRZXaJY9oMA3fJKhMALyYKt13DlaimZX",
"amount": 40000000000,

"fee": 100000
}
Broadcasting:
{

"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"amount": 200000000,

"fee": 100000,

"type" . 4’

"version": 2,

"attachment": "3uaRTtZ3taQtRSmquqeC1DniK3Dv",

"sender": "3GLWx8yUFcNSL3DERS8kZyE4TpyAyNiEYsKG",

"feeAssetId": null,

"proofs": [

—"2hRxJ2876CdJ498UCPErNfDSYdt 2mTK4XUnmZNgZiq63RupJs5WTrAqR46c4rL0dq4toBZk2tSYCeAQWEQyi72]

"
—

]’
"assetId": null,
"recipient": "3GPtjbosoYqHpyfmsFv7BMiyKsVzbG1lykfL",

6

(continues on next page)

23.2.

Processing of transactions in the blockchain

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"id": "757aQzJiQZRfVRuJNnP3L1d369H20T jUEazwtYxGngCd",
"timestamp": 1558952680800

Version 3

Signing:

{
"type" . 4’
"version": 3,
"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
Hpasswordll : nn R
"recipient": "3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"amount": 40000000000,
"fee'": 10000000

Broadcasting:

{
"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"amount" : 10,
"fee" : 10000000,
"type" 2 4,
"version" : 3,
"atomicBadge" : {
"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"
1,
"attachment" : "",
"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"feeAssetId" : null,
"proofs" : [

S,
"assetId" : null,
"recipient" : "3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"id" : "2wCEMREFbgk318hFFaNGsgFzyjZHuCrtwSnpK35qghiw4",
"timestamp" : 1619186861204,
"height" : 861644

—"2vbAImwzQw2FCtozcewxJVExoHxf97BTNdGuaeSATV4vEHZ3XYA4Z7nXGsSnf18aesnAWTKWCE zwMbyGpWEyGM1

(£

5. Reissue Transaction

Transaction for token re-issue.
Transaction data structures

Signing:

23.2. Processing of transactions in the blockchain

184

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type | Description
type Byte Transaction number (5)
version Byte Transaction version
quantity Long Amount of tokens to be re-issued
sender ByteStr Address of a transaction sender
password | String Keypair password in the node keystore — optional field
assetld Byte ID of a token to be re-issued — optional field
reissuable | Boolean Re-issuability of a token
fee Long WE Mainnet transaction fee
Broadcasting:
Field Data type Description
senderPub- | PublicKey- Transaction sender public key
licKey Account
quantity Long Amount of tokens to be re-issued
sender ByteStr Address of a transaction sender
chainld Byte Identifying byte of the network (Mainnet - 87 or V)
proofs List(ByteStr) | Array of transaction proofs (in base58 format)
assetId Byte ID of a token to be re-issued — optional field
fee Long WE Mainnet transaction fee
id Byte Transaction identifier
type Byte Transaction number (5)
version Byte Transaction version
reissuable Boolean Re-issuability of a token
timestamp Long The Unix Timestamp of a transaction (in millisec-
onds) — optional field
height Int Height of transaction execution
JSON:
Version 2
Signing:
{
"type": b,
"version":2,
"quantity": 556105,
"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"password": "",
"assetId": "GUAMZAGRshxyPvt9W7aoWiUiB6N73yLQMMfiRQYXdWZh",
"reissuable'": true,
"fee": 100000000
}
Broadcasting:
{

"senderPublicKey" :
"quantity" : 556105,

"7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

(continues on next page)

23.2. Processing of transactions in the blockchain

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"fee" : 100000000,

"timestamp" : 1619187184206,
"height" : 861645

"type" : 5,

"version" : 2,

"reissuable" : true,

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"chainId" : 86,

"proofs" : [
—"5ahD78wciu8YTsLoxolXRghJWAGG7At7ePiBWTNzdkvX7cViRCKRL] jjPTGCoAH2mdGQK911JiY1wh18eh4h7p
o,

"assetId" : "6UAMZA6RshxyPvtOW7aoWiUiB6N73yLQMMfiRQYXdWZh",

"id" : "8T9jJUusN5KBexxDUX1XBjoDydXGP34zWH7(Qvp5mnmES",

iy

6. Burn Transaction

Transaction for burning of tokens: decreases amount of tokens at the sender address, and, with this, decreases

a total amount of tokens in the blockchain. The burned tokens cannot be restored.

Transaction data structures

Signing:
Field Data Description
type
type Byte Transaction number (6)
version Byte Transaction version
sender ByteStr | Address of a transaction sender
password String Keypair password in the node keystore — optional field
assetId Byte ID of a token to be burnt — optional field
quantity Long Number of tokens to be burnt
fee Long WE Mainnet transaction fee
attach- Byte Comment to a transaction (in base58 format) — optional
ment field
Broadcasting:

23.2. Processing of transactions in the blockchain

186

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description
senderPub- | PublicKey- Transaction sender public key
licKey Account
amount Long Number of tokens to be burnt
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore — optional
field
proofs List(ByteStr) | Array of transaction proofs (in base58 format)
assetId Byte ID of a token to be burnt — optional field
fee Long WE Mainnet transaction fee
id Byte Transaction identifier
type Byte Transaction number (6)
version Byte Transaction version
timestamp Long The Unix Timestamp of a transaction (in millisec-
onds) — optional field
height Int Height of transaction execution
JSON:
Version 2
Signing:
{
"type": 6,
"version": 2,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"quantity": 1000,
"fee": 100000,
"attachment": "string"
}
Broadcasting:
{
"senderPublicKey": "Fbt5fKHesn(G2CXmsKf4TC8vOoB7bsy2AY56CUopabH3",
"amount": 1000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"chainId": 84,
"proofs": [
—"kzTwsNX jJkzk6dpFFZZXyeimYo6iLTVbCnCXBD4xBtyrNjysPqZfGKkONdJUTP3xeAPhtEgU9hsdwzRVo1hKMgy
—" 1,
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg",
"fee": 100000,
"id": "3yd2HZq7sgun7GakisLH88UeKcpYMUEL4sy57aprANSE",
"type": 6,
"version": 2,
"timestamp": 1551448489758,
"height": 1190
}

23.2. Processing of transactions in the blockchain 187

Technical description of the Waves Enterprise platform, Release 1.7.0

8. Lease Transaction

Leasing of tokens to another address. The tokens in leasing are taken into account in a generating balance

of a recipient after 1000 blocks.

Leasing of tokens can be carried out for increasing of probability of node appointment as a next round miner.
As a rule, a recipient shares his revenue for block generation with an address which has granted him tokens

for leasing.

Tokens in leasing remain blocked at a sender address. Leasing can be cancelled with the use of leasing cancel

transaction.

Transaction data structures

Signing:
Field Data type | Description
type Byte Transaction number (8)
version Byte Transaction version
sender ByteStr Address of a transaction sender
password | String Keypair password in the node keystore — optional field
recipient | ByteStr Address of recipient of tokens
amount Long Number of tokens for leasing
fee Long WE Mainnet transaction fee
Broadcasting:
Field Data type Description
senderPub- | PublicKey- Transaction sender public key
licKey Account
amount Long Number of tokens for leasing
sender ByteStr Address of a transaction sender
proofs List(ByteStr) | Array of transaction proofs (in base58 format)
fee Long WE Mainnet transaction fee
recipient ByteStr Address of recipient of tokens
id Byte Transaction identifier
type Byte Transaction number (8)
version Byte Transaction version
height Int Transaction version
timestamp Long The Unix Timestamp of a transaction (in millisec-
onds) — optional field
JSON:

23.2. Processing of transactions in the blockchain

188

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 2

Signing:

{

"type": 8,

"version": 2,

"sender": "3N9vL3apA4j2L5PojHWSTYmfHx9Lo2ZaKPB",
"password": "",

"recipient": "3N1ksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",
"amount": 1000,

"fee": 100000
}
Broadcasting:
{

"proofs": [
—"5jvmWKmUBOHNnxXFXNAd9X41zmiB5fSGoXMirsaJ9tNeyiCAJmjm7MR48g789VucckQw2UExaVXfhsdEBuUrchvrq
(_}H]’

"fee": 100000,

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUopabH3",
"amount": 1000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"recipient": "3N1lksBqc6uSksdiYjCzMtvEpiHhS1JjkbPh",
"id": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",
"type": 8,

"version": 2,

"timestamp": 1551449299545,

"height": 1190

9. LeaseCancel Transaction

Cancelling of leasing of tokens that have been leased with the use of a transaction with a definite ID. The
lease structure of this transaction is not filled: the node fills it automatically upon obtaining of transaction

data.

Transaction data structures

Signing:
Field Data type | Description
type Byte Transaction number (9)
version Byte Transaction version
fee Long WE Mainnet transaction fee
sender ByteStr Address of a transaction sender
password | String Keypair password in the node keystore — optional field
txId Byte ID of a leasing transaction
Broadcasting:

23.2. Processing of transactions in the blockchain 189

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description
senderPub- | PublicKey- Transaction sender public key
licKey Account
leaseld Byte ID of a leasing transaction
sender ByteStr Address of a transaction sender
chainld Byte Identifying byte of the network (Mainnet — 87 or V)
proofs List(ByteStr) | Array of transaction proofs (in base58 format)
fee Long WE Mainnet transaction fee
id Byte ID of a leasing cancel transaction
type Byte Transaction number (9)
version Byte Transaction version
timestamp Long The Unix Timestamp of a transaction (in millisec-
onds) — optional field
height Int Height of transaction execution
JSON:
Version 2
Signing:
{
"type": 9,
"version": 2,
"fee": 100000,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": "",
"txId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp"
}
Broadcasting:
{

"senderPublicKey": "Fbt5fKHesnQG2CXmsKf4TC8vOoB7bsy2AY56CUopa6H3",

"leaseId": "6Tn7ir9MycHW6Gq2F2dGok2stokSwXJadPh4hW8eZ8Sp",
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"chainId": 84,

"proofs": [
NEE
"fee": 100000,

—"2Gns72hralbyay3eiWeyHQEA1wTqiiAztaL jHinEYX91FEv62HFW38Hq89GnsEJFHUvo9KHYtBBrb8hgTAOwWNT]]

"id": "9vhxB2ZDQcqiumhQbCPnAoPBLuir727qgJhFeBNmPwmu",

"type": 9,

"version": 2,

"timestamp": 1551449835205,

"height": 1190

23.2. Processing of transactions in the blockchain

190

Technical description of the Waves Enterprise platform, Release 1.7.0

10. CreateAlias Transaction

Creation of an alias for a sender address. An alias can be used in transactions as a recipient identifier.

CTpyKTypbI JJAHHBIX TPAH3AKIIUT

Signing:
Field Data type | Description
type Byte Transaction number (10)
version Byte Transaction version
fee Long WE Mainnet transaction fee
sender ByteStr Address of a transaction sender
password | String Keypair password in the node keystore, optional field
alias Byte An arbitrary alias
Broadcasting:

Data structure of a query for transaction broadcasting:

Field Data type Description
type Byte Transaction number (10)
id Byte ID of a CreateAlias transaction
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- | Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),
optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
alias Byte An arbitrary alias
height Byte Height of transaction execution
JSON:
Version 2
Signing:
{
"type": 10,
"version": 2,
"fee": 100000000,
"sender": "3NwTvbW7TMckBc785XjtGTUfHmcesaWBelA",
"password": "",
"alias": "1@k1l_kv29"
}
Broadcasting:
{
"senderPublicKey" : "C4eRfdUFaZMRkfUp91bYr7uMgdBRnUfAxuAjetxmK7KY",
"sender" : "3NwTvbW7TMckBc785XjtGTUfHmcesaWWBelA",

(continues on next page)

23.2. Processing of transactions in the blockchain

191

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"proofs" : [
—"3fhJztBNnTD jppmqgi4GugAYolaSimzZhVhPdnNsqYqCEyLLHf zgb75psRPntHD4uBZgk8 jByFPOmuwx2Ezsdg59
o,
"fee" : 100000000,
"alias" : "1@k1_kv29",
"id" : "AavgVzV7avPMpERro6YqikwFESAgG2wViprtPJUtXP6F",
"type" : 10,
"version" : 2,
"timestamp" : 1608737444468,
"height" : 595942
}

11. MassTransfer Transaction

Transfer of tokens to several recipients (1 - 100 addresses). A transaction fee depends on a number of
addresses.

CTpyKTyphI JAHHBIX TPAH3AKIIAN

Signing:

Field Data Description

type

type Byte Transaction number (11)

sender | ByteStr | Address of a transaction sender

pass- String Keypair password in the node keystore, optional field

word

fee Long WE Mainnet transaction fee

version | Byte Transaction version

trans- List List of recipients with fields recipient” * and " ~amount separated

fers with a comma

recipi- ByteStr | Address of recipient of tokens

ent

amount | Long Number of tokens to be transferred to an address
Broadcasting:

23.2. Processing of transactions in the blockchain 192

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description

senderPub- PublicKey- Transaction sender public key

licKey Account

fee Long WE Mainnet transaction fee

type Byte Transaction number (11)

transfer- Byte Number of recipient addresses

Count,

version Byte Transaction version

total Am- Byte Total number of tokens to be transferred

ount

attachment | Byte Comment to a transaction (in base58 format), optional field

sender ByteStr Address of a transaction sender

proofs List(ByteStr) | Array of transaction proofs (in base58 format)

assetld Byte ID of a token to be transferred, optional field

id Byte ID of a token transfer transaction

transfers List List of recipients with fields recipient™: ~ and ~~amount
separated with a comma

trans- ByteStr Address of recipient of tokens

fers.recipient

trans- Long Number of tokens to be transferred to an address

fers.amount

height Byte Height of transaction execution

Example of the transfers field:

"transfers":
L
{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000 },
{ "recipient": "3N7BA6J9VUBfBRutulMyjF4yKTUEtrRFfHMc", "amount": 100000 }
]
JSON:
Version 2
Signing:
{
"type": 11,
"sender": "3NydXoTq3UgUWbrxsNwEMsliwbbvVEwxoHU",
"password": "",
"fee": 30000000,
"version": 2,
"transfers":
L
{ "recipient": "3MtHszoTn399NfsH3v5foeEXRRrchEVtTRB", "amount": 100000 2},
{ "recipient": "3N7BA6J9VUBfBRutuMyjF4yKTUEtrRFfHMc", '"amount": 100000 }
]
}
Broadcasting:

23.2. Processing of transactions in the blockchain

193

Technical description of the Waves Enterprise platform, Release 1.7.0

"timestamp" : 1627643861044,
"height" : 1076874

{
"senderPublicKey" : "AMhAY8RMy5(QsPqj58xeMY3fJxTZKx71QztsjDzqWprHo",
"fee" : 30000000,
"type" : 11,
"transferCount" : 4,
"version" : 2,
"totalAmount" : 400000000,
"attachment" : "",
"sender" : "3NydXoTq3UgUWbrxsNwEMs1iwbbvVEwxoHU",
"feeAssetId" : "8beclmhqTiveMeRTHgYr6az12XdqBBtpeV3ZpXMRHESB",
"proofs" : [
—"21hhAMmwze6nLLQ9K6AoU6s cek9Sk5KabR4VggGEfdTVFHonf MGwVTse6qL2f8zZR8DRm7RckMaiki YRt 5XxWEKW
~rl,
"assetId" : "8beclmhqTiveMeRTHgYr6az12XdqBBtpeV3ZpXMRHfSB",
"transfers" : [{
"recipient" : "3NqEjAkFVzem9CGa3bEPhakQc1Sm2G8gAFU",
"amount" : 100000000
b, L
"recipient" : "3NzkzibVRkKUzaRzjUxndpTPvoBz(3iLng3",
"amount" : 100000000
b, L
"recipient" : "3Nnx8cX3UiyfQeC3YQKVRqVr2ewSxrvaDyB",
"amount" : 100000000
b, {
"recipient" : "3NzC4Ex91VBQKfJHPiGhuPEomLg48NMi2ZF",
"amount" : 100000000
1,
"id" : "EvnxFxdYhYxHgQSMhkyLaqgyUDZdnBknfAWEXyqEHtO7",

12. Data Transaction

Transaction for adding, editing and removing of entries in an address data storage. An address data storage

contains data in the ‘key:value’ format.

The size of the address data repository is unlimited, but up to 100 new “key:value” pairs can be added with
a single data transaction. Also the byte representation of the transaction after signing must not exceed 150

kilobytes.

If the data author (the address in the author field) matches the transaction sender (the address in the

sender field), the senderPublicKey parameter is not required when signing the transaction.
Data structure of a query for transaction signing:
CTpyKTypBI JJAHHBIX TPAH3AKIIUN

Signing:

23.2. Processing of transactions in the blockchain

194

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data Description
type
type Byte Transaction number (12)
ver- Byte Transaction version
sion
sender | ByteStr | Address of a transaction sender
pass- String Keypair password in the node keystore,
word optional field
sender- | Pub- Transaction sender public key
Pub- licK-
licKey | eyAc-
count
author | Byte Author address for data to be entered
data List Data list with ““key: *° "“type:
and ‘“value: *° fields sepa-
rated by commas
data.key Byte Record key
data.typeByte Record data type. Possible values:
binary bool integer string and null
(record deletion by its key)
data.valuByte Record value
fee Long WE Mainnet transaction fee
Broadcasting:
Field Data type Description
sender- PublicKey- | Transaction sender public key
PublicKey | Account
sender- PublicKey- | Data author public key
PublicKey | Account
data List Data list with ““key: " "“type: " and " “value: *° fields sepa-
rated by commas
data.key Byte Record key
data.type | Byte Record data type. Possible values: binary bool integer string
and null (record deletion by its key)
data.value | Byte Record value
sender ByteStr Address of a transaction sender
proofs List(ByteStr) Array of transaction proofs (in base58 format)
author Byte Author address for data to be entered
fee Long WE Mainnet transaction fee
id Byte Data transaction ID
type Byte Transaction number (12)
version Byte Transaction version
timestamp | Long The**Unix Timestamp** of a transaction (in milliseconds), op-
tional field

Example of the data field:

"data": [
{
"key": "objectId",

(continues on next page)

23.2. Processing of transactions in the blockchain 195

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type": "string",
"value": "obj:123:1234"
}, L.}
]

JSON:

Version 2

Signing:

{
"type": 12,
"version": 2,
"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
Ilpasswordll . nn R
"senderPublicKey": "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"author": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"data": [

]’
"fee": 150000000

Broadcasting:

{
"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"data" : [

1,

"author" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"fee" : 150000000,

"type" : 12,

"version" : 2,

"authorPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [

(_}ll]’
"id" : "GcDy84oTFf5NQzDtixkfUqiFNZwMaN2vfXqxsbGxumfo",
"timestamp" : 1619187166499,
"height" : 861644

}

—"4wFNmn32NZqGwP4D4aAxCMyigGEVZLWEtqi919pHAK7mC j3sFw7Ekf76g2rr51PZuk5slwz jkKiZArQviWY8uEGq

Nk

23.2. Processing of transactions in the blockchain

196

Technical description of the Waves Enterprise platform, Release 1.7.0

13. SetScript Transaction

A transaction to bind the script to an account or delete the script. An account with a script tied to it is

called a smart account.

The script allows you to verify transactions transmitted on behalf of an account without using the blockchain

transaction verification

mechanism.

CTpyKTyphI JaHHBIX TPAH3AKIIAN

Signing:
Field Data Description
type
type | Byte Transaction number (13)
ver- Byte Transaction version
sion
sender | ByteStr | Address of a transaction sender
pass- | String | Keypair password in the node keystore, optional field
word
fee Long WE Mainnet transaction fee
name | Ar- Script name
ray|Byte
script | Ar- The compiled script is in base64 format. If you leave this field empty (null),
ray|Byte| the script will be detached from the account
Broadcasting:
Field Data type Description
type Byte Transaction number (13)
id Byte ID of a script setting transaction
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),
optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
chainld Byte Identifying byte of the network (Mainnet - 87 or V)
version Byte Transaction version
script Array[Byte] Compiled script in base64 format - optional field
name Array[Byte] Script name
description Byte Comment to a transaction (in base58 format), optional field
height Byte Height of transaction execution
JSON:

23.2. Processing of transactions in the blockchain

197

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 1

Signing:

{
"type": 13,
"version": 1,

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",

"type": 13,

"proofs": [
"]:

"chainId": 84,
"version": 1,

"height": 3805

”PaSSWOI‘d" . nn R

"fee'": 1000000,

"name": "faucet",

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="
}
Broadcasting:
{

"id": "HPDypnQJHJskN8kwszF8rck3E5tQiuiM1fEN42w6PLmt",

"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"senderPublicKey": "Fbt5fKHesn(QG2CXmsKf4TC8vOoB7bsy2AY56CUopabH3",
"fee": 1000000,

"timestamp": 1545986757233,

—"20Q1GYS2dqgh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzo jmR2k jppvGN j4tDPsYPbcDungBaghaudLyMeGFgG

"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"name": "faucet",
"description": "",

14. Sponsorship Transaction

A transaction that establishes or cancels a sponsorship.

The sponsoring mechanism allows addresses to pay fees for script call transactions and transfer transactions
in the sponsor asset, replacing WEST.

CTpyKTyphI JJAHHBIX TPAH3AKIIUT

Signing:
Field Data type | Description
sender ByteStr Address of a transaction sender
assetld Byte Sponsorship asset (token) ID - optional field
fee Long WE Muainnet transaction fee
isEnabled | Bool Set the sponsorship (true) or cancel it (false)
type Byte Transaction number (14)
password | String Keypair password in the node keystore, optional field
version Byte Transaction version
Broadcasting:

23.2. Processing of transactions in the blockchain 198

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description
type Byte Transaction number (14)
id Byte Sponsorship transaction ID
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- | Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
assetld Byte Sponsorship asset (token) ID - optional field
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),
optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
version Byte Transaction version
isEnabled Bool Set the sponsorship (true) or cancel it (false)
height Byte Height of transaction execution
JSON:

Version 1

Signing:

{

"sender": "3JWDUsqyJEkValaivNPP8VCAa5zGuxiwDOt",

"assetId": "G16FvJk9vabwxj(Qswh9CQAhbZzn3QrwgWjwnZB3qNVox",

"fee": 100000000,

"isEnabled": false,

"type": 14,

"password": "1234",

"version": 1
}

Broadcasting:
{

"type": 14,

"id": "Ht6kpnQJHJskN8kwszF8rck3E5tQiuiM1fEN42wGfdk7",

"sender": "3JWDUsqyJEkValaivNPP8VCAabzGuxiwD9t",

"senderPublicKey": "Gt55fKHesnQG2CXmsKf4TC8v90oB7bsy2AY56CUophy89",

"fee": 100000000,

"assetId": "G16FvJk9vabwxjQswh9CQAhbZzn3QrwqWjwnZB3qNVox",

"timestamp": 1545986757233,

"proofs": [
—"BbTfg¥S2dgh8QyN7Vu2tAYaioX5WM6rTSDPGbt4zrWS7QKTzo jmR2k jppvGN j4tDPsYPbcDungBaghaudLyMeGFh7
<"1,

"chainId": 84,

"version": 1,

"isEnabled": false,

"height": 3865
}

23.2. Processing of transactions in the blockchain 199

Technical description of the Waves Enterprise platform, Release 1.7.0

15. SetAssetScript Transaction

A transaction to install or remove an asset script for an address. Asset script allows to verify transactions
involving this or that asset (token) without using the blockchain transaction verification mechanism.

CTpyKTypbl JIAHHBIX TPAH3AKIIUU

JSON:

Signing:
Field Data type Description
type Byte Transaction number (15)
version Byte Asset script transaction version
sender ByteStr Address of a transaction sender
password | String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
script Array[Byte] | Compiled script in base64 format - optional field
assetld Byte Sponsorship asset (token) ID - optional field
Broadcasting:
Field Data type | Description
type Byte Transaction number (15)
id Byte Asset script transaction ID
sender ByteStr Address of a transaction sender
sender- PublicK- Transaction sender public key
Pub- eyAc-
licKey count
fee Long WE Mainnet transaction fee
times- Long The**Unix Timestamp** of a transaction (in milliseconds), optional
tamp field
proofs List(ByteStr)Array of transaction proofs (in base58 format)
version Byte Transaction version
chainId Byte Identifying byte of the network (Mainnet - 87 or V)
assetld Byte Sponsorship asset (token) ID - optional field
script Ar- The compiled script is in base64 format. If you leave this field empty
ray[Byte] | (null), the script will be detached from the account
height Byte Height of transaction execution
Version 1
Signing:
{
"type": 15,

"version": 1,
"sender": "3N9vL3apA4j2L5PojHW8TYmfHx9Lo2ZaKPB",
"password": IHI’

"fee":

100000000,

"script": "base64:AQQAAAAHJIG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"assetId": "7bE3JPwZC3QcN9edctFrLAKYysjfMEk1SDjZx5gitSGg"

23.2. Processing of transactions in the blockchain

200

Technical description of the Waves Enterprise platform, Release 1.7.0

Broadcasting:

{
"type": 15,
"id": "CQpEMOAEDvgxKfgWLH2HXE82iAzpXrtqsDDcgZGPAF9J",
"sender": "3N65yEf310jBZUvpu4LCo7n8D73juFtheUJ",
"senderPublicKey": "C1ADP1tNGuSLTiQrfNRPhgXx59nCrwrZFRV4AHpfKBpZ",
"fee": 100000000,
"timestamp": 1549448710502,

n L

proofs": [
—"64eodpuX(jakKQQ4GIJBaBrqiBtmk jSxseKC97gn6EwB5kZtMr18mAUHPRkZaHJe JxaDyLzGEZKqhYoUknWfNhXnkf
(_}H] R

"version": 1,

"chainId": 84,

"assetId": "DnK5Xfi2wXUJx9BjK9X6ZpFdTLdq2GtWHOpWrcxcmrhB",
"script": "base64:AQQAAAAHJG1hdGNoMAUAAAACdHgG+RXSzQ=="",
"height": 61895

101. GenesisPermission Transaction

A transaction to assign the first network administrator who distributes permissions to other participants.

CTpyKTypBhI JJAHHBIX TPAH3AKIIUT

Signing:
Field Data Description
type
type Byte Transaction number (101)
id Byte Transaction identifier
fee Long WE Mainnet transaction fee
times- Long The**Unix Timestamp** of a transaction (in milliseconds), optional
tamp field
signature | ByteStr | Transaction signature (in base58 format)
target ByteStr Address of a first administrator to be appointed
role String A permission to be assigned (for an administrator - permissioner)
Broadcasting:
Field Data Description
type
type Byte Transaction number (101)
times- Long The**Unix Timestamp** of a transaction (in milliseconds), optional
tamp field
target ByteStr | Address of a first administrator to be appointed
role String A permission to be assigned (for an administrator - permissioner)

23.2. Processing of transactions in the blockchain 201

Technical description of the Waves Enterprise platform, Release 1.7.0

102. Permission Transaction
Issuing or revoking a participant’s role. Only a participant with the permissioner permission can send 102
transactions to the blockchain.
Possible permissions for the role field:
e permissioner
* sender
¢ blacklister
e miner
* issuer
¢ contract_developer
e connection _manager
* contract_validator
e banned
For a description of the permissions, see the article Permissions.

CTpyKTypbI JAHHBIX TPAH3AKIINN

Signing:
Field Data type Description
type Byte Transaction number (102)
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
senderPub- PublicKeyAc- | Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
target ByteStr Participant’s address for the permission assignment
opType String Type of operation: add - add a permission; remove - remove
a permission
dueTimes- Long Role validity Unix Timestamp (in milliseconds) - optional
tamp field
version Byte Transaction version
Broadcasting:

23.2. Processing of transactions in the blockchain 202

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description
senderPub- PublicKeyAc- | Transaction sender public key
licKey count
role String A permission to be assigned (for an administrator -
permissioner)
sender ByteStr Address of a transaction sender
proofs List(ByteStr) Array of transaction proofs (in base58 format)
fee Long WE Mainnet transaction fee
opType String Type of operation: add - add a permission; remove - remove
a permission
id Byte ID of a transaction for permission adding or removing
type Byte Transaction number (102)
dueTimes- Long Role validity Unix Timestamp (in milliseconds) - optional
tamp field
timestamp Long The**Unix Timestamp** of a transaction (in milliseconds),
optional field
target ByteStr Address of a first administrator to be appointed
JSON:
Version 1
Signing:
{
"type": 102,
"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"password": "",
"senderPublicKey": "4WnvQPit2Di1liYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"fee": O,
"target": "3GPtjSosoYqHpyfmsFv7BMiyKsVzbGlykfL",
"opType": "add",
"role": "contract_developer",
"dueTimestamp": null,
"version": 1,
}
Broadcasting:
{
"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"role": "contract_developer",
"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",
"proofs": [
—"5ABJCRTKG06 jmDZCRWcLQc257CCeczme jmt £ JMbBE7TP3KsVkwvisHOKEk YPckVCzEMKZTCA3LKAPcN804Git3j
1,
"fee": O,

"opType": "add",

"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7(Q23FW1KWepBOEZCFG6",
"type": 102,

"dueTimestamp": null,

"timestamp'": 1559048837487,

(continues on next page)

23.2. Processing of transactions in the blockchain 203

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

}

"target": "3GPtjb5osoYqHpyfmsFv7BMiyKsVzbGlykfL"

103. CreateContract Transaction

Creating a smart contract. The byte representation of this transaction after it is signed must not exceed 150

kilobytes.

The feeAssetId field of this transaction is optional and is only used for gRPC-enabled smart contracts.
The value of the version field for this type of smart contracts is 2.

Transaction 103 can only be signed by a user with the role contract developer.

CTpyKTypBbI JJAHHBIX TPAH3AKIIUU

Signing:
Field Data Description
type
fee Long WE Mainnet transaction fee
image Ar- Smart contract Docker image name
ray|Bytes|
image- Ar- Smart contract Docker image hash
Hash ray|[Bytes|
con- Ar- Smart contract name (if downloaded from a pre-installed repository) or
tract- ray[Bytes| its full address (if the smart contract repository is not specified in the
Name node configuration file)
sender ByteStr | Address of a transaction sender
pass- String Keypair password in the node keystore, optional field
word
params List[DataEhipylt #hd output data of a smart contract. Entered using the fields
type value and key separated with a comma - optional field
params.key Byte Parameter key
params.typByte Parameter type. Possible values: binary bool integer string
params.valuByte Parameter value
type Byte Transaction number (103)
version Byte Transaction version
apiVer- Byte API version for gRPC methods of the smart contract (see gRPC services
sion used by smart contracts).
valida- String Smart contract validation policy type.
tionPol-
icy.type
Broadcasting:

23.2. Processing of transactions in the blockchain

204

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data Description
type
type Byte Transaction number (103)
id Byte ID of a CreateContract transaction
sender ByteStr | Address of a transaction sender
sender- Pub- Transaction sender public key
Pub- licK-
licKey eyAc-
count
fee Long WE Mainnet transaction fee
times- Long The Unix Timestamp of a transaction (in milliseconds), optional field
tamp
proofs List(ByteStxjyray of transaction proofs (in base58 format)
version Byte Transaction version
image Ar- Smart contract name (if downloaded from a pre-installed repository) or
ray|Bytes]| its full address (if the smart contract repository is not specified in the
node configuration file)
image- Ar- Smart contract Docker image hash
Hash ray|Bytes|
con- Ar- Smart contract name
tract- ray[Bytes|
Name
params List[DataEhtpylt #hd output data of a smart contract. Entered using the fields
type value and key separated with a comma - optional field
params.key Byte Parameter key
params.typdByte Parameter type. Possible values: binary bool integer string
params.vaJuByte Parameter value
height Byte Height of transaction execution
apiVer- Byte API version for gRPC methods of the smart contract (see gRPC services
sion used by smart contracts).
valida- String Smart contract validation policy type.
tionPol-
icy.type
JSON:
Version 2
Signing:
{
"fee": 100000000,
"image": "stateful-increment-contract:latest",
"imageHash": "7d3b915c82930dd79591aab040657338f64e5d8b842abe2d73d5c8£828584b65",
"contractName'": "stateful-increment-contract",
"sender": "3PudkbvjVinPj1TkuuRahh4sGdgfr4YAUV2",
"password": "",
"params": [],
"type": 103,
"version": 2
}
Broadcasting:

23.2. Processing of transactions in the blockchain

205

Technical description of the Waves Enterprise platform, Release 1.7.0

"senderPublicKey": "4WnvQPit2DiliYXDgDcXnJZ5yroKW54vauNoxdNeMi2g",
"role": "contract_developer",

"sender": "3GLWx8yUFcNSL3DER8kZyE4TpyAyNiEYsKG",

"proofs": [

—"5ABJCRTKG06 jmDZCRWcLQc257CCeczme jmt £ JmbBE7TP3KsVkwvisHOKEkE YPckVCzEMKZTCA3LKAPcN804Git3j

"
—

1,

"fee": O,

"opType": "add",

"id": "8zVUH7nsDCcpwyfxiq8DCTgqL7Q23FW1KWepBOEZCcFG6",
"type": 102,

"dueTimestamp": null,

"timestamp": 1559048837487,

"target": "3GPtjb5osoYqHpyfmsFv7BMiyKsVzbGlykfL"

Version 3

Signing:

{
"fee": 100000000,
"image": "registry.wvservices.com/vostok-sc/python_grpc_contract:slim",
"imageHash": "c878d358a7ba88638a40d4474874ec76261fdaf7d96b79a15145d3cb988cadb7",
"contractName": "test v3 on 1.6.2",
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE35qJycqv8d",
llpasswordll : "nn R
"params": [],
"type": 103,
"version'": 3,
"atomicBadge" : null

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXhbbcalgMs7KFGntawHGww",

"image" : "registry.wvservices.com/vostok-sc/python_grpc_contract:slim",

"fee" : 100000000,

"imageHash" : "c878d358a7ba88638a40d4474874ec76261fdaf7d96b79a15145d3cb988cadb7",

"type" : 103,

"params" : [],

"version" : 3,

"atomicBadge" : null,

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : null,

"proofs" : [
—"3YabJzfRZSyqyMvJIZgbC7PuyZB8Hii2NaG1UGvPUjoRDnheENbz6b46Cdh9F91QaGyBdJOkN67XD1mVQ6kVrCU48
~,

"contractName" : "test v3 on 1.6.2",

"id" : "2b¥S2gZ2CjE92yFf731CcVWXt jiBPrRKDQrylWcz9yfJ",

"timestamp" : 1625736026131,

"height" : 1028223
}

23.2. Processing of transactions in the blockchain 206

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 4

Signing:

{
"type": 102,
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"password": "",
"senderPublicKey": "CgqRPcPnexY533gCh2SSvBXh5bcalqMs7KFGntawHGww",
"fee": O,
"target": "3GPtjS5osoYqHpyfmsFv7BMiyKsVzbGlykfL",

"role": "cont
"dueTimestamp
"version": 4,
"atomicBadge"

}

IlopTypell : Iladdll R

ract_developer",
": null,

: null

Broadcasting:

{
"senderPublickK
"image" : "vos
"fee" : 100000
"imageHash"
"type" : 103,
"params" : [{
lltypell B n St
"Value" "n
"key" : "dat

} {

1,
"version" : 4,
"atomicBadge"
"apiVersion"

"feeAssetId"
"proofs" : [

‘—*”]’

"contractName"

"validationPol
Iltypell
} 2

"timestamp"

"type" : "integer",
"value" : 500,
"key" : "length"

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
: null,

—"L521YncSMJIDPqwB jQyS7m7Q6tseAwb1nYE8iiPChEALx7S2WvpSosCVtWkXxh2ZqJ6LHkCv jVjRVuVs793kz jw

"id" : "HSLAKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYwlvZW2MoG",

any

"height" : 1028130

ey" : "CgqRPcPnexY533gCh25SvBXh5bcalqMs7KFGntawHGww",
tok-sc/grpc_validatable_statefull:0.1",

000,
"ad6d0£8a61222794da15571749bc9db08e76b6a120fc1db90e393fc0ee9540d8",

ring",
t

all

: null,
|l1‘0I|’

"grpc_validatable_statefull here_often",

icy" : {

1625732696641,

The 4th version of this transaction configures validation of the execution results of the updated smart contract
using the validationPolicy.type field (see section Validation of smart contracts). Variants of validation

policies:

* any - the general

validation policy is kept in the network: to mine the updated smart contract, the

miner signs the corresponding 705 transaction. Also, this parameter is set if there are no registered
validators in the network.

23.2. Processing of transactions in the blockchain 207

Technical description of the Waves Enterprise platform, Release 1.7.0

* majority - a transaction is considered valid if it is confirmed by the majority of validators: 2/3 of the
total number of registered addresses with the contract validator permission.

* majorityWithOneOf (List [Address]) - the transaction is considered valid if the majority of validators
is collected, among which there is at least one of the addresses included in the parameter list. The
addresses included in the list must have a valid contract validator permission.

Warning: In case of using the majorityWithOneOf (List [Address]) validation policy, fill the address
list, passing an empty list is not allowed.

In private networks, the 103 transaction allows to install Docker images of smart contracts not only from
repositories stated in the docker-engine section of the node configuration file. If you need to install a smart
contract from a registry not included in the list of the configuration file, type the full address of a smart
contract in the registry you have created in the name field of the 103 transaction.

An example of a request to broadcast a smart contract from a not installed repository:

{
"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXhbbcalgMs7KFGntawHGww",
"image": "customregistry.com:5000/stateful-increment-contract:latest",
"fee" : 100000000,
"imageHash" : "ad6d0f8a61222794dal15571749bc9db08e76b6a120fc1db90e393fc0ee9540d8",
"type" : 103,
"params" : [{
"type" : "string",
"value" : "Value_here",
"key" : "data"
oA
"type" : "integer",
"value" : 500,
"key" : "length"
} 1,
"version" : 4,
"atomicBadge" : null,
"apiVersion" : "1.0",
"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"feeAssetId" : null,
"proofs" : [
—"L521YncSMIDPqwBjQyS7m7Q6tseAws1nYE8iiPChEALX7S2WvpSosCVtWkXxh2ZqJ6LHkCv jVjRVuVs793kzjw8" 1],
"contractName" : "grpc_validatable_statefull here_often",
"id" : "HSLAKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYwlvZW2MoG",
"validationPolicy" : {
||typel| : ”aIly"
},
"timestamp" : 1625732696641,
"height" : 1028130

23.2. Processing of transactions in the blockchain 208

Technical description of the Waves Enterprise platform, Release 1.7.0

104. CallContract Transaction
Calling a smart contract for execution. The byte representation of this transaction after it is signed must
not exceed 150 kilobytes.
Signing of the transaction is performed by the initiator of the contract execution.
The contractVersion field of the transaction specifies the contract version:
¢ 1 - for a new contract;
¢ 2 - for an updated contract.

This field is only available for the transaction of the second version and older: if the version field of the
smart contract creation transaction is set to 2 or more. The contract is updated using the transaction 107.

If the contract is not executed or is executed with an error, then transactions 103 and 104 are deleted and
do not enter the block.

CTpyKTypbl JIAHHBIX TPAH3AKIIUU

Signing:
Field Data type | Description
con- ByteStr Smart contract ID
tractld
fee Long WE Mainnet transaction fee
sender | ByteStr Address of a transaction sender
pass- String Keypair password in the node keystore, optional field
word
type Byte Transaction number (104)

params | List[DataEntigpul] and output data of a smart contract. Entered using the fields
type value and key separated with a comma - optional field

params.keByte Parameter key
params.fyBate Parameter type. Possible values: binary bool integer string
params.yaBete Parameter value
version | Byte Transaction version
Broadcasting:

23.2. Processing of transactions in the blockchain 209

Technical description of the Waves Enterprise platform, Release 1.7.0

JSON:

Field Data type | Description
type Byte Transaction number (104)
id Byte Smart contract call transaction ID
sender ByteStr Address of a transaction sender
sender- PublicK- | Transaction sender public key
Pub- eyAc-
licKey count
fee Long WE Mainnet transaction fee
times- Long The Unix Timestamp of a transaction (in milliseconds), optional field
tamp
proofs List(ByteStrArray of transaction proofs (in base58 format)
version Byte Transaction version
contrac- | ByteStr Smart contract ID
tId
params List[DataEnthypui] and output data of a smart contract. Entered using the fields
type value and key separated with a comma - optional field
params.key Byte Parameter key
params.typdyte Parameter type. Possible values: binary bool integer string
params.valuByte Parameter value
Version 2
Signing:
{
"contractId": "2sqPS2VAKmK77FoNakwl1VtDTCbDSa7nqgh5wTXvJeYGo2",
"fee": 10,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"password": "",
"type": 104,
"params":
[
{
"type": "integer",
"key": "a",
"value": 1
1,
{
"type": "integer",
"key": "b",
"value": 100
}
1,
"version": 2,
"contractVersion": 1
}
Broadcasting:
{
"type": 104,

(continues on next page)

23.2.

Processing of transactions in the blockchain

210

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"id": "9fBrL2nbTN473glgNfoZqaAqAsAJCuHRHYxZpLexL3VP",

"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",

"senderPublicKey": "2YvzcVLrqLCqouVrFZynjfotEuPNV9GrdauNpgdWXLsq",

"fee": 10,

"timestamp": 1549365736923,

"proofs": [
—"2q4cTBhDKEDkFxr7iYaHPAv1dzaKo5rDaTxPFoVHryyYTXxTPvNOWb3YrsDYixKiUPXBnAyXzEcnKPFRCWOxVp4v
~r,

"version": 2,

"contractVersion": 1,

"contractId": "2sqPS2VAKmK77FoNakwlVtDTCbDSa7ngh5wTXvJeYGo2",

"params":

[

{

"key": "a",
"type": "integer",
"value": 1

1,
{
Ilke-yll : llbll R
"type": "integer",
"value": 100
}
]
}
Version 3
Signing:
{
"contractId": "DgklhR7xRnDT1KJreaXCVtZLrndb5LJ8uUYtoZyQrViLJ",
"fee": 10000000,
"sender": "3NpkC1FSWOxNfmAMuhRSRArLgnfyGyEry7w",
"password": "",
"type": 104,
"params":
[{
"type" : "string",
"value" : "value",
"key" : "data"
b, A
"type" : "integer",
""value" : 500,
"key" : "length"
1,
"version": 3,
"contractVersion": 1,
}
Broadcasting:
{

"senderPublicKey" : "9Kgnqqxr5MU3PNrLgf1dkZL2HH6LBktB5PvOL1cVELil",
"fee" : 10000000,

(continues on next page)

23.2. Processing of transactions in the blockchain 211

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type" 104,
"params" [{
"type" "string",
"value" "data_response",
llkeyll |lactionll
}, {
"type" "string",
"value" "000008_regular_data_request_2m3SgcnQz9LXVi9ETy3CFHVGM1EyiqJi3vvRRQUM3oPp
"key" "request_id"
oA
"type" "string",
"value" "76.33",
llkeyll "Value"
}, {
Iltypell Ilstringll R
"value" "1627678789267",
"key" "timestamp"
11,
"version" : 3,
"contractVersion" 1,
"sender" "3NpkC1FSWOxNfmAMuhRSRArLgnfyGyEry7w",
"feeAssetId" : null,
"proofs" : [
—"4aanqYjaTVNot8Fbzbix jwKSdqS5x3Ddvzx(4WsTaPcftYdoFx99xwLC3UPN91VAtez4RTMzaYb1TECaVxHHTOAH
:_>l|]’
"contractId" "Dgk1hR7xRnDT1KJreaXCVtZLrnd5LJ8uUYtoZyQrViLJ",
"igq" "55imLuEXyVpBXb1S64R5PRx9ac(QHaEATPwYwUVpqjAT",
"timestamp" 1627678789267,
"height" 1076064
X
Version 4
Signing:
{
"contractId": "HSLAKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYwlvZW2MoG",
"fee": 10000000,
"sender": "3PKyW5FSn4fmdrLcUnDMRHVyoDBxybRgP58",
"password": "",
"type": 104,
"params":
[{
lltypell "Stril’lg" R
"value" "value",
"key" "data"
oA
"type" "integer",
"value" : 500,
llkeyll lllengthll
1,
"version": 4,
"contractVersion'": 3,
"atomicBadge" : null

(continues on next page)

23.2. Processing of transactions in the blockchain 212

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

Broadcasting:

{
"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXhbbcalgMs7KFGntawHGww",
"fee" : 10000000,
"type" : 104,
"params" : [{
"type" : "string",
"value" : "value",
Ilke-yll : |ldata|l
b, {
"type" : "integer",
"value" : 500,
"key" : "length"
1,
"version" : 4,
"contractVersion" : 3,
"atomicBadge" : null,
"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"feeAssetId" : null,
"proofs" : [

T,
"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYwlvZW2MoG",
"id" : "GBfibn8VjGmDS9ex4Nd4JNRLvDyvJjj8jLUUcbYWFTCE",
"timestamp" : 1625732766458,
"height" : 1028132

}

—"2bpALen4diR7DTFhNQCrZKPueCPds2gFFPxe1KVzQuwfRuGaK6QfvtpN8oqaZMsStoEHAa5DrTkKM8AuzHPYyMPVP

105. ExecutedContract Transaction

Writing of the result of smart contract execution to its state. The byte representation of this transaction

after signing must not exceed 150 kilobytes.

Transaction 105 contains all fields (body) of transaction 103, 104 or 107 of the smart contract whose execution
result must be written to its state (the tx field). The result of the smart contract’s execution is entered into

its stack from the corresponding parameters of the params field of transaction 103 or 104.

The transaction is signed by the node that forms the block after sending the request to publish the transaction.

CTpyKTypa JaHHBIX HA MyOIUKAINI0 TPAH3AKIINN

23.2. Processing of transactions in the blockchain

213

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description
type Byte Transaction number (105)
id Byte ExecutedContract transaction ID
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- Transaction sender public key
licKey count
password String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds),
optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
tx Array Body of transaction 103 or 104 of an executed smart con-
tract
results List[DataEntry[|]JA list of possible results of smart contract execution
height Byte Height of transaction execution
JSON:

Version 2

Broadcasting:

{

"type": 105,

"id": "38GmSVC5s8Sjeybzfe9RQA6p1Mb6ajbSLYIDcep8G8Um;",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqgew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38DwsbskqgDs jMVT2M",

"password": "",

"fee": 500000,

"timestamp": 1550591780234,

"proofs": [
—"5whBipAWQgFvm3myNZe6GDdO9Ky8199COqNxLBHgDNmVAUJWIgLE7t9LBADi68CKT57dzmnP JpJkrwKh2HBSwUer6
;}H]’

"version": 2,

"tx":

{

"type": 103,

"id": "ULcq9R7PvUB2yPMrmBdxoTi3bcRm(PT3JDLLLZVj4Ky",

"sender": "3N3YTj1tNwn8XUJ8ptGKbPuEFNa9GFnhqew",

"senderPublicKey": "3kW7vy6nPC59BXM67n5N56rhhAv38Dws5skqDs jMVT2M",

"fee": 500000,

"timestamp": 1550591678479,

"proofs": [
—"yecRFZm9iBLyDy93bDVaNo1PR5Qkkic7196GAgUt9TNH1cnQphq4yGRAQ8Fxj4BYA4TaqYVwbqxtWzGMPQyVeKYy
;}H]’

"version": 2,

"image'": "stateful-increment-contract:latest",

"imageHash":
—"7d3b915c82930dd79591aab040657338£64e5d8b842abe2d73d5c8£828584b65" ,

"contractName": "stateful-increment-contract",

"params": [],

"height": 1619

1,

(continues on next page)

23.2. Processing of transactions in the blockchain 214

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"results": [],
"height": 1619,
"atomicBadge" : null

106. DisableContract Transaction

Disabling of a smart contract. The byte representation of this transaction after it is signed must not exceed
150 kilobytes.

Transaction 106 can only be signed by a user with the role contract developer.

CTpyKTyphI JAHHBIX TPAH3AKIINN

Signing:
Field Data type | Description
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
contractld | ByteStr Smart contract ID
fee Long WE Mainnet transaction fee
type Byte Transaction number (106)
version Byte Transaction version
Broadcasting:
Field Data type Description
type Byte Transaction number (106)
id Byte DisableContract transaction ID
sender ByteStr Address of a transaction sender
senderPublicKey | PublicKeyAccount | Transaction sender public key
fee Long WE Mainnet transaction fee
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
contractld ByteStr Smart contract ID
height Byte Height of transaction execution
JSON:
Version 2
Signing:
{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"contractId": "HKftkVDTcQp6kxdqVYNdzBO9d4rhND4YRKxwJV1thMXcr",

"password": "",
"fee": 1000000,
"type": 106,

"version": 2,

23.2. Processing of transactions in the blockchain

Technical description of the Waves Enterprise platform, Release 1.7.0

Broadcasting:
{
"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXhbbcalgMs7KFGntawHGww",
"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"feeAssetId" : "7QpXWLGuaspzrMsESRaHTgksndqbmcvibVrqBTuLbxuy",
"proofs" : [
" 3FKPGT8YbLVunbcffZi1sHkgr9JZVxkeN7z2kUqDVLfhB5CwMtCAfyStRz1tpZuriKsR3MaBqNfReGx5sM2qey
-,
"fee" : 1000000,
"contractId" : "HKftkVDTcQp6kxdqVYNdzB9d4rhND4YRKxwJV1thMXcr",
"id" : "bhXuHsbHVhZSfek153t76HfW6egmCLdZmibAeFzYBFN",
"type" : 106,
"version" : 2,

"timestamp" : 1625648619321,
"height" : 1025992

Version 3

Signing:

{
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3S5qJycqv8d",
"password": "",
"contractId": "75PumcfCVxzV3v7RAPYQUwCtSpU21hxfaWFhureCRTLM",
"fee": 1000000,
"type": 106,
"version": 3,
"atomicBadge" : {
"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"
}
}

Broadcasting:

{
"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"atomicBadge" : {
"trustedSender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"
1,
"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"feeAssetId" : null,
"proofs" : [

S,
"fee" : 1000000,
"contractId" : "75PumcfCVxzV3v7RAPYQUwCtSpU21hxfaWFhureCRTLM",
"id" : "7opPrLd6x1hATRr9R50XnEbYjYQzo5cn4Qpkiz12Mwob",
"type" : 106,
"version" : 3,
"timestamp" : 1619186857911,
"height" : 861644

—""22tK24qHhgbTD jtRmR86z3WeLLgLnqPvhUhQrz8ohfbCw(9nrwmHESuT9aFuwABeBRJ7MfVob1FiJnqg3y2PHL

.

.

23.2. Processing of transactions in the blockchain

216

Technical description of the Waves Enterprise platform, Release 1.7.0

107. UpdateContract Transaction
Updating of a smart contract code. The byte representation of this transaction after it is signed must not
exceed 150 kilobytes.

Transaction 107 signing as well as smart contract updating can only be done by the user with the con-
tract developer permission.

CTpyKTyphI JaHHBIX TPAH3AKIIAN

Signing:
Field Data Description
type
image Ar- Smart contract Docker image name
ray|Bytes
sender ByteStr | Address of a transaction sender
password String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
contractld ByteStr | Smart contract ID
imageHash Ar- Smart contract Docker image hash
ray[Bytes
type Byte Transaction number (107)
version Byte Transaction version
apiVersion Byte API version for gRPC methods of the smart contract (see gRPC
services used by smart contracts).
validation- String Smart contract validation policy type.
Policy.type
Broadcasting:
JSON:
Version 2
Signing:
{
"image" : "vostok-sc/grpc-contract-example:2.2-test-update",
"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3S5qJycqv8d",
"paSSWOrd" : nn .
"fee" : 100000000,
"contractId" : "BWzX4mRBEnHKgn3HB78My5DZzDAqnCLWCCNpCuRkZrJA",
"imageHash" : "075ad1607£193cc6fdb5e85c201£f9cal3907c622718d75706bbc2a94a330de5b5",
"type" : 107,
"version" : 2
}
Broadcasting:
{
"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXhbbcalgMs7KFGntawHGww",
"image" : "vostok-sc/grpc-contract-example:2.2-test-update",
"fee" : 100000000,
"imageHash" : "075ad1607f193cc6fdb5e85c201£9ca3907c622718d75706bbc2a94a330de5b5",

(continues on next page)

23.2. Processing of transactions in the blockchain 217

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"type" : 107,
"version" : 2,
"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"feeAssetId" : null,
"proofs" : [
—"RetQwzuWZWxpSNMqwB7k706hSm6nhFCc49zKUpwZEedzBYcoh jONVEPwAbKLWORZRKX168xApV7Nu2qV2 jaHAMg
"]’
"contractId" : "BWzX4mRBEnHKgn3HB78My5DZzDAgnCLWCCNpCuRkZrJA",
"id" : "60opqcEf4AF943SCAqkBPrghyeQhmwn64TrhtCZbAn3v",
"timestamp" : 1625649822957,
"height" : 1026022
}
Version 3
Signing:
{
"image" : "registry.vostokservices.com/vostok-sc/grpc-contract-example:2.2-test-update
" s
"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
IIpasswordll : nn ,
"fee" : 100000000,
"contractId" : "HTqdjXUPTHZqGen2KKUkEenTELAqQ8irN58LA8EcP17q",
"imageHash" : "075ad1607£193cc6fdb5e85c201£9cal3907c622718d75706bbc2a94a330de5b5",
"type" : 107,
"version" : 3,
"atomicBadge" : null
}
Broadcasting:
{
"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"image" : "registry.vostokservices.com/vostok-sc/grpc-contract-example:2.2-test-update
"fee" : 100000000,
"imageHash" : "075ad1607£193cc6fdb5e85c201f9ca3907c622718d75706bbc2a94a330de5b5",
"type" : 107,
"version" : 3,
"atomicBadge" : null,
"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"feeAssetId" : null,
"proofs" : [
—"3ncWfFPqBAdgh65YceCCvF2RhUWWok(QcOMsnHk27YLrYmP jOgWgrbRcousymJVA7ARFSz5UJcdW4Sa62FFhRb5en3
"]:
"contractId" : "HTqdjXUPTHZqGen2KKUkEenTELAqQ8irN58LASEcP17q",
"id" : "B7qjgCa9NEM6FwV63PbLuvtVpFo4bzB5gRZzGjwIpKJIV",
"timestamp" : 1619187337697,
"height" : 861650
}

23.2. Processing of transactions in the blockchain 218

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 4

Signing:

{

"image" : "vostok-sc/grpc_validatable_stateless:0.1",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"password": "",

"fee" : 100000000,

"contractId" : "HSLdKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYwlvZW2MoG",

"imageHash" : "bd98a7d3e55506ff936d8eal5e170a24d27662edd1b47e4£d20801d10655af8d",
"type" : 107,

"version" : 4,

"atomicBadge" : null

Broadcasting:

{

"senderPublicKey" : "CgqRPcPnexY533gCh2SSvBXhbbcalgMs7KFGntawHGww",

"image" : "vostok-sc/grpc_validatable_stateless:0.1",

"fee" : 100000000,

"imageHash" : "bd98a7d3e55506££936d8ealbe170a24d27662edd1b47e4£d20801d10655a£8d",

"type" : 107,

"version" : 4,

"atomicBadge" : null,

"apiVersion" : "1.0",

"sender" : "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"feeAssetId" : null,

"proofs" : [
—"£Zr9LpqSWbPcUzArSZxFDEuygN62hR63j2Cz1GyTFxPNRrNvVwkDhTDcC8zwRp235gA1gSM8f vPpsOmvPTWDQ4y
S,

"contractId" : "HSLAKYqLq4LcZpq9LPki8Yv4ZRkFapVyHEYwlvZW2MoG",

"id" : "HWZy7219Nx50xj2QnK3ReEuZiqgs joULbmfdQz8YysFSz",

"validationPolicy" : {

"type" : "any"

1,

"timestamp" : 1625732772746,

"height" : 1028132

The 4th version of this transaction configures validation of the execution results of the updated smart contract
using the validationPolicy.type field (see section Validation of smart contracts).

Variants of validation policies:

e any - the general validation policy is kept in the network: to mine the updated smart contract, the
miner signs the corresponding 105 transaction. Also, this parameter is set if there are no registered
validators in the network.

* majority - a transaction is considered valid if it is confirmed by the majority of validators: 2/3 of the
total number of registered addresses with the contract validator permission.

* majorityWithOneOf (List [Address]) - the transaction is considered valid if the majority of validators
is collected, among which there is at least one of the addresses included in the parameter list. The
addresses included in the list must have a valid contract validator permission.

23.2. Processing of transactions in the blockchain 219

Technical description of the Waves Enterprise platform, Release 1.7.0

Warning: In case of using the majorityWithOneOf (List [Address]) validation policy, fill the address
list, passing an empty list is not allowed.

110. GenesisRegisterNode Transaction

Registration of a node in a network genesis block while starting the blockchain.
This transaction does not require signing.

CTpyKTypa JAaHHBIX HA MyOIUKAIMIO TPAH3AKIINT

Field Data Description
type
type Byte Transaction number (110)
id Byte GenesisRegisterNode transaction ID
fee Long WE Muainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds), optional
field
signature ByteStr | Transaction signature (in base58 format)
version Byte Transaction version
targetPub- Byte Public key of a node to be registered
Key
height Byte Height of transaction execution

111. RegisterNode Transaction

Registration of a new node in the blockchain or its deletion.

CTpyKTypbI JaHHBIX TPAH3AKIIAN

Signing:
Field Data type | Description
type Byte Transaction number (111)
opType String Type of operation: add - add a node; remove - remove a node
sender ByteStr Address of a transaction sender
password String Keypair password in the node keystore, optional field
targetPubKey | Byte Public key of a node to be removed
NodeName Byte Name of a node
fee Long WE Mainnet transaction fee
Broadcasting:

23.2. Processing of transactions in the blockchain 220

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data type Description
type Byte Transaction number (111)
id Byte RegisterNode transaction ID
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds),
optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
version Byte Transaction version
targetPub- Byte Public key of a node to be removed
Key
NodeName Byte Name of a node
opType String Type of operation: add - add a node; remove - remove a
node
height Byte Height of transaction execution
password String Keypair password in the node keystore, optional field
JSON:
Version 1
Signing:
{
"type": 111,
"opType": "add",
"sender" :"3NgSJRAMYu4ZbNpSbyRNZLJIDX926W7e1EKQ",
"password": "",
"targetPubKey": "6caEKC1UBgRvgAe9A7LE5PWcrawrnEZGxtsXynGESwSj7",
"nodeName": "GATEs node",
"fee": 1100000,
}
Broadcasting:
{
"senderPublicKey" : "FWzbgZ2w2ZxXbKEiwhgEcZKT4welWneh9XqmCeGPsA4r",
"nodeName" : "GATEs node",
"fee" : 1100000,
"opType" : "add",
"type" : 111,
"version" : 1,
"target" : "3NtieMGjVAH1nDsvnSEJ37BSW3hpJV2CneY",
"sender" : "3NgSJRAMYu4ZbNpSbyRNZLJDX926W7e1EKQ",
"proofs" : [
—"FHEexr8MqMCkdqaVRrfxv7dnQFwolVQxQFb4rW2VKh1NkuAh jhtzftKybBQCVbpKcCD1ZTRhwATpwERFOre2Viz
<"1,
"id" : "6WnDGkBDeSjgby6QqVdy3BFHUybnnr4QsxZCeNXZtZoq",
"targetPubKey" : "6caEKC1UBgRvgAe9A7L5PWcrawrnEZGxtsXynGESwSj7",
"timestamp" : 1619078302988,
"height" : 858895
}

23.2. Processing of transactions in the blockchain 221

Technical description of the Waves Enterprise platform, Release 1.7.0

112. CreatePolicy Transaction

Creation of a confidential data group consisting of addresses stated in a transaction.

CTpyKTypbI JJAHHBIX TPAH3AKIIUT

Signing:

Field Data Description
type
sender | ByteStr| Address of a transaction sender
policy- | String | Name of an access group to be created
Name
pass- String | Keypair password in the node keystore, optional field
word
recipi- | Aray[Bypedrray of addresses of a group participants separated by commas
ents
fee Long WE Mainnet transaction fee
de- Ar- An arbitrary description of a transaction (in base58 format)
scrip- ray|byte]
tion
owners | Aray[Bypedrray of addresses of group administrators separated by commas: admin-
istrators are entitled to change an access group

type Byte Transaction number (112)
version | Byte Transaction version

Broadcasting:
Field Data type | Description
type Byte Transaction number (112)
id Byte CreatePolicy transaction ID
sender ByteStr Address of a transaction sender
sender- PublicK- Transaction sender public key
Pub- eyAccount
licKey
policy- String Name of an access group to be created
Name
recipi- Aray|[Bytes]| Array of addresses of a group participants separated by commas
ents
owners Aray|[Bytes] Array of addresses of group administrators separated by commas:

administrators are entitled to change an access group
fee Long WE Mainnet transaction fee
times- Long The Unix Timestamp of a transaction (in milliseconds), optional
tamp field
proofs List(ByteStr)Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
descrip- Ar- An arbitrary description of a transaction (in base58 format)
tion ray|byte]
version Byte Transaction version
JSON:

23.2. Processing of transactions in the blockchain

222

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 2

Signing:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",

"policyName": "Policy# 7777",

"password":"sfgKYBFCFo#$fsdf ()%",

"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

1,

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7VeT7T"

1,

"type": 112,

"version": 2,

Broadcasting:

{

"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3S5qJycqv8d",

"policyName": "Policy# 7777",

"password": "sfgKYBFCF@#$£fsdf () %",

"recipients": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",

"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF",
"3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx"

1,

"fee": 15000000,

"description": "Buy bitcoin by 1c",

"owners": [
"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn",
"3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T"

1,

"type": 112,

"version": 2,

23.2.

Processing of transactions in the blockchain 223

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 3

Signing:

{

"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"policyName": "Policy_v3_for_demo_txs",

"password":"sfgKYBFCFo#$fsdf ()%",

"recipients" : ["3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
—"3NtNJV44wyxRXv2jyW3yXLxjIxvY1vR88TF", "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
—"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d", "3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn" 1,

"fee": 100000000,

"description": "",

"owners" : ["3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
—"3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF", "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
—"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d", "3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn"],

"type": 112,

"version": 3

}
Broadcasting:
{
"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"policyName" : "Policy_v3_for_demo_txs",
"fee" : 100000000,
"description" : "",

"owners" : ["3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
—"3NtNJV44wyxRXv2jyW3yXLxjIxvY1vR88TF", "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
< "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d", "3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn" 1,

"type" : 112,

"version" : 3,

"atomicBadge" : null,

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [
—"4NccZyPCgchD jeMdMmFKu7kxyU8AFF4e9cWaPFTQVQyYU1ZCCu3Qmtmkf JkrDpDwGs4e JThYUVh5TnwYv jZYKPhlp
~r,

"recipients" : ["3Nm84ERiJqKfuqSYxzMAhaJXdj2ugA7Ve7T",
—"3NtNJV44wyxRXv2jyW3yXLx jIxvY1vR88TF", "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
—"3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d", "3NotQaBygbSvYZW4ftJ2ZwLXex4rTHY1Qzn"],

"id" : "5a¥tmTrl1AYYG8BrYvITSqKzfJZxfgorx1BLGVwSAhwrz",

"timestamp" : 1619186864092,

"height" : 861637

113. UpdatePolicy Transaction

Updating of a confidential data group.
CTpyKTyphI JAaHHBIX TPAH3AKIIAN

Signing:

23.2. Processing of transactions in the blockchain 224

Technical description of the Waves Enterprise platform, Release 1.7.0

Field Data Description
type
poli- String | Confidential data group identifier
cyld
pass- | String Keypair password in the node keystore, optional field
word
sender | ByteStr | Address of a transaction sender
recip- | Aray|[Bytedrray of addresses of a group participants separated by commas
ients
fee Long WE Mainnet transaction fee
op- String Type of operation: add - add participants; remove - remove participants
Type
own- Aray[Bytedrray of addresses of group administrators separated by commas: admin-
ers istrators are entitled to change an access group
type Byte Transaction number (113)
ver- Byte Transaction version
sion
Broadcasting:
Field Data type | Description
type Byte Transaction number (113)
id Byte UpdatePolicy transaction ID
sender ByteStr Address of a transaction sender
sender- PublicK- Transaction sender public key
Pub- eyAccount
licKey
policyld String Confidential data group identifier
recipi- Aray[Bytes] Array of addresses for adding or removing of group participants sep-
ents arated by commas
owners Aray[Bytes] Array of addresses of group administrators separated by commas:
administrators are entitled to change an access group
fee Long WE Mainnet transaction fee
times- Long The Unix Timestamp of a transaction (in milliseconds), optional
tamp field
proofs List(ByteStr)Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
opType String Type of operation: add - add a permission; remove - remove a per-
mission
descrip- Ar- An arbitrary description of a transaction (in base58 format)
tion ray|[byte]
version Byte Transaction version

JSON:

23.2. Processing of transactions in the blockchain

225

Technical description of the Waves Enterprise platform, Release 1.7.0

Version 2
Signing:
{
"policyId": "UkvoboGXiwWpASr1GLGOM1MUbhrEMo4NBS7kquxVMw5",
"password": "sfgKYBFCFQ#$£fsdf () *}",
"sender": "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF" 1,
"fee": 50000000,
"opType": "remove",
"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF" 1,
"type": 113,
"version'": 2
}
Broadcasting:
{
"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",
"fee" : 50000000,
"opType" : "remove",
"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],
"type" : 113,
"version" : 2,
"policyId" : "UkvoboGXiwWpASr1GLGOM1MUbhrEMo4NBS7kquxVMwb",
"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",
"feeAssetId" : null,
"proofs" : [
" 2CKd57kU3wbxdrHxMPNbrWHptnf5ZcydY jqxMPk46miMcUUAxgFGXcy621cjYFXC3v jpKNNrB2QcgtKelYx9TcLY
-,
"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],
"id" : "6o4azRwzmMg9SqWUqbrv6GAebgzTYJvESek1vOVM3Mb",
"timestamp" : 1619004195630,
"height" : 856970
}
Version 3
Signing:
{
"policyId": "5aYtmTrlAYYG8BrYvITSqKzfJZxfgorx1BLGVwSAhwrz",
"password" : "sfgKYBFCFQ#$£fsdf () x%",
"sender": "3NkZd8Xd4KsuPiNVsuphRNCZE3SqJycqv8d",
"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],
"fee": 50000000,
"opType": "remove",
"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],
"type": 113,
"version": 3
}
Broadcasting:

23.2. Processing of transactions in the blockchain 226

Technical description of the Waves Enterprise platform, Release 1.7.0

"height" : 861653

{

"senderPublicKey" : "7GiFGcGaEN87ycK8v71Un6b7RUoeKBU4UvUHPYbeHaki",

"fee" : 50000000,

"opType" : "remove",

"owners" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF" 1,

"type" : 113,

"version" : 3,

"atomicBadge" : null,

"policyId" : "5aYtmTr1AYYG8BrYvTTSqKzfJZxfgorx1BLGVwSAhwrz",

"sender" : "3NxAooHUoLsAQvxBSqjE91WK3LwWGjiiCxx",

"feeAssetId" : null,

"proofs" : [
—"2QMGoz6rycNsDLhN3mDce2mqGRQ(8r26vDDw551pnYcAecpFBDA8 j38FVqD jLTGuFHs6ScX32fsGcaemmptpCFHk
o,

"recipients" : ["3NtNJV44wyxRXv2jyW3yXLxjJxvY1vR88TF"],

"id" : "Hwqf8LgpQfEcUYX9nMNG8uU2Cw1xSuGFqYxmuACpvU1L",

"timestamp" : 1619187450552,

114. PolicyDataHash Transaction

Sending of a confidential data hash into the network. This transaction is created automatically while sending
confidential data into the network with the use of the POST /privacy/sendData REST API method.

This transaction does not require signing.

CTpyKTypa JAaHHBIX HA MyOIUKAIMIO TPAH3AKIINT

Field Data type Description

type Byte Transaction number (114)

id Byte Transaction identifier

sender ByteStr Address of a transaction sender

senderPub- PublicKeyAc- Transaction sender public key

licKey count

policyld String Name of an access group to be created

dataHash String Confidential data hash to be sent

fee Long WE Mainnet transaction fee

timestamp Long The Unix Timestamp of a transaction (in milliseconds),
optional field

proofs List(ByteStr) Array of transaction proofs (in base58 format)

height Byte Height of transaction execution

version Byte Transaction version

23.2. Processing of transactions in the blockchain 227

Technical description of the Waves Enterprise platform, Release 1.7.0

120. AtomicTransaction

Atomic transaction: sets other transactions in a container for their atomic execution. This transaction can
be executed only in full (no transactions have been declined), in other cases it will not be executed.

Atomic transaction support 2 and more transactions of the following types:

e 4. Transfer Transaction, ver. 3

102.
103.
104.
106.
107.
112.
113.

Permission Transaction, ver. 2
CreateContract Transaction, ver. 3
CallContract Transaction, ver. 4
DisableContract Transaction, ver. 3
UpdateContract Transaction, ver. 3
CreatePolicy Transaction, ver. 3

UpdatePolicy Transaction, ver. 3

114. PolicyDataHash Transaction, ver. 3

An atomic transaction itself does not require a fee: its total fee is summed up from fee of transactions
included into it.

Learn more about atomic transactions: Atomic transactions

CTpyKTypbI JAaHHBIX TPAH3AKIIAN

Signing:
Field Data type | Description
type Byte Transaction number (120)
sender ByteStr Address of a transaction sender
transactions | Array Full bodies of transactions to be included
password String Keypair password in the node keystore, optional field
fee Long WE Mainnet transaction fee
version Byte Transaction version
Broadcasting:
Field Data type Description
type Byte Transaction number (114)
id Byte Transaction identifier
sender ByteStr Address of a transaction sender
senderPub- PublicKeyAc- Transaction sender public key
licKey count
fee Long WE Mainnet transaction fee
timestamp Long The Unix Timestamp of a transaction (in milliseconds),
optional field
proofs List(ByteStr) Array of transaction proofs (in base58 format)
height Byte Height of transaction execution
transactions Array Full bodies of transactions to be included
miner String Block miner public key; filled during a mining round
password String Keypair password in the node keystore, optional field
version Byte Transaction version

23.2. Processing of transactions in the blockchain

228

Technical description of the Waves Enterprise platform, Release 1.7.0

JSON:
Version 1
Signing:
{
"'sender": sender_0,
"transactions": [
signed_transfer_tx,
signed_transfer_tx2
] 2
"type": 120,
"version": 1,
"password":"1lskjbJJIk$)~#298",
"fee": O,
}
Broadcasting:
{
"sender": "3MufokZsFzaf7heTVlyreUtmluoJXPoFzdP",
"transactions": [
signed_transfer_tx,
signed_transfer_tx2
] b
"type": 120,
"version": 1,
}
See also

Description of transactions

Waves Enterprise Mainnet fees

23.2.2 Actual versions of transactions

When sending transactions to Waves Enterprise Mainnet or a private network, it is recommended to use the
current versions of the transactions. The version of the transaction is specified in the version field when
signing and sending.

23.2. Processing of transactions in the blockchain 229

Technical description of the Waves Enterprise platform, Release 1.7.0

Transaction number | Transaction name Actual version
1 Genesis Transaction No version
3 Issue Transaction 2

4 Transfer Transaction 3

5 Reissue Transaction 2

6 Burn Transaction 2

8 Lease Transaction 2

9 Lease Cancel Transaction 2

10 Create Alias Transaction 3

11 Mass Transfer Transaction 2

12 Data Transaction 2

13 Set Script Transaction 1

14 Sponsorship Transaction 1

15 Set Asset Script Transaction 1

101 Genesis Permission Transaction No version
102 Permission Transaction 2

103 Create Contract Transaction 4

104 Call Contract Transaction 4

105 Ezxecuted Contract Transaction 2

106 Disable Contract Transaction 3

107 Update Contract Transaction 4

110 Genesis Resgister Node Transaction | 1

111 Register Node Transaction 1

112 Create Policy Transaction 3

113 Update Policy Transaction 3

114 Policy Data Hash Transaction 3

120 Atomic Transaction 1

See also
Transactions of the blockchain platform
Description of transactions

Waves Enterprise Mainnet fees

23.2. Processing of transactions in the blockchain 230

CHAPTER

TWENTYFOUR

ATOMIC TRANSACTIONS

The Waves Enterprise platform supports atomic operations. Atomic operations consist of multiple actions,
if any action cannot be finalized, other actions also will not be performed. Atomic operations are realized
through the 120 AtomicTransaction, which is a container consisting of two or more signed transactions.

Atomic transaction support 2 and more transactions of the following types:
e 4. Transfer Transaction, ver. 3
e 102. Permission Transaction, ver. 2
¢ 108. CreateContract Transaction, ver. 3
e 104. CallContract Transaction, ver. 4
e 105. EzxecutedContract Transaction, ver. 1 and 2
e 106. DisableContract Transaction, ver. 3
¢ 107. UpdateContract Transaction, ver. 3
e 112. CreatePolicy Transaction, ver. 3
e 113. UpdatePolicy Transaction, ver. 3
e 114. PolicyDataHash Transaction, ver. 3

The key peculiarity of transactions that are supported by atomic transactions, is an atomicBadge field. This
field contains a trustedSender value: a trusted address of a transaction sender to include into the 720
transaction container. If a sender address is not specified, an address of a sender of the 7120 transaction
becomes the sender of the included transaction.

24.1 Processing of atomic transactions

Atomic transactions have two signatures. First signature belongs to its sender and is used for broadcasting.
Second signature is generated by a miner and is used for including of the transaction into the blockchain.
When an atomic transaction is added to the UTX pool, the node checks its own signature, as well as
signatures of all transactions included into the atomic container.

Validation of included transactions is carried out as follows:
¢ There should be more than one included transactions.
¢ All transactions should have different identifiers.

¢ An atomic transaction should contain only supported transaction types.

231

Technical description of the Waves Enterprise platform, Release 1.7.0

Including of an atomic transaction to another atomic transaction is not allowed.

There should not be executed transactions inside an atomic transaction to be sent into the UTX pool, the
miner field should be empty. This field is filled during transferring of the transaction into a block.

There should not be executable transactions in an atomic transaction which is in the UTX pool.

After execution of an atomic transaction, its ‘copy’ is included into a block. This ‘copy’ is generated as
follows:

¢ The miner field is not engaged for transaction signing and is filled with a miner public key.

¢ A block miner generates a proofs array, the source of which are identifiers of transactions included
into an atomic transaction. When included into a block, an atomic transaction has 2 signatures: a
signature of a source transaction and a miner signature.

 If executable transactions are included into an atomic transaction, they are substituted with executed
transactions. While validating an atomic transaction in a block, both signatures are checked.

24.2 Generating of atomic transactions

An access to the node REST API is required for generating of an atomic transaction.
1. A user picks supported transactions that should be used as an atomic operation.
2. After that, a user fills fields of all transactions and signs them.

3. A user fills the transactions field of an atomic transaction with data of signed, but not broadcasted
transactions.

4. After filling an atomic transaction with data of all included transaction, a user signs it and broadcasts
into the blockchain.

Data structures for signing and broadcasting of an atomic transaction, are listed in the list of transactions.

Attention: If you create an atomic transaction including a 774 transaction, set its broadcast value as
false while signing.

See also
Description of transactions

Waves Enterprise Mainnet fees

24.2. Generating of atomic transactions 232

CHAPTER

TWENTYFIVE

CONSENSUS ALGORITHMS

Blockchain is a distributed system which does not have a unified process regulator. Decentralization prevents
corruption inside the system but complicates decision making and organization of an overall workflow.

These problems are resolved by the consensus - an algorithm which coordinates work of the blockchain
participants by means of a certain voting method. Voting in the blockchain is always performed in support
of the majority: minority interests are not taken into account, and decisions that have been made become
mandatory for all network participants. Anyway, voting guarantees achievement of a consensus that will be
profitable for the entire network.

The Waves Enterprise blockchain platform supports three consensus algorithms:

25.1 LPoS consensus algorithm

The PoS (Proof of Stake) consensus algorithm is based on proofing of an address token share, the LPoS
(Leased Proof of Stake) also includes an opportunity to lease tokens. With these algorithms, generation of
a block does not need energy consuming calculations, a miner should create a digital signature of a block.

25.1.1 Proof of Stake

The mechanism for delegating of rights for block generation is based on the number of tokens in the user’s
account. The more tokens a user has, the more likely this user will be able to generate a block.

In the Proof of Stake consensus algorithm, the right to generate a block is determined in a pseudo-random
way: a next miner is identified on the basis of previous miner data and balances of all network users. This
is possible due to a deterministic computation of a block’s generating signature, which can be obtained by
SHA256 hashing of the current block’s generating signature and the account’s public key. The first 8 bytes
of the resulting hash are converted to a hit digit X,, of an account, this digit will be a pointer to the following
miner. The time of block generation for an i account is calculated as:
log XX"

b; Ay,)

T; = Trin + C1log(1 — Cy

where:
¢ b; — a balance stake of a participant in comparison with the network total balance;
e A, — baseTarget, the adaptive ratio regulating the average time of issue of the block;
¢ X, — a pointer to the next miner;
e Thin — a constant value defining a minimum time interval between blocks (5 seconds);

* C; — a constant value correcting the form of interval allocation between blocks (70);

233

Technical description of the Waves Enterprise platform, Release 1.7.0

* Cs — a constant value that is equal to the BaseTarget (5E17) by default and intended for its correction.

Based on this formula, the probability of selecting the participant to be rewarded depends on the participant’s
stake of assets in the system. The bigger the stake, the higher the chance of reward. The minimum number
of tokens needed for mining is 50000 WEST.

BaseTarget is a parameter that maintains the block generation time within a given range. BaseTarget is

calculated as follows:

T, T,
(S > Rimaz — Tp = T + max(1, ﬁ)) A (S < Rpin ANNTy, > 1 — Ty, =T, — maz(1, ﬁ))

where

* R max - maximal decrease of complexity that is engaged when block generation time exceeds 40 seconds
(90);

* Rnin - minimal increase of complexity that is engaged when block generation time is less than 40
seconds (30);

¢ S — the average time of generation of at least three last blocks;
* T, — the previous baseTarget value;
e T}, — a calculated baseTarget value.

A detailed description of the technical characteristics and developments of the classical PoS algorithm for
the Waves Enterprise blockchain platform is stated in this article.

Advantages over the Proof of Work (PoW)

The absence of complex calculations allows PoS networks to lower the hardware requirements for the system
participants, which reduces the cost of deploying private networks. No additional emission is required, which
in PoW systems is used to reward miners for finding a new block. In PoS systems, a miner receives a reward
in the form of fees for transactions which appeared in the miner’s block.

25.1.2 Leased Proof of Stake

A wuser who has an insufficient stake for effective mining may transfer his balance for lease to another
participant and receive a portion of the income from mining. Leasing is a completely safe operation, as
tokens do not leave the user’s wallet, but are delegated to another miner, which gives the miner a greater
opportunity to earn mining rewards.

See also

General platform configuration: consensus algorithm
Consensus algorithms

PoA consensus algorithm

CFT consensus algorithm

25.1. LPoS consensus algorithm 234

https://forum.wavesplatform.com/uploads/default/original/2X/7/7397a4cb5fa77d659a7b7ecc9188dd0a4fe0decc.pdf/

Technical description of the Waves Enterprise platform, Release 1.7.0

25.2 PoA consensus algorithm

In a private blockchain, tokens are not always needed. For example, a blockchain can be used to store hashes
of documents exchanged by organizations. In this case, in the absence of tokens and fees from transactions,
a solution based on the PoS consensus algorithm is redundant. The Waves Enterprise Blockchain Platform
offers the option of a Proof of Authority (PoA) consensus algorithm. Mining permission is issued centrally in
the PoA algorithm, which simplifies the decision-making compared to the PoS algorithm. The PoA model is
based on a limited number of block validators, which makes it scalable. Blocks and transactions are verified
by pre-approved participants who act as moderators of the system.

25.2.1 Algorithm description

An algorithm determining the miner of the current block is formed on the basis of the parameters stated

below. The parameters of the consensus are specified in the consensus block of the node configuration file.
* t - the duration of a round in seconds (the parameter of the node configuration file: round-duration).

* tg - the duration of a synchronization period, calculated as t*0.1, but not more than 30 seconds (the
parameter of the node configuration file: sync-duration).

* Npan - @ number of missed consecutive rounds for issuing the ban for the miner (the parameter of the
node configuration file: warnings-for-ban);

* Ppan - a maximum percentage of banned miners, from 0 to 100 (the parameter of the node configuration
file: max-bans-percentage);

* than - the duration of the miner ban in blocks (the parameter of the node configuration file:
ban-duration-blocks).

e Ty - unix timestamp of genesis block creation.
¢ Ty - unix timestamp of creation of the H block — the NG key block.
¢ 1 - round number, calculated as (Tcyurrent -To) div (t+ t5)-

e A, - the leader of the round r, who is entitled to create key blocks and microblocks for NG in the round
r.

e H - blockchain height, at that the NG key block and microblocks are created. The A, round leader is
entitled to generate the block.

e My - the miner who creates a block at the H height.
* Qu - the queue of active miners at the H height.

The Qn queue consists of addresses that have the miner permission. At the same time, the miner permission
should not be removed from the addresses before the H height or expiry before the Ty time.

The queue is sorted by the time stamp of the mining rights transaction. The node which was granted the
rights earlier will be higher in the queue. To keep the network consistent, this queue will be the same on
each node.

A new block is generated during each r round. A duration of a round is t seconds. Each round is followed
with ts seconds for network data synchronization. During the synchronization, microblocks and key blocks
are not, generated. Each round has a leader A, , who is entitled to generate a block in this round. A leader
can be defined at each network node with the same result.

The round leader is defined as follows:

1. The miner My_; is defined, who has created a previous block at the H-1 height.

25.2. PoA consensus algorithm 235

Technical description of the Waves Enterprise platform, Release 1.7.0

2. The queue of active miners Qy is calculated.
3. Inactive miners are excluded from the queue (see Ezclusion of inactive miners).

4. If the miner of the H-1 (My_;) block is in the Qu queue, a next miner in the queue becomes the leader
of the A, round.

5. If the miner H-1 (Mg.;) block is not in the Qg queue, the miner next to the miner of the H-2(Myg_5)
block becomes a leader of the A, round, and so on.

6. If the miners of the (H-1..1) blocks are not in the queue, the first miner in the queue becomes the
round leader.

This algorithm identifies and checks the miner, who creates each block of the chain by calculating the list of
authorized miners for each moment of time. If the block was not created by the designated leader within the
allotted time, no blocks are generated within that round, and the round is skipped. Leaders who skip block
generation are temporarily excluded from the queue by the algorithm described in the paragraph Exclusion
of inactive miners.

The block generated by the leader A, with the time of the block Ty from the half-interval (T +(r-1)*(t+t
); To +(r-1)*(t+tg)+t] is determined to be valid. The block created by the miner out of its turn or not in
time is considered invalid. After a round of t duration, the network synchronizes the data for t; . The leader
A, has t; seconds to propagate the validation block over the network. If any node of the network during ts
has not received a block from the leader A, , this node recognizes the round as ‘skipped’ and expects a new
H block in the next round r+1, from the following leader A, ; .

The consensus parameters t and ts are configured in the node configuration file. The parameter T should be
the same for all network participants, otherwise the network will fork.

25.2.2 Synchronization of time between network hosts

Each host should synchronize the application time with a trusted NTP server at the beginning of each round.
The server address and port are specified in the node configuration file. The server must be available to each
network node.

25.2.3 Exclusion of inactive miners

If any miner misses generation of a block Ny,, times in a row, this miner is excluded from the queue for t,,,
of next blocks (the ban-duration-blocks parameter in the node configuration file). Each node excludes
an inactive miner on its own based on the calculated queue Qg and information about the H block and the
My miner. The Py,, parameter specifies the maximum percentage of excluded miners in the network in
comparison with all active miners at any moment. If the Ny,, of misses is achieved by a miner, but at the
same time the Pyp., is also achieved, this miner will not be excluded from the queue.

25.2.4 Monitoring

The PoA consensus monitoring helps to identify how non-valid blocks are created and distributed, as well
as how miners skip the queue. Network administrators perform additional troubleshooting and blocking of
malicious nodes.

To monitor the process of generating blocks using the PoA algorithm, the following details are entered in
InfluxDB:

¢ Active list of miners sorted by the timestamp of granting of mining rights.

¢ Scheduled round timestamp.

25.2. PoA consensus algorithm 236

Technical description of the Waves Enterprise platform, Release 1.7.0

¢ Actual round timestamp.

¢ Current miner.

25.2.5 Changing consensus settings

The consensus parameters (round time and synchronization period) are changed on the basis of the node
configuration file at the from-height of the blockchain. If any node does not specify new parameters, the
blockchain will fork.

Configuration example:

// specifying inside of the blockchain parameter
consensus {
type = poa
sync-duration = 10s
round-duration = 60s
ban-duration-blocks = 100
changes = [
{
from-height = 18345
sync-duration = 5s
round-duration = 60s
1,
{
from-height = 25000
sync-duration = 10s
round-duration = 30s

H

See also

General platform configuration: consensus algorithm
Consensus algorithms

LPoS consensus algorithm

CFT consensus algorithm

25.3 CF'T consensus algorithm

When information is exchanged extensively in a corporate blockchain, coherence among the network elements
that form a single blockchain is important. And the more participants are engaged in the exchange, the
more likely it is that an error will occur: a hardware failure by one of the participants, network problems,
and so on. This can lead to forks of the main blockchain and, as a consequence, rollback of a block that
seems to be already formed and included in the blockchain. In this case, the blocks subject to the rollback
begin to be mined again and become unavailable in the blockchain for some time. This, in turn, can affect
the business processes that use the blockchain. The Crash Fault Tolerance (CFT) consensus algorithm is
designed to prevent such situations.

25.3. CFT consensus algorithm 237

Technical description of the Waves Enterprise platform, Release 1.7.0

25.3.1 Algorithm description

The CF'T consensus algorithm is based on the PoA with an added phase for voting of mining round validators:
network participants that are automatically appointed by the consensus algorithm. This approach guarantees
the following;:

« more than a half of participants (validators) are familiar with a definite block and have validated it;
¢ the block will not be rollbacked and will be published in the blockchain;
¢ there will be no parallel chain in the network.

This is achieved by the finalization of a produced block. The finalization itself is based on the consensus
of majority of round validators (50% -+ 1 vote). In accordance with this consensus, the decision of block
broadcasting is taken. If this majority has not been achieved, mining will be stopped until the network
cohesion is restored.

Like the PoA, the CFT algorithm depends on the current time, starting and ending time of each mining
round is calculated upon the basis of a genesis block timestamp. Basic parameters that form an algorithm
that is used for appointment of a current block miner are also identical to the PoA parameters (see the
Algorithm description section). For validation of blocks, the consensus block of the node configuration file
has been expanded with three new parameters:

* max-validators — limit of validators participating in a current round.

¢ finalization-timeout — time period, during which a miner waits for finalization of the last block in a
blockchain. After that time, the miner will return the transactions back to the UTX pool and start
mining the round again.

* full-vote-set-timeout — optional parameter which defines, how long a miner will wait for the full
set of votes from all validators after the end of the round (node configuration file parameter:
round-duration).

The following terms are used for the following description of CFT functionality:
* t — round duration in seconds (parameter of the node configuration file: round-duration).
* tgiart — round start time.
* tsync — blockchain synchronization time (tggart + t)-
¢ teng — round end time.

* tg, - time period during which a miner waits for the finalization of the last block (parameter of the
node configuration file: finalization-timeout).

* Vimax — the maximum number of validators taking part in voting (parameter of the node configuration
file: max-validators).

25.3.2 Voting

The general scheme of the CFT consensus mining round:

Voting is performed in each round, nodes with the miner role can take part in it. Voting starts upon teync
and ends by tenq + tan - Within each time period defined for voting, voting of validators and voting of
current round miner are performed. Each validator of the round can send multiple votes, but a miner can
vote only once for its last microblock.

For voting, instance of a vote is used, which includes following parameters:

¢ senderPublicKey — a public key of a validator which has formed a vote;

25.3. CFT consensus algorithm 238

Technical description of the Waves Enterprise platform, Release 1.7.0

® % % ® 8 % % B B EE B EEE S S S S EE S E S HE T EEHEEEEEEEEEEE S EEEE SR EEEEEEEEEEEEEEEEEE S EEEEEE S EEEEEEEEEEEE

Full vote set timeout

Voting

i Round 1 i Round 2
E Syc i |
E duration 1 Einalization
. H 1 timeout
. Round
duration

I I R R

I I I I I I I I I

* blockVotingHash — hash of a liquid block with votes confirmed by a validator;

* signature — vote signature formed by a validator.

Defining of round validators and their voting

In order to define validators that can vote in a current round, a configurable node parameter max-validators
(Vimax) is used. If the number of active miners minus the current round miner does not exceed Vax , each of
them can take part in voting. Otherwise, in order to define validators of a current round, the pseudorandom
selection algorithm is used which allows to exclude the influence of a particular miner on choices of voters.

Voting of validators start under two preconditions:
* the next attempt to vote falls within the time interval required for voting;
¢ the address of the current node is one of the defined validators of the round for voting.

After the end of the round validators voting, the miner voting is started.

Voting of current round miners

The miner’s vote is triggered under two conditions:
¢ the next attempt to vote falls within the time interval required for voting;
¢ the address of the current node is the miner of the round.

A vote is considered valid if it was issued by an address that is in a list of validators of the current round and
has a correct signature. As soon as a miner gains the required number of votes, voting time slot is checked.
Then the finalizing microblock with all votes is released. The block with votes is considered finalized.

25.3. CFT consensus algorithm 239

Technical description of the Waves Enterprise platform, Release 1.7.0

25.3.3 Mining features

The basic rules of CFT consensus mining are identical to the PoA consensus rules. However, an additional
mechanism has been introduced to ensure consensus fault tolerance.

With CFT consensus, another mining attempt is considered a failure in case the last received block has not
been finalized — in other words, a microblock with valid votes has not been applied to the state. In this
case, if the mining attempts exceed the tgiart + tan , the node decides to return all transactions from the
last block back to the UTX pool, after that the round starts mining again.

To avoid the possible return of your transactions into the UTX pool, it is highly recommended to work not
with the current (liquid) block, but with a finalized one that has been already validated by the network
participants.

25.3.4 Selecting a channel for synchronization

The PoS and PoA consensus algorithms use a module that selects the strongest chain for synchronization by
comparing the data of the involved nodes. CFT uses a different selection mechanism, which also increases
system fault tolerance: it selects a random channel from the channels that are active at the moment of
synchronization. The list of active channels is constantly updated during the system operation, and the
synchronization time with a particular channel is limited to distribute the load evenly over the network.

25.3.5 Changing consensus parameters

Like in the PoS and PoA consensus algorithms, the consensus parameters are configured in the node config-
uration file. The configuration example is stated below:

consensus {
type: cft
warnings-for-ban: 3
ban-duration-blocks: 15
max-bans-percentage: 33
round-duration: 7s
sync-duration: 2s
max-validators: 7
finalization-timeout: 4s
full-vote-set-timeout: 4s

Recommendations for CFT configuration are stated in the General platform configuration: consensus algo-
rithm section.

See also
Consensus algorithms
Consensus algorithms
LPoS consensus algorithm
PoA consensus algorithm

The Waves Enterprise Mainnet uses the Leased Proof of Stake consensus algorithm for the internal decision
making. To support this, the WEST technical token has been developed, which serves as a proof of the right
for mining, as well as a financial motivation for the participants.

25.3. CFT consensus algorithm 240

Technical description of the Waves Enterprise platform, Release 1.7.0

Sidechains and private networks based on the Waves Enterprise blockchain platform can use any of three
supported consensus algorithms, depending on needs of a certain project. A private network consensus
algorithm is configured in the node configuration file.

See also

General platform configuration: consensus algorithm

25.3. CFT consensus algorithm 241

CHAPTER

TWENTYSIX

CRYPTOGRAPHY

The Waves Enterprise platform gives an opportunity to choose a cryptographic algorithm depending on
peculiarities of a project.

26.1 Hash coding

Hash coding is performed consequently by the Blake2b256 and Keccak256 functions or the “Streebog” func-
tion in accordance with the GOST R 34.11-2012 Information Technology — Cryptographic Information Se-
curity — Hash Function. The size of an output data block is 256 bits.

26.2 Electronic signature

Algorithms for key generation, producing and checking of electronic signatures are based on the Curve25519
elliptic curve (ED25519 with X25519 keys) or correspond with the GOST R 34.10-2012 Information Tech-
nology — Cryptographic Information Security — Signature and verification processes of electronic digital
signature.

Learn more about generation and verification of electronic signatures with the use of the gRPC' and REST
API methods.

26.3 Data encryption

The platform supports data encryption with the use of the session keys based on the Diffie-Hellman protocol.
This operation is used for encryption of any text information, for instance, smart contracts data that must
not be accessible to other blockchain participants. Encryption can be performed individually for every
recipient with generation of a unique cipher text, as well as with generation of a unified cipher text for a
group of recipients.

The algorithms used for symmetric encryption correspond with the AES standard or the GOST R 34.12-2015
Information Technology — Cryptographic Information Security — Block ciphers.

Here you can see the scheme of the text data encryption procedure based on the Diffie-Hellman protocol:
Symmetric CEK and KEK keys are used for encryption and decryption.

CEK (Content Encryption Key) is used for text data encryption. KEK (Key Encryption Key) is used for
encryption of a CEK.

242

Technical description of the Waves Enterprise platform, Release 1.7.0

i BLOCKCHAIN i
. OVER PUBLIC NETWORK

Y@

SENDER "S" RECIPIENTS "A" /"B"/"C"

ENCRYPT :". . - CALCULATE B

E 7

ENCRYPTED . : PRIV KEY A| [PUB KEY
' : ENCRYPTED
DATA . ! DATA

CEK E

CALCULATE N i .
KEK B = B B . B | | DECRYPT + B
mmE N

ENCRYPT B + B = B .| i DECRYPT a

' |
WRAPPED ! ' ENCRYPTED
EK A| ' | WRAPPED | [CEK MESSAGE
KEY A ' KEY B | ' DATA
' | '

@!@

@E@

oo
K i}
=

[=]
m
=
=

REPEAT FORB AND C | B i REPEAT FOR B AND C

WRAPPED
KEYC

A CEK is randomly generated by a blockchain node with the use of the corresponding hash coding algorithms.
A KEK is used to encrypt a CEK and is generated by a node on the basis of the Diffie-Hellman algorithm
with the use of public and private keys of a sender and recipients.

A symmetric CEK is unavailable for reading and is not demonstrated during the encryption process. It is
transferred from a sender to a recipient in an encrypted format (wrappedKey) via insecure channels together
with an encrypted message. An example of such insecure channel is a data transaction 772 for recording data
into a blockchain, or a smart contract state. A KEK will not be transferred from a sender to a recipient: it
is restored by the recipient on the basis of his closed key and a known public key of a sender (Diffie-Hellman
key exchange algorithm).

Learn more about encryption with the use of gRPC methods.

In order to encrypt network channels, the TLS v. 1.2 (AES-256 CBC SHA) algorithm is used. If the GOST
encryption is used, the protocol establishes a TLS-like connection with the use of the ‘Kuznyechik’ encryption
algorithm.

See also
gRPC: encryption and decryption methods
REST API: encryption and decryption methods

26.3. Data encryption 243

CHAPTER

TWENTYSEVEN

PERMISSIONS

The Waves Enterprise blockchain platform implements a permissioned blockchain model: only authorized
participants can have access to it.

The platform also has a role (permission) model which allows to separate permissions of the network partic-
ipants. Permission management is performed with the use of the 102 Permission Transaction.

27.1 Description of permissions

permissioner

A participant with the permissioner role is a network administrator and is entitled to add or remove any
roles of participants. The first permissioner is appointed upon the start of the blockchain network.

sender
A participant with the sender role is entitled to send transactions into the network.

This role can be enabled with the use of the sender-role-enabled parameter which is to be found in the
genesis block of the node configuration file.

blacklister

A participant with the blacklister role is entitled to temporarily or constantly restrict the activity of
other participants by adding the banned role to their accounts. To do this, a blacklister sends the 102
transaction with the corresponding parameters.

miner

A participant with the miner role can be chosen as a round miner. In this case he will be entitled to form a
next blockchain block.

issuer

A participant with the issuer role is entitled to issue, reissue and burn tokens.

contract _developer

A participant with the contract_developer role is entitled to create smart contracts in the blockchain.
Learn more about smart contracts and usage of this role in the Smart contracts article.

contract validator

A participant with the contract_validator role is entitled to validate smart contracts to be created or
updated in the blockchain.

Learn more about smart contracts and usage of this role in the Smart contract validation article.

244

Technical description of the Waves Enterprise platform, Release 1.7.0

connection-manager

A participant with the connection-manager role is entitled to connect and disconnect network nodes. As a
rule, a network administrator is also appointed as a connection-manager.

Learn more about node connection and disconnection in the article Connection and removing of nodes.
banned

A participant with the banned role cannot perform any actions in the blockchain temporarily or constantly
. An address with the banned role is added to the blacklist of nodes.

27.2 Permission management

A permission list can be changed only by a node with the permissioner role. Roles are added and removed
with the use of the 102 Permission Transaction.

The process of participant permission adding and removing is described in the article Permission manage-
ment.

Prior to sending of the 102 transaction, a node checks the following:
1. A sender of the 102 transaction is not included in the blacklist.
2. A sender address has the permissioner role.
3. The permissioner role of the address is active at the moment of transaction sending.
4

. A role stated in the 102 transaction is not active in case of its adding to the address and, vice versa,
is not active in case of its removing.

Adding and removing permissions is performed by broadcasting the corresponding transactions in the
blockchain. Permissions can be arbitrarily combined for any address; a permission can be removed at
any moment.

See also
REST API: information about permissions of participants

Description of transactions

27.2. Permission management 245

CHAPTER

TWENTYEIGHT

CLIENT

Waves Enterprise Client is a web application for interaction with the Waves Enterprise blockchain in the
Mainnet.

The client consists of the following sections:

¢ Network stats — general information about the current state of the Waves Enterprise Mainnet, statistical
data of the network and oracles;

¢ Explorer — information about transactions sent to the network;

¢ Tokens — issue, transfer and leasing of tokens;

¢ Contracts — smart contract broadcasting in the network;

* Data transfer — sending of data transactions and files, work with confidential data access groups;

* Network settings — information about network nodes, registration of new nodes and leasing calculation;
¢ Write to us — the Waves Enterprise support feedback form.

You can access settings of your profile in the upper right corner of the page by clicking on an icon with your
e-mail address.

The Address button in the upper right corner of the page will direct you to the node address form or the form
for creation of a new blockchain address and linkage of your profile to it. After setting up of the address, you
will be able to list information about your account (public and private keys, seed phrase, current balance).

The ‘Address’ window also allows you to manage permissions of other blockchain network participants, if
you have the permissioner permission.

28.1 Network stats

The General information tab shows the current state of the Waves Enterprise Mainnet:
¢ network load;
* average block size;
¢ total number of blocks in the network;
¢ number of nodes and transaction senders;
¢ last called smart contracts.
The Stats tab shows the basic metrics of the blockchain:
¢ Number of transactions in the network;

¢ Number of smart contract call transactions;

246

https://client.wavesenterprise.com
https://wavesenterprise.com/ru/products-and-services/oracles

Technical description of the Waves Enterprise platform, Release 1.7.0

ques H Commeon infermation
| NETWORK LOAD AVERAGE BLOCK SIZE NUMBER OF BLOCKS
— ol Network stats
0.1589% 1.59 KIB 1523990
TRANSACTION SENDERS NODES AVAILABLE
5828 50

Last contracts

oracle_contract
095
oracle_contract
095

oracle_contract

e Number of transactions for token operations;
¢ Number of other transactions;
e List of last called smart contracts;
* List of smart contract images being in use;
¢ Number of active addresses;
* Top 10 addresses according to number of sent transactions;
¢ Top 10 miner nodes;
e Token cycle stats.
The Oracles tab shows data obtained from external sources.
The relative chart shows dependence of WEST price from conventional assets in the following pairs:

« WEST - USDN;

« BTC - USD;
« BRENT - USD;
« Gold - USD;

The WEST price chart shows price of the WEST token in other cryptocurrencies:
+ WEST - USDN;
« WEST - WAVES;
« WEST - BTC.

28.1. Network stats 247

Technical description of the Waves Enterprise platform, Release 1.7.0

28.2 Explorer

W M
qves 9 Alltransactions ® Period
Q. Enter your query, search will be performed in filtered list
- @ Explorer Total records: 1000+
Call: eracle_contract

Call: oracle_contract

Call: oracle_contract

Call: oracle_contract

Call: oracle_contract

Call: oracle_contract

3Ng3g5Z5pbZQZazPeTAUZW.

3Ng3g5ZSpbZQZa2PETAUZW. .

INgGIg5ZSpbZQZaZPETAUZW. .

3Ng3g5Z5pbZQZazPeTAUZW.

3Ng3g5Z5pbZQZa2PETAUZW. .

3Ng3g575pbZQZa2PETAUZW.

Docker

Docker

Docker

Docker

Docker

Docker

The “Explorer” section contains information about transactions in the blockchain. Broadcasting timestamp

is available as a search filter, as well as following categories:

e participants;
¢ data transactions;

* transaction identifiers;

¢ names of smart contracts;

* transaction signatures;

* number of a block containing transactions.

Additional filters are also available for showing of a definite transaction category:

¢ Tokens — token operations;

e (Contracts — smart contract operations;

e Data transactions;

* Permissions — permission management;
* Groups — confidential data groups management;

e Unconfirmed transactions — UTX pool content.

The Users link situated in the end of filter list will direct you to the list of the network users with a filter
according to their permissions.

28.2. Explorer

248

Technical description of the Waves Enterprise platform, Release 1.7.0

28.3 Tokens
waves ™
ull
& E
—_ Tokens
§
|
i3
a

No tokens on the address

To make transactions, add WEST tokens from Waves.Exchange to
your balance in Waves Enterprise.

Add tokens through Waves.Exchange

If you do not have tokens on your address, the tab will show a button that will redirect you to the Waves

Exchange.

In case you have tokens on your address, the tab will show your current balance, as well as buttons for
transfer of tokens to other network participants, tokens leasing and issue. Issue of tokens requires the issuer
permission of your address.

28.4 Contracts

The “Contracts” section contains information about smart contracts installed in the blockchain. It also allows
to start definite smart contracts. The filtering according to following transaction parameters is available for
searching of smart contracts:

¢ authors and senders of transactions;

* signatures;

e smart contract identifiers;

* smart contract names;

¢ Docker image name.

Additional filters are also available for showing of definite smart contract categories:

e My contracts — the smart contracts developed and installed by you;

e All contracts — default value;

28.3. Tokens

249

Technical description of the Waves Enterprise platform, Release 1.7.0

waves M All contracts @ Period

Q. Enter your query, search will be performed in filtered list

Number of records: 181

- § conwacts EI 095 20 April 2021, 1014 Docker

:EI 035 16 April 2021,14:35 Docker

095 16 April 2021,14:35 Docker

)

ﬁ' 035 16 April 2021,14:35 Docker

* Disabled smart contracts — smart contracts disabled by their developers with the use of the 106 trans-
action.

The page of each smart contract contains four tabs:
¢ Information — author address, image name, checksum, smart contract version and creation date;
e Data — the result of the last smart contract call;
¢ Call — on this tab, you can call the smart contract if you have sufficient balance on your address;

* Version history — a table with Docker image names, creation timestamps and checksums for each smart
contract version.

Learn more about smart contracts of the Waves Enterprise blockchain platform in the article Smart contracts.

28.5 Data transfer

The “Data transfer” section allows to sign and send data transactions into the blockchain. You can also
create confidential data groups and send confidential data transactions into them in this section.

Learn more about confidential data groups in the article Confidential data exchange.

At the Data record tab allows you to create and send a data transaction. To do this, fill the “key-value”
fields and choose a recipient address.

At the Groups tab, you can create and edit confidential data groups and send data transactions to them.
This tab also shows confidential data groups you are a member of.

28.5. Data transfer 250

Technical description of the Waves Enterprise platform, Release 1.7.0

ques H Data record

Create data transaction

Storing data in blockchain

Data is written to addresses and stored in key-value format. Each key
must be unique for the address, otherwise value of this key will
be overwritten

“You can view transaction history in the «Data» section by selecting
«Data transactions» option in the first switch of action panel

— @) Datatransfer You can also use search in «Data» section. Start typing key name
or value, and select «Search in data transactions» option in the drop-
down box

Restrictions

For this transaction, maximum data size is 150 KB, maximum
number of key-value pairs is 100 entries.

28.6 Network settings

The “Network settings” sections allows to list information about nodes registered in the network, as well as
to calculate leasing.

The Node tab shows information about the blockchain network:

e Public key;

e Address;

* Status;

e Address of a last transaction sender that have changed the node state;

¢ Last node state change timestamp;

¢ Presence of miner or banned permissions;

¢ Node membership in confidential data groups with information about these groups.
Search and filtering of nodes according to the following parameters are available:

¢ Name;

¢ Address;

¢ Public key;

e Activity in the network.
You can also send a request for connection of a new node to the network by pressing the Create request.
The Calculation of lease payouts tab contains the form for leasing calculation.

The calculation has the following algorithm:

28.6. Network settings 251

Technical description of the Waves Enterprise platform, Release 1.7.0

waves ™ Nodes

¢ Create request All nodes

Q, Enter address or public key

Total records: 56

node-1190421

- % Network settings

node-1310321

ETwWYQQskAYEhxbgtmAWXCECKt7xR8jJo

yar_test_node

node-1081220

node-2071220

O O O O O M@

Active

Active

Active

Active

Active

Active

1. A generating balance is requested from the leasing pool node for the beginning of a calculated period;

2. Leasing sum is calculated taking into account miner revenues (each miner should receive 40% for his

own block and 60% for a previous block);

3. The sum is divided for each pool participant proportionately with a total sum of assets in leasing and

the node generating balance at a defined height;

4. The calculated leasing sum is multiplied by a revenue percentage;

5. The node generating balance is re-calculated for a new height taking into account new and cancelled

leasings.

28.7 Write to us

In this section, you can write any comment or message for the Waves Enterprise technical support service.

See also

Attachment of a client to the private blockchain

28.7. Write to us

252

Technical description of the Waves Enterprise platform, Release 1.7.0

Wq Ves o Leave your feedback, report a problem or suggest an
improvement. Or just write thoughts on Waves Enterprise ;)

Select a mood
ull Network stats

"
® Explorer =
© Tokens Comment
§ Contracts Write your thoughts here
]

— @ writetous

28.7. Write to us 253

CHAPTER

TWENTYNINE

GENERATORS

Generators is a set of utilities included in the supply package of the Waves Enterprise blockchain platform.
Generators are developed as a package file generator-x.x.x.jar, where x.x.x is the blockchain platform release
version.

Generators for each version of the blockchain platform are available in the official GitHub repository of
Waves Enterprise.

In order to work with the generators, you have to install the Java Runtime Environment for your operating
system. All components of the generator set are operated in the terminal or command line.

The generator set includes following utilities:
¢ AccountsGeneratorApp — node account generator;
* GenesisBlockGenerator — genesis block signer;

e ApiKeyHash — a generator for hash coding of an API key string required for node API authorization;

29.1 AccountsGeneratorApp

The AccountsGeneratorApp is used for configuration of a node account in a private network — a set of data
about a blockchain network participant. To generate an account, you have to set up the accounts.conf file
in the node directory.

Running of the AccountsGeneratorApp:

java -jar generators-x.x.x.jar AccountsGeneratorApp YourNode/accounts.conf

The generator creates a node public key (account) and stores it in the keystore.dat file in the directory of
your node. If necessary, you can set a keypair password.

Hint: If you have set the password for your keypair, you have to state it in the password field while creating
queries and transactions.

Learn more about node account generating in the section Creation of the node account.

254

https://github.com/waves-enterprise/WE-releases/releases
https://github.com/waves-enterprise/WE-releases/releases
https://java.com/en/download/help/download_options.html

Technical description of the Waves Enterprise platform, Release 1.7.0

29.2 GenesisBlockGenerator

The GenesisBlockGenerator is used for signing of a private network genesis block — the first block of a new
network which contains transactions that define initial balances and permissions. To sign a genesis block,
the generator uses the blockchain.genesis block of the node.conf node configuration file.

Running of the GenesisBlockGenerator:

’java -jar generators-x.x.x.jar GenesisBlockGenerator YourNode/node.conf

The generator fills the fields genesis-public-key-base-58 (a public key of a genesis block) and signature
(genesis block signature) of a node configuration file.

Learn more about genesis block signing in the section Signing of a genesis block and start of the platform.

29.3 ApiKeyHash

The ApiKeyHash utility is used for authorization of the node API methods (gRPC and REST API interfaces
for data exchange). For generation of a JWT token (in case of oAuth authorization) or a token based on an
api-key string, the generator uses the api-key-hash.conf configuration file in the node directory.

Running of the ApiKeyHash:

java -jar generators-x.x.x.jar ApiKeyHash YourNode/api-key-hash.conf

The utility generates a JWT token or a hash of an entered api-key string, which are stated in the auth
section of the node configuration file.

api-key-hash.conf example:

apikeyhash-generator {
waves-crypto = yes
api-key = "some string for api-key"

}

Learn more about gRPC and REST API authorization in the section Additional configuration of the platform:
configuration of the gRPC and REST API authorization.

See also

Architecture

29.2. GenesisBlockGenerator 255

CHAPTER

THIRTY

AUTHORIZATION AND DATA SERVICES

The Waves Enterprise blockchain platform includes two external services:
¢ Authorization service, which provides authorization of all network components;

 Data service, which gathers blockchain data into a database and provides API for access to the gathered
data.

30.1 Authorization service

This service provides authorization of all blockchain network components on the basis of the oAuth 2.0
protocol. oAuth 2.0 is the open authorization framework which allows to grant a third party restricted
access to a user’s protected resources without disclosing login and password.

The general chart of the oAuth 2.0 authorization:

Authorization request

S —— .3
| Authorization grant |
3 Authorization grant 3
o >
1 Access token and refresh token :
Mmoo e ey

Accesstoken pemeemmmemeeeeeeeeeeeoooo 1 !
-- > H | . .

I- Protected resource E Author'zatlon
Client . 777777 ;
Server

Access token Resource Server

,, >
Access token error
]
Refresh token

B o o o s »
i New access token and updated refresh token
= e e e e

The object of the oAuth authorization is the JSON Web Token (JWT). Tokens are used for authorization of
every query from a client to a server and have a limited lifetime. A client receives two tokens — access and
refresh. An access token is used for authorization of queries for access to protected resources and storage of

256

https://jwt.io/

Technical description of the Waves Enterprise platform, Release 1.7.0

additional information about a user. A refresh token is used for receiving of a new access token and updating
of a refresh token.

The authorization scheme of the Waves Enterprise blockchain platform:

CLIENT AFP

- (4) Data ~

(3) Auth key ™
(1) Auth key

AUTH SERVICE

DATA SERVICE
=N \ ;
L (2) Refresh tokesn and

access token

NODE

\-4’@
EXTERNAL SERVICE @ \
Sub Auth key

Client 1 Ewid3twet

Client 2 36y21erqq

Client 3 Gyt78ngy6

The general authorization procedure is carried out as follows:

1. A client (blockchain network component: a corporate client, data exchange service or a third-party
application) provides its authentication data once to the authorization service;

2. In case of a successful primary authentication, the authorization service saves the authentication data
of the client in the data storage, generates the signed access and refresh tokens and sends them to the
client. The tokens contain their lifetime and basic data of the client: its identifier and role. Clients’
authentication data is stored in the authorization service configuration file. Each time before sending
a query to a third-party service, a client checks an access token lifetime. In case of token expiry, a
client refers to the authorization service for obtaining of a new access token. For these queries to the
authorization service, a client uses a refresh token.

3. With an actual access token, a client sends a query for obtaining of a third-party service data;

4. A third-party service checks an access token lifetime, its integrity and compares an authorization service
public key, received in advance, with a key, which is stored in the access token signature. If the check
is successful, a third-party service provides required data to a client.

Description of authorization methods is provided in the article Authorization service: authorization variants.

30.2 Data service

The data service is used for gathering of blockchain data into a database. This service has its own API for
access to the gathered data.

In the Waves Enterprise Mainnet, the data service operates in the autonomous mode, access to its API is
restricted. For deployment in a private network, the data service is configured by the Waves Enterprise
specialists, depending on peculiarities of a project. You can also change data service parameters by yourself
with the use of environment variables that are described in the article Data service: manual configuration.

30.2. Data service 257

Technical description of the Waves Enterprise platform, Release 1.7.0

30.3 API methods of the integration services

Definite REST API methods are available for the integration services for data exchange:

30.3.1 REST API: authorization service methods

GET /status

The method is used for obtaining of the authorization service status.
Example of the service response:

GET /status:

{
"status": "string",
"version": "string",
"commit": "string"

}

POST /v1/user

The method is used for registration of a new user via the authorization service.
The method query contains following data:

* login — user login (e-mail address);

¢ password — account password;

* locale — e-mail notifications language (possible variants: en and ru);

* source — user type: * license — owner of a blockchain platform license ; * voting — user of the Waves
Enterprise Voting service.

If the registration has been carried out successful, the method returns the 201 code. In case of another
response, a user has not been registered.

GET /v1/user/profile

The method is used for obtaining of user data.
Example of the service response:

GET /v1/user/profile:

{
"id": "string",
"name": "string",
"locale": "en",
"addresses": [
"string"

]1

(continues on next page)

30.3. API methods of the integration services 258

https://wavesenterprise.com/products-and-services/voting
https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"roles": [
"string"

]

}

POST /v1/user/address

The method is used for obtaining of a user address identifier. The method query contains following data:
¢ address — user blockchain address;
* name — user name.

Example of the service response:

POST /v1/user/address: :animate: fade-in-slide-down

{
"addressId": "string"

}

GET /v1/user/address/exists

The method is used for checking of a user e-mail address. The method query contains a user e-mail address.
Example of the service response:

GET /v1/user/address/exists: :animate: fade-in-slide-down

{

"exist": true

}

POST /v1/user/password/restore

The method is used for restoring of an account password.
The method query contains following data:
* email — user e-mail;

 source — user type: * license — owner of a blockchain platform license ; * voting — user of the Waves
Enterprise Voting service.

Example of the service response:

POST /v1/user/password/restore: :animate: fade-in-slide-down

{
"email": "string"

}

30.3. API methods of the integration services 259

https://wavesenterprise.com/products-and-services/voting
https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /v1/user/password/reset

The method is used for user password reset.
The method query contains following data:
¢ token — user authorization token;

* password — current user password.

Example of the service response:

POST /v1/user/password/reset: :animate: fade-in-slide-down

{
"userId": "string"

}

GET /v1/user/confirm/-code”

The method is used for confirmation of a password restoring code for a user account. The method query
contains a confirmation code value.

POST /v1/user/resendEmail

The method is used for resending of a password recovery code to a specified e-mail.
The method query contains following data:
e email — user e-mail;

* source — user type: * license — owner of a blockchain platform license ; * voting — user of the Waves
Enterprise Voting service.

The method response returns a user e-mail, to which a restoring code was sent.
Example of the service response:

POST /v1/user/resendEmail:

{
"email": "string"

}

POST /v1/auth/login

The method is used for obtaining of a new authorization token for a user.
The method query contains following data:

* name — user name;

* password — account password;

* locale — e-mail notifications language (possible variants: en and ru);

 source — user type: * license — owner of a blockchain platform license ; * voting — user of the Waves
Enterprise Voting service.

30.3. API methods of the integration services 260

https://wavesenterprise.com/products-and-services/voting
https://wavesenterprise.com/products-and-services/voting
https://wavesenterprise.com/products-and-services/voting
https://wavesenterprise.com/products-and-services/voting

Technical description of the Waves Enterprise platform, Release 1.7.0

Example of the service response:

POST /v1/auth/login:

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"

}

POST /v1/auth/token
The method is used for obtaining of authorization tokens for external services and applications. This method
does not require any query parameters.

Example of the service response:

POST /v1/auth/token:

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"

}

POST /v1/auth/refresh
The method is used for obtaining of a new refresh token. The method query contains a current refresh token
value.

Example of the service response:

POST /v1/auth/refresh:

{
"access_token": "string",
"refresh_token": "string",
"token_type": "string"
1

GET /v1/auth/publicKey
The method is used for obtaining of an authorization service public key. This method does not require any
parameters in its query.

Example of the service response:

POST /v1/auth/refresh:

MIICIjANBgkqhkiGOwOBAQEFAAOCAg8AMIICCgKCAgEA7d90j/ZQTkk jf4UuMfUu
QIFDTYxYf6QBKMVJIng/wXyPYYkV8HVFYFizCaEciv3CXmBH77sXnuT1rEtvK7zHB
KvV870HmZuaz jIgZVSkOn0Y7F8UUVNXn1zVD1dPs0GJ60rM41DnC1W65mCrP3bjn
£V4RbmykN/1k7McABEsMcLEGbKkFhmeq2Nk4hn2CQvoTkupJUn0CP1dh04bq11Q7
Ffj9K/FJq73wSXDoH+qqdRG9sfrtgrht JHerruhv3456e0zyAcD08+s JUQFKY80B
SZMEndVzFS2ub9(8e7Bf cNxTmQPM4PhHO5wuTqL32qt3uJBx20I141u30ND44ZxrDJ

(continues on next page)

30.3. API methods of the integration services 261

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

BbVog730PjRYXj+kTbwUZI66SP4aLlc(8sypQyLwgKk5DtLRozSNOOIrupJJ/pwZs
9zPEggL91TOrirbEhG1f5U8/6XN8GVXX4iMk2fD8FHLF JuXCD703j4JC2iWfFDC6a
uUkwUfqf j JB8BzIHkncoq0ZbpidEE21TW1+svuEu/wyP5rN1yMiE/e/fZQqM2+00
cH5Qow6HH35Br1oCSZciutUcd1U7YPQESI5tryy1xn9bsMb+0nlocZTtvec/owdM
RmnJwmOj1nd+cc190KLG5/boeA+2zqWu0jCbWRIcOoCmgbhuqZ CHaHTBEAKDWcsC
VRz5qD6FPpePpTQDb6ss3bkCAWEAAQ==

See also

Authorization and data services
data-sv-conf

auth-sv-var

REST API: methods of the data service

30.3.2 REST API: methods of the data service

Following API methods are available for the data service:

Assets method group

The methods of the Assets group are used for obtaining of data about token sets (assets).

GET /assets
The method is used for obtaining the blockchain available assets list. The list consists of transactions for
emission of the corresponding assets.

Response example:

GET /assets:

[
{

"index": O,
"id": "string",
"name": "string",
"description": "string",
"reissuable'": true,
"quantity": O,
"decimals": 0O

30.3. API methods of the integration services 262

Technical description of the Waves Enterprise platform, Release 1.7.0

POST /assets/count

The method returns a number of available assets in the blockchain.
Response example:

POST /assets/count:

{

"count": O

}

GET /assets/—id”

The method returns information about an available asset according to its {id}.
The response of the method contains following data:

¢ index — asset index number;

e id — asset identifier;

* name — asset name;

¢ description — asset description;

e reissuable — reissuability of an asset;

e quantity — the number of tokens in an asset;

* decimals — number of decimal places in a used token (WEST — 8)
Response example:

GET /assets/{id}:

{
"index": 14,
"id": "12nxOgnhjd83",
"name": "Demo asset",
"description": "Demo asset",
"reissuable'": true,
"quantity": 400,
"decimals": 8

Blocks method group

GET /blocks/at/-height”

The method returns content of a block at a defined height.
The response of the method contains following parameters:
¢ reference — block hash sum;
* blocksize — size of a block;

e features — features activated at the moment of block generation;

30.3. API methods of the integration services

263

Technical description of the Waves Enterprise platform, Release 1.7.0

* signature — block signature;

e fee — total fee for the transactions included in a block;

e generator — block creator address;

e transactionCount — number of transactions included in a block;

* transactions — array with bodies of transactions included in a block;
¢ version — block version;

* poa-consensus.overall-skipped-rounds — number of skipped mining rounds in case the PoA con-
sensus algorithm is used;

e timestamp — block Unix Timestamp (in milliseconds);

* height — height of block generation.

Response example:

GET /blocks/at/{height}:

{

—

—

"reference":
"hT5RcPT4 jDVoNspfZkNhKqfGuMbriz jpG4vmPecVEWgWaGMoAnShgPBJpC9696TL8wGDKJzkwewiqe8m26C4aPd" ,
"blocksize": 226,
"features": [],
"signature":
"5GAM7 j£QScwdg3g7PCNNtz5xG3Jz jInW4Ap2soThirSx1AmUQHQM jz8VMtkFEzK7L447ouKHf j2gMvZyP5u94Rps",
"fee": O,
"generator": "3Mv79dyPX2cvLtRXn1MDDWiCZMBrkw9d97c",
"transactionCount": O,
"transactions": [],
"version": 3,
"poa-consensus": {
"overall-skipped-rounds": 1065423
1,
"timestamp": 1615816767694,
"height": 1826

Contracts method group

Methods of the Contracts group are used for obtaining of information about smart contracts of the blockchain.

GET /contracts

The method returns information about all smart contracts installed in the network. For each smart contract,
following parameters are returned:

e contractId — smart contract identifier;

* image — name of a smart contract Docker image or its absolute path in its registry;
* imageHash — smart contract hash sum;

* version — smart contract version;

e active — smart contract status at the moment of the query: true — working, false — not working.

30.3. API methods of the integration services 264

Technical description of the Waves Enterprise platform, Release 1.7.0

Example of an answer for one smart contract:

GET /contracts:

[
{
"contractId": "dmLT1ippM7tmfSC8u9P4wU6sBgHXGYy6JYxCql1CCh8i",
"image": "registry.wvservices.com/wv-sc/mayl4_1:latest",
"imageHash": "ff9b8af966b4c84e66d3847ab14e65f55b2c1£63afcd8b708b9948a814cb8957",
"version": 1,
"active": false

GET /contracts/count

The method returns a number of smart contracts on a blockchain that correspond with defined provisions
and filters.

Response example:

GET /contracts/count:

{

"count": 19

GET /contracts/id/—id”

The method returns information about a smart contract with a definite {id}.
Response example:

GET /contracts/id/{id}:

' "id": "string",
"type": O,
"height": 0,
"fee": O,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": 0

}

30.3. API methods of the integration services 265

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /contracts/id/—id" /versions

The method returns version history of a smart contract with a definite {id}.

Example of a response for one version:

GET /contracts/id/{id} /versions:

[
{
"version": O,
"image": "string",
"imageHash": "string",
"timestamp": "string"
}
]

GET /contacts/history/-id" /key/~key”

Returns a history of changes of a {key} key for a smart contract with a definite {id}.
Example of a response for one key:

GET /contacts/history/{id}/key/{key}:

{
"total": 777,
"data": [
{
"key": "some_key",
"type": "integer",
"value": "777",
"timestamp": 1559347200000,
"height": 14024
}
]
}

GET /contracts/senders-count

The method returns a number of unique participants that send transactions 70/ for smart contract calls.
Response example:

GET /contracts/senders-count:

{
"count": 777
}

30.3. API methods of the integration services 266

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /contracts/calls

The method returns a list of 104 transactions for smart contract calls with their parameters and results.

Example of a response for one transaction:

GET /contracts/calls:

[
{
Ilidll B "Stril’lg" ,
"type" : 0,
"height": 0,
"fee": O,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": 0,
"contract_id": "string",
"contract_name": "string",
"contract_version": "string",
"image": "string",
"fee_asset": "string",
"finished": "string",
"params": [
{
"tx_id": "string",
"param_key": "string",
"param_type": "string",
"param_value_integer": 0,
"param_value_boolean": true,
"param_value_binary": "string",
"param_value_string": "string",
"position_in_tx": O,
"contract_id": "string",
"sender": "string"
X
1,
"results": [
{
"tx_id": "string",
"result_key": "string",
"result_type": "string",
"result_value_integer": O,
"result_value_boolean": true,
"result_value_binary": "string",
"result_value_string": "string",
"position_in_tx": O,
"contract_id": "string",
"time_stamp": "string"
}
]
}
]

30.3. API methods of the integration services

267

Technical description of the Waves Enterprise platform, Release 1.7.0

Privacy method group

Methods of the Privacy group are used for obtaining of information about confidential data groups.

GET /privacy/groups

The method returns a list of confidential data groups in the blockchain.
Example of a response for one group:

GET /privacy/groups:

[
{
"id": "string",
"name": 0,
"description": "string",
"createdAt": "string"
}
1

GET /privacy/groups/count

The method returns a number of confidential data groups in the blockchain.
Response example:

GET /privacy/groups/count:

{

"count": 2

}

GET /privacy/groups/—address”

The method returns a list of confidential data groups that include a defined {address}.
Example of a response for one group:

GET /privacy/groups/{address}:

[
{
"id": "string",
"name": 0,
"description": "string",
"createdAt": "string"
3
]

30.3. API methods of the integration services

268

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /privacy/groups/by-recipient/—address”

The method returns a list of privacy data groups that include a defined {address} as a recipient of data.
Example of a response for one group:

GET /privacy/groups/by-recipient /{address}:

[
{
"id": "string",
"name": O,
"description": "string",
"createdAt": "string"
}
]

GET /privacy/groups/—address” /count

The method returns a number of confidential data groups that include a defined {address}.
Response example:

GET /privacy/groups/{address}/count:

{
"count": 1

}

GET /privacy/groups/id/-id”

The method returns information about a privacy data group with a definite {id}.
Response example:

GET /privacy/groups/id/{id}:

{
|lid|l: ”String”,
"name": 0,
"description": "string",
"createdAt": "string"

}

GET /privacy/groups/id/-id” /history

The method returns a history of changes of a confidential data access group with a definite {id}. The history
is returned as a list of sent 112-11/ transactions with their descriptions.

Example of a response for one transaction:

GET /privacy/groups/id/{id} /history:

30.3. API methods of the integration services 269

Technical description of the Waves Enterprise platform, Release 1.7.0

{
"id": "string",
"name": 0,
"description": "string",
"createdAt": "string"

}

GET /privacy/groups/id/—id” /history /count

The method returns a number of 112-114 transactions sent for changing of an access group with a definite
{id}.
Response example:

GET /privacy/groups/id/{id} /history/count:

{
"count": O

}

GET /privacy /nodes

The method returns a list of available nodes in the blockchain.
Example of a response for one node:

GET /privacy/nodes:

[
{
"id": "string",
"name": O,
"description": "string",
"createdAt": "string"
}
]

GET /privacy /nodes/count

The method returns a number of available nodes in the blockchain.
Response example:

GET /privacy /nodes/count:

{
"count": O

}

30.3. API methods of the integration services 270

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /privacy /nodes/publicKey/~targetPublicKey”

The method returns information about a node according to its {targetPublicKey}.
Response example:

GET /privacy /nodes/publicKey/{targetPublicKey}:

[
{
"id": "string",
"name": 0,
"description": "string",
"createdAt": "string"
}
]

GET /privacy /nodes/address/—address”

The method returns information about a node according to its {address}.
Response example:

GET /privacy/nodes/address/{address}:

[
{
"id": "string",
"name": 0,
"description": "string",
"createdAt": "string"
}
]

Transactions method group

Methods of the Transactions group are used for obtaining of information about transactions in the blockchain.

GET /transactions

The method returns a list of transactions corresponding with provisions of a search query and applied filters.

Important: The GET /transactions method returns not more than 500 transactions for one query.

Example of a response for one transaction:

GET /transactions:

[

{
"id": "string",
"type": O,
"height": O,

(continues on next page)

30.3. API methods of the integration services 271

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"fee": O,

"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,

"version": 0

GET /transactions/count

The method returns a number of transactions corresponding with provisions of a search query and applied
filters.

Response example:

GET /transactions/count:

{
"count": "116"

}

GET /transactions/—id”

The method returns a transaction according to its {id}.
Response example:

GET /transactions/{id}:

{

|lid|l: ”String”,

"type" 0 s

"height": O,

"fee": O,

"sender": "string",
"senderPublicKey": "string",
"signature": "string",

"timestamp": O,
"version": O

}

Users method group

Methods of the Users group are used for obtaining information about participants of the blockchain network.

30.3. API methods of the integration services 272

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /users

The method returns a list of participants corresponding with provisions of a search query and applied filters.

Example of a response for one participant:

GET /users:

[
{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
]
}
]

GET /users/count

The method returns a number of participants corresponding with filters applied in the query.
Example of a response for one participant:

GET /users/count:

{
"count": 1198
}

GET /users/—userAddressOrAlias”

The method returns information about a participants according to his address or alias.

Response example:

GET /users/{userAddressOrAlias}:

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
]
}

30.3. API methods of the integration services

273

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /users/contract-id/—contractld”

The method returns a list of participants that have ever called a smart contract with a definite {contractId}.
Example of a response for one participant:

GET /users/contract-id/{contractld}:

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
]
}

POST /users/by-addresses

The method returns a list of participants for a definite set of addresses.

Example of a response for one participant:

POST /users/by-addresses:

{
"address": "string",
"aliases": [
"string"
1,
"registration_date": "string",
"permissions": [
"string"
]
}

Methods for obtaining of information about data transactions (12)

This group of methods is called via the /api/v1/txIds/ route.

GET /api/v1/txIds/-key”

The method returns a list of identifiers for data transactions that include the defined {key}.

Example of a response for one transaction:

GET /api/vl/txIds/{key}:

L
{
"id": "string"
}
]

30.3. API methods of the integration services 274

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /api/v1/txIds/—key" /~value”

The method returns a list of identifiers for data transactions that include defined {key} and {value}.

Example of a response for one transaction:

GET /api/v1/txIds/{key}/{value}:

L
{
"id": "string"
}
]

GET /api/vl/txData/~key”

The method returns bodies of data transactions that include a defined {key}.

Example of a response for one transaction:

GET /api/vl/txData/{key}:

[
{

"id": "string",
"type": "string",
"height": O,
"fee": O,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",
"timestamp": O,
"version": O,
"key": "string",
"value": "string",
"position_in_tx": O

GET /api/vl/txData/~key” /~value”

The method returns bodies of data transactions that include defined {key} and {value}.
Example of a response for one transaction:

GET /api/vl/txData/{key}/{value}:

[
{

"id": "string",
"type": "string",
"height": O,
"fee": 0,
"sender": "string",
"senderPublicKey": "string",
"signature": "string",

(continues on next page)

30.3. API methods of the integration services 275

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"timestamp": O,
"version": O,
"key": "string",
"value": "string",
"position_in_tx": O

Leasing method group
GET /leasing/calc
The method returns a total sum for leasing of tokens in a specified block interval.

Response example:

GET /leasing/calc:

{
"payouts": [
{
"leaser": "3P1EiJnPxFxGyhN9sucXfB2rhQlws4cmuS5",
"payout": 234689
}
1,
"totalSum": 4400000,
"totalBlocks": 1600
}

Stats method group

Methods of the Stats group are used for obtaining statistical data and blockchain monitoring.

GET /stats/transactions

The method returns information about transactions that have been send within a specified time period.
Response example:

GET /stats/transactions:

{
"aggregation": "day",
"data": [
{
"date": "2020-03-01T00:00:00.000Z",
"transactions": [
{
"type": 104,
"count": 100

(continues on next page)

30.3. API methods of the integration services 276

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

GET /stats/contracts

The method returns information about transactions 10/ within a specified time period.
Response example:

GET /stats/contracts:

{
"aggregation": "day",
"data": [
{
"date": "2020-03-01T00:00:00.000Z",
"transactions": [
{
"type": 104,
"count": 100
}
1
}
]
}

GET /stats/tokens

The method returns information about turnover of tokens in the blockchain within a specified time period.
Response example:

GET /stats/tokens:

{
"aggregation": "day",
"data": [
{
"date": "2020-03-01T00:00:00.000Z",
"sum": "12000.001"
}
]
}

30.3. API methods of the integration services 277

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /stats/addresses-active

The method returns addresses that have been active within a specified time period.
Response example:

GET /stats/addresses-active:

{
"aggregation": '"day",
"data": [
{
"date": "2020-03-01T00:00:00.000Z",
"senders": "12",
"recipients": "12"
}
]
}

GET /stats/addresses-top

The method returns addresses that have been the most active senders or recipients within a specified time
period.

Response example:

GET /stats/addresses-top:

{
"aggregation": "day",
"data": [
{
"date": "2020-03-01T00:00:00.000Z",
"senders": "12",
"recipients": "12"
}
]
}

GET /stats/nodes-top

The method returns addresses of nodes that have created the largest number of blocks within a specified
time period.

Response example:

GET /stats/nodes-top:

{
"limit": "10",
"data": [
{
"generator": "3NdPsjaFC7NeioGVF6X4J5A8FVaxdtKvAba",
"count": "120",
"node_name": "Genesis Node #5"

(continues on next page)

30.3. API methods of the integration services 278

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

GET /stats/contract-calls

The method returns a list of smart contracts that have been mostly called within a specified time period.
Response example:

GET /stats/contract-calls:

{
"limit": "B",
"data": [
{
"contract_id": "CmOMDf7vpETuzUCsr1n2MVHsEGk4rz3aJplUa2UbWBql",
"count": "120",
"contract_name": "oracle_contract",
"last_call": "60.321"
}
]
}

GET /stats/contract-last-calls

The method returns a list of last smart contract calls according to their IDs and names.
Response example:

GET /stats/contract-last-calls:

{
"limit": "B",
"data": [
{
"contract_id": "CmOMDf7vpETuzUCsr1n2MVHsEGk4rz3aJp1Ua2UbWBql",
"contract_name": "oracle_contract",
"last_call": "60.321"
}
]
}

GET /stats/contract-types

The method returns a list of blockchain smart contracts according to their images and hashes.
Response example:

GET /stats/contract-types:

{
lllimitn: ||5||’
"data": [

(continues on next page)

30.3. API methods of the integration services 279

Technical description of the Waves Enterprise platform, Release 1.7.0

continued from previous page
g

"id": "CmOMDf7vpETuzUCsrin2MVHsEGk4rz3aJp1Ua2UbWBql",
"image": "registry.wvservices.com/waves-enterprise-public/oracle-contract:v0.1",
"image_hash": "936£10207dee466d051£e09669d5688e817d7cdd81990a7e99£71c1£2546a660",

"count": "60",
IIS]JmH . |l6000|l

GET /stats/monitoring

The method returns general information about the network.

Response example:

GET /stats/monitoring:

{
lltpsll: l|5l|,
"blockAvgSize": "341.391",
"senders": "50",
"IlOdeS": l|50l|’
"blocks": "500000"

}

Anchoring method group

Methods of the Anchoring group are used for obtaining of information about anchoring rounds.

GET /anchoring/rounds

The method returns a list of transactions that have been sent in anchoring rounds in accordance with specified

provisions and filters.
Response example:

GET /anchoring/rounds:

L
{

"height": O,

"sideChainTxIds": [
"string"

1,

"mainNetTxIds": [
"string"

1,

"status": "string",

"errorCode": 0

30.3. API methods of the integration services 280

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /anchoring/round/at/~height”

The method returns information about an anchoring round at a specified block {height}.

Response example:

GET /anchoring/round/at/{height}:

{
"height": 0,
"sideChainTxIds": [
"string"
1,
"mainNetTxIds": [
"string"
1,
"status": "string",
"errorCode": 0
}

GET /anchoring/info

The method returns information about the blockchain anchoring.
Response example:

GET /anchoring/info:

{
"height": O,
"sideChainTxIds": [
"string"
1,
"mainNetTxIds": [
"string"
1,
"status": "string",
"errorCode": 0
}

Auxiliary methods of the data service

GET /info

The method returns information about a data service in use.

Response example:

GET /info:

{
"version": "string",
"buildId": "string",
"gitCommit": "string"

}

30.3. API methods of the integration services 281

Technical description of the Waves Enterprise platform, Release 1.7.0

GET /status

The method returns information about status of the data service.
Response example:

GET /status:

{

"status": "string"
}
See also

Authorization and data services
data-sv-conf

REST API: authorization service methods
auth-sv-var

See also

auth-sv-var

data-sv-conf

REST API: authorization service methods
REST API: methods of the data service

30.3. API methods of the integration services 282

CHAPTER

THIRTYONE

EXTERNAL COMPONENTS OF THE PLATFORM

Table 1: List of proprietary components

Name Ver- | License License | License link Architecture
sion type component
CryptoPro | 5.0.x | CRYPTO-PRO Propri- | https://www.cryptopro.ru/ Node
CSp JSC license etary download?pid=1417
CryptoPro | 5.0.x | CRYPTO-PRO Propri- | https://www.cryptopro.ru/ Node
JCSP JSC license etary download?pid=1417
Table 2: List of open-source components
Name Ver- | License License License link Architecture com-
sion type ponent
postgres | 13.x | PostgreSQL | Freeware, https://github.com /postgres/ Data crawler
License opensource | postgres/blob/master/
COPYRIGHT
nodejs 12.21.xMIT License | Freeware, https://raw.githubusercontent.com/ | Data crawler,
opensource | nodejs/node/master/LICENSE data service,
client
npm 6.14.x The Artistic | Freeware, https://github.com /npm/cli/blob/ Data crawler,
License 2.0 opensource | latest/ LICENSE data service,
client
netty 4.1.x| Apache Li- | Freeware, https://github.com /netty /netty/ Node
cense 2.0 opensource | blob/4.1/LICENSE.txt
rocksdb 6.13.x Apache Li- | Freeware, https://github.com/facebook/ Node
cense 2.0 opensource | rocksdb/blob/master/LICENSE.
Apache
docker- 3.2.x| Apache Li- | Freeware, https://github.com/docker-java/ Node
java cense 2.0 opensource | docker-java/blob/master/LICENSE
akka 10.1.x Apache Li- | Freeware, https://github.com /akka/akka/ Node
(http, cense 2.0 opensource | blob/master/LICENSE
grpc)
swagger- | 3.23.x Apache Li- | Freeware, https://github.com /swagger-api/ Node
ui cense 2.0 opensource | swagger-ui/blob/master/LICENSE
nginx 1.18.x BSD License | Freeware, https://nginx.org/LICENSE Client
opensource

283

https://www.cryptopro.ru/download?pid=1417
https://www.cryptopro.ru/download?pid=1417
https://www.cryptopro.ru/download?pid=1417
https://www.cryptopro.ru/download?pid=1417
https://github.com/postgres/postgres/blob/master/COPYRIGHT
https://github.com/postgres/postgres/blob/master/COPYRIGHT
https://github.com/postgres/postgres/blob/master/COPYRIGHT
https://raw.githubusercontent.com/nodejs/node/master/LICENSE
https://raw.githubusercontent.com/nodejs/node/master/LICENSE
https://github.com/npm/cli/blob/latest/LICENSE
https://github.com/npm/cli/blob/latest/LICENSE
https://github.com/netty/netty/blob/4.1/LICENSE.txt
https://github.com/netty/netty/blob/4.1/LICENSE.txt
https://github.com/facebook/rocksdb/blob/master/LICENSE.Apache
https://github.com/facebook/rocksdb/blob/master/LICENSE.Apache
https://github.com/facebook/rocksdb/blob/master/LICENSE.Apache
https://github.com/docker-java/docker-java/blob/master/LICENSE
https://github.com/docker-java/docker-java/blob/master/LICENSE
https://github.com/akka/akka/blob/master/LICENSE
https://github.com/akka/akka/blob/master/LICENSE
https://github.com/swagger-api/swagger-ui/blob/master/LICENSE
https://github.com/swagger-api/swagger-ui/blob/master/LICENSE
https://nginx.org/LICENSE

CHAPTER

THIRTYTWO

OFFICIAL RESOURCES AND CONTACTS

32.1 Blockchain platform official resources

¢ Official website of the Waves Enterprise blockchain platform
e Github page of the project
* Official website of the Waves blockchain platform

32.2 How to contact with us

¢ Waves Enterprise technical support service

e Feedback form of the blockchain platform client

Official Telegram chat in English: Waves Enterprise Group

Official Telegram chat in Russian: Waves Enterprise

284

https://wavesenterprise.com/
https://github.com/waves-enterprise/WE-releases
https://wavesplatform.com
https://support.wavesenterprise.com/servicedesk/customer/portal/3
https://client.wavesenterprise.com/report
https://t.me/wavesenterprisegroup
https://t.me/WavesEnterprise_Ru

CHAPTER

THIRTYTHREE

GLOSSARY

Authorization Granting a participant the rights to perform certain operations on the blockchain (in partic-
ular, to use API methods)

Address The identifier of a network member derived from its public key. Each address has its own balance
and state

Account A set of data about a network member used to identify him or her

Alias The conditional name of a network member associated with its address. An alias is assigned to a
member using the transaction 10 and can be specified in transactions instead of the address of a
specific member

Anchoring Algorithm for checking data in a private blockchain for invariance by validating it in a larger
network

Asset A digital asset in blockchain. An asset is a set of tokens

Atomic transaction A container transaction consisting of several other transactions. If one of the transac-
tions placed in the atomic is not executed, all other transactions are also not executed

Balance Number of tokens owned by the address in the blockchain

Block A set of transactions recorded in the blockchain, signed by the miner and containing a link to the
signature of the previous block. Block size is limited to 1 Mb or 6000 transactions

Blockchain A decentralized, distributed, and publicly accessible digital registry that records information
in such a way that any individual record cannot be changed once it is made without changing all
subsequent blocks

Validation Confirmation of data invariability (integrity)
Generator An auxiliary utility that allows you to create key pairs or key strings
Generating balance Minimum balance, giving the address the right to mine
Access group List of addresses with access to sensitive data on the blockchain
Data crawler Service for extracting data from a node and loading it into a data preparation service
Smart contract execution Execution of program code embedded in a smart contract in a blockchain
Key block Initial block of a mining round, containing service information:
¢ public key of the miner for validation of microblock signatures;
¢ a miner fee for a previous block;
¢ the miner signature;

¢ a reference to a previous block

285

Technical description of the Waves Enterprise platform, Release 1.7.0

Fee The amount of tokens an address pays for the transactions it sends to the blockchain
Consensus Algorithm of coordination of information recorded in the blockchain between its participants
License A document granting the right to use the Waves Enterprise blockchain platform

Leasing Leasing of tokens on a participant’s balance to other participants. Leasing is used to create a
generating balance from the participant taking tokens on lease, as well as to increase the probability
of the participant’s selection by the miner of the next round when using the LPoS consensus algorithm

Miner Node, having the right to create new blockchain blocks
Mining The process of creating new blockchain blocks
Migration The process of changing key blockchain parameters

Microblock A set of transactions applied to a blockchain stack. Microblocks form a network block, the
number of transactions in a microblock is limited to 500 units

Node A network participant’s computer with the Waves Enterprise blockchain platform software installed
and a network address assigned

Node update Updating the Waves Enterprise blockchain platform software installed on a network member’s
computer

Image A smart contract template that contains its code and is used to create a Docker container in which
the smart contract is executed

Rollback Sending an already created block for re-mining due to failures occurring on blockchain nodes
Peer Node network address

Transaction signing Adding to the body of the transaction the public key of its creator, used to confirm the
integrity of the transaction in the blockchain

Private network, sidechain A blockchain network separate from Waves Enterprise Mainnet and with its own
registered participants

Private key A string combination of characters for transactional signing and token access, to which only its
owner has access. The private key is inextricably linked to the public key

Transaction broadcasting Writing a transaction to a blockchain block during a mining round

Public network A large blockchain network where each participant is known and registered in advance (e.g.,
Waves Enterprise Mainnet)

Public key A string combination of characters inextricably linked to the private key. The public key is
attached to transactions to confirm the correctness of the user’s signature made on the private key

Unconfirmed transaction pool (UTX pool) A component of the Waves Enterprise blockchain platform that
stores unconfirmed transactions until they are verified and sent to the blockchain

Round The process of mining a block by a blockchain network participant

Repository Smart contract image repository deployed with Docker Registry software
Permission Granting or denying of certain operations in the blockchain

Network message Network event information sent by a node to other nodes in the blockchain

Smart contract A separate application which saves its entry data in the blockchain, as well as the output
results of its algorithm

Snapshot A set of all the blockchain current data on accounts, smart contracts, sensitive data access groups,
permissions and registered nodes. A snapshot contains no history of changing values, transactions or
blocks.

286

Technical description of the Waves Enterprise platform, Release 1.7.0

Creation of a smart contract Upload a new smart contract to the blockchain using transaction 103
Soft fork Mechanism for activating pre-built blockchain functionality
State Blockchain transaction history stored in the database of each node

Address state Data set of an individual address: balances, information about sent data transactions, results
of execution of smart contracts called by the address

Smart contract state Current smart contract performance data recorded and updated with the transaction
104

Token
1. A blockchain unit used to motivate participants to mine on the network
2. The object used to authorize the blockchain participant

Transaction A separate operation in the blockchain that changes the network state and is performed on
behalf of a participant. By sending a transaction the participant sends a request to the network with
a set of data necessary to change the state accordingly

AQDS Advanced qualified digital signature based of Public Key Infrastructure (PKI). AQDS is issued by
an accredited Certification Authority (CA). As a rule, the validity period of an AQDS is limited to
one year

Participant User of the Waves Enterprise blockchain platform software, sending transactions to the
blockchain

Fork The formation of a new blockchain branch
Keystore A closed repository where key pairs of blockchain nodes are stored

Hash A unique set of characters generated from raw data using a given algorithm. Hash allows to uniquely
identify the raw data

Keystring hash A set of characters generated from a key string specified by the participant and used to
authorize him in the blockchain

Service Endpoint HTTP or HTTPS address to which the HTTP method refers. The endpoint performs a
specific task, accepts parameters and returns data.

API method A separate procedure called by a member via the API of the blockchain platform (gRPC or
REST API) and designed to perform a specific operation in the blockchain

CEK Content Encryption Key — data encryption key. The key is used to encrypt text data

Crash Fault Tolerance (CFT) A PoA-based consensus algorithm that prevents blockchain forks from occur-
ring in the event of any malfunction by one or more participants

Genesis block Initial block of the blockchain network, containing service transactions for the distribution of
primary roles and balances of participants

KEK Key Encryption Key used to encrypt the content encryption key (CEK)

Leased Proof of Stake (LPoS) The PoS consensus algorithm that enables a participant to lease tokens to
other participants

Liquid block Block state during a mining round from the formation of its key block to the formation of the
next key block

JWT (JSON Web Token) JSON-formatted object used to authorize a blockchain participant using the
oAuth protocol

PKI Public Key Infrastructure in which each key is represented by two parts: public and private. For more
information, see. Public key infrastructure

287

https://en.wikipedia.org/wiki/Public_key_infrastructure

Technical description of the Waves Enterprise platform, Release 1.7.0

Proof of Authority (PoA) Consensus algorithm, in which the ability to verify transactions and create new
blocks is given to the more authoritative nodes

Proof of Stake (PoS) A consensus algorithm in which the node that checks transactions and mines in the
next round is chosen based on its current balance

Sandbox Blockchain platform trial mode
Seed phrase A set of 24 randomly defined words to restore access to the address balance

Targetnet A blockchain network into which data from a private network is anchored

288

CHAPTER

THIRTYFOUR

WHAT IS NEW AT WAVES ENTERPRISE

34.1 1.7.3

The 1.7.3 is the last released version, and is marked as latest in this documentation.

34.2 1.7.2

Following articles have been modified:
* (Generating balance
e Creation of a node account
* Genesis block signing and starting the network
o Smart contract validators fee mechanism

e Glossary

34.3 1.7.0

Following article has been added:

Precise platform configuration: node in the watcher mode

34.4 1.6.2

Following articles have been modified:
e Description of transactions
* gRPC services used by smart contracts
e Smart contracts
* Permissions
e Snapshooting
e Activation of blockchain features

o System requirements

289

Technical description of the Waves Enterprise platform, Release 1.7.0

34.5 1.6.0

The structure and content of the documentation have been fully changed, the landing page with the search
line and quick access to the basic sections have been added.

The following articles describing the snapshot mechanism developed in the 1.6.0 version have been added:

Snapshooting
Node start with a snapshot

Precise platform configuration: snapshot

34.6 1.5.2

The article CFT consensus algorithm has been changed.

The 1.5.2 version contains critical fixes, see details in the release description.

34.7 1.5.0

Following articles have been added:

CFT consensus algorithm

Preparing to work

gRPC methods of the node

Monitoring of events in the blockchain with the use of the gRPC

Following articles have been modified:

Cryptography

Managing permissions

Transactions

Preparation of configuration files

Changes in the node configuration file

Description of the node configuration file parameters and sections
Consensus configuration

Node API tools

JavaScript SDK

Glossary

Content of the Docker configuration article has been transferred to the new article Preparing to work

The article Docker smart contracts with the use of the node REST API has been removed from the
index

34.5.

1.6.0 290

https://github.com/waves-enterprise/WE-releases/releases

Technical description of the Waves Enterprise platform, Release 1.7.0

34.8 1.4.0

Following articles have been added:
* Atomic transactions
¢ Working in the web client
e JavaScript SDK
Following articles have been modified:
* Architecture
» Transactions
* Authorization type configuration for the REST API and gRPC access
* Node APT tools
¢ Node update

349 1.3.1

Following articles have been added:
* Parallel contract execution
Following articles have been modified:
* Creating a smart contract

* Docker configuration

34.10 1.3.0

Following articles have been modified:

¢ Client

* The “Role model” and “Access managing” sections have been converted to a section Permissions man-
aging

¢ Description of the node configuration file parameters and sections

 Privacy data access groups configuration

* Docker configuration

e Addresses REST API methods

* Node REST API methods

e Contracts REST API methods

* Privacy REST API methods

o System requirements

34.8. 1.4.0 291

Technical description of the Waves Enterprise platform, Release 1.7.0

34.11 1.2.3

Following articles have been modified:
* Docker smart contracts
¢ Description of the node configuration file parameters and sections

 Privacy data access groups configuration

34.12 1.2.2

Following articles have been added:

e Debug REST API methods

e Full REST API description on the APT docs
Following articles have been modified:

¢ Installing and running the Waves Enterprise platform

34.13 1.2.0

Following articles have been added:
¢ A new section Integration services, which includes Authorization service and Data service
¢ ‘Obtaining a license’ section was added
* A new REST API Licenses method was added
* New article: Smart contract run with gRPC
e New article: gRPC services available to smart contract
Following articles have been modified:
¢ Installing and running the Waves Enterprise platform
e Updated: Cryptography. Part of information was moved into Data encryption operations
¢ Changes in the node configuration file

e Transactions

34.14 1.1.2

Following articles have been modified:
* Demo version

* Changes in the node configuration file

* ‘Node installation’ section was converted into ‘Installing and running the Waves Enterprise platform’

¢ Connecting participants to the network

* Anchoring configuration

34.11. 1.2.3

292

https://docs-out.vostokservices.com/en/1.2.1/api.html

Technical description of the Waves Enterprise platform, Release 1.7.0

¢ Authorization type configuration for the REST API access
¢ Connection of the node to the “Waves Enterprise Partnernet”
* Connection of the node to the “Waves Enterprise Mainnet”

o System requirements

34.15 1.1.0

Following articles have been added:

¢ API methods available to smart contract

* Demo version

¢ Changes in the node configuration file
Following articles have been modified:

* Docker smart contracts

¢ Example of starting a contract

* Node installation

¢ Additional services deploy

34.16 1.0.0

Following articles have been added:
* Authorization service
Following articles have been changed:
* Node configuration
¢ Connection to Mainnet and Partnernet
* REST API
* Node installation
Changes in the node.conf configuration file
e The NTP server article has been added
e The auth section for authorization type configuration has been added in the REST API article

34.15. 1.1.0 293

A

Access group, 285
Account, 285
Address, 285
Address state, 287
Alias, 285
Anchoring, 285

API method, 287
AQDS, 287

Asset, 285

Atomic transaction, 285
Authorization, 285

B

Balance, 285
Block, 285
Blockchain, 285

C

CEK, 287

Consensus, 286

Crash Fault Tolerance (CFT), 287
Creation of a smart contract, 287

D

Data crawler, 285
F

Fee, 286

Fork, 287

G

Generating balance, 285
Generator, 285
Genesis block, 287

H

Hash, 287

Image, 286

INDEX

J
JWT (JSON Web Token), 287

K

KEK, 287

Key block, 285
Keystore, 287
Keystring hash, 287

L

Leased Proof of Stake (LPoS), 287
Leasing, 286

License, 286

Liquid block, 287

M

Microblock, 286
Migration, 286
Miner, 286
Mining, 286

N

Network message, 286
Node, 286
Node update, 286

P

Participant, 287

Peer, 286

Permission, 286

PKI, 287

Private key, 286

Private network, sidechain, 286
Proof of Authority (PoA), 288
Proof of Stake (PoS), 288
Public key, 286

Public network, 286

R

Repository, 286
Rollback, 286

294

Technical description of the Waves Enterprise platform, Release 1.7.0

Round, 286

S

Sandbox, 288

Seed phrase, 288

Service Endpoint, 287

Smart contract, 286

Smart contract execution, 285
Smart contract state, 287
Snapshot, 286

Soft fork, 287

State, 287

T

Targetnet, 288

Token, 287

Transaction, 287

Transaction broadcasting, 286
Transaction signing, 286

U

Unconfirmed transaction pool (UTX pool), 286

V

Validation, 285

Index 295

	System requirements
	Deploying the platform in the trial mode (Sandbox)
	Platform installation
	Further actions

	Deploying a platform with connection to Mainnet
	Generating balance
	Account creation, token transfer and confirming transaction
	Node deployment
	Node connection to the Mainnet
	Further actions

	Deployment of the platform in a private network
	Obtaining a private network license and associated files
	Creation of a node account
	Platform configuration for operation in a private network
	Genesis block signing and starting the network
	Attachment of the client application to the private network

	Examples of node configuration files
	node.conf
	accounts.conf
	api-key-hash.conf
	Additional examples

	Licenses of the Waves Enterprise blockchain platform
	License types
	Duration of licenses

	Waves Enterprise Mainnet fees
	gRPC tools
	Preconfiguring the gRPC interface
	What the gRPC interface is for

	REST API methods
	REST API usage
	What the platform REST API is for

	Development and usage of smart contracts
	Preparing to work
	Smart contract development
	Uploading of a smart contract into a registry
	Installing of a smart contract into the blockchain
	Smart contract execution

	JavaScript SDK
	Contents

	Confidential data exchange
	Creation of a confidential data group
	Updating a confidential data group
	Sending confidential data into the network

	Permission management
	Connection and removing of nodes
	Connecting a new node to a private network
	Removing node from a private network

	Node start with a snapshot
	Architecture
	Platform arrangement
	Arrangement of nodes and auxiliary services

	Waves-NG blockchain protocol
	Description of a mining round
	Miner fee mechanism
	Smart contract validators fee mechanism
	Conflict resolution while generating blocks

	Connection of a new node to blockchain network
	Activation of blockchain features
	Voting parameters
	Voting procedure
	Usage of activated features
	Preliminary activation of features
	List of available feature identifiers

	Anchoring
	How the Waves Enterprise anchoring works
	Anchoring data transaction structure
	Errors that can occur during anchoring

	Snapshooting
	Components of the snapshooting mechanism
	Generation and broadcasting of a snapshot in an operating blockchain
	Snapshot REST API methods
	Network messages

	Smart contracts
	Development and installation of smart contracts
	Call of a smart contract and saving of results of its operation
	Restriction of smart contract calls
	Updating of smart contracts
	Validation of smart contracts
	Parallel operation of smart contracts
	API methods available for smart contracts

	Transactions of the blockchain platform
	Signing and sending of transactions
	Processing of transactions in the blockchain

	Atomic transactions
	Processing of atomic transactions
	Generating of atomic transactions

	Consensus algorithms
	LPoS consensus algorithm
	PoA consensus algorithm
	CFT consensus algorithm

	Cryptography
	Hash coding
	Electronic signature
	Data encryption

	Permissions
	Description of permissions
	Permission management

	Client
	Network stats
	Explorer
	Tokens
	Contracts
	Data transfer
	Network settings
	Write to us

	Generators
	AccountsGeneratorApp
	GenesisBlockGenerator
	ApiKeyHash

	Authorization and data services
	Authorization service
	Data service
	API methods of the integration services

	External components of the platform
	Official resources and contacts
	Blockchain platform official resources
	How to contact with us

	Glossary
	What is new at Waves Enterprise
	1.7.3
	1.7.2
	1.7.0
	1.6.2
	1.6.0
	1.5.2
	1.5.0
	1.4.0
	1.3.1
	1.3.0
	1.2.3
	1.2.2
	1.2.0
	1.1.2
	1.1.0
	1.0.0

